1.College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 2.National Electronic Science and Technology Experimental Teaching Demonstrating Center, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 3.National Information and Electronic Technology Virtual Simulation Experiment Teaching Center, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 4.State Key Laboratory of Millimeter Waves of Southeast University, Nanjing 210096, China
Fund Project:Project supported by the Open Research Program of State Key Laboratory of Millimeter Waves of Southeast University, China (Grant No. K201927) and the University-Level University Students' Innovative Training Programs.
Received Date:29 August 2018
Accepted Date:28 November 2018
Available Online:01 March 2019
Published Online:05 March 2019
Abstract:In order to design a tunable linear-to-circular polarization converter in microwave band, an ultra-broadband linear-to-circular polarization converter (LCPC) based on multiphysics regulation is proposed and studied by combining solid state plasma and vanadium dioxide (VO2) in this article. By using the electric control way to control the states of the solid plasma resonator, the solid state plasma can generate excitation and non-excitation state. By using the temperature (T) control way to regulate the phase transition state of the VO2 resonator, the VO2 can generate insulating and metallic state. The purpose of dynamic shift of the proposed LCPC′s operating band can be realized. The polarization conversion rate curve, reflection phase curve, the axial ratio curve and the surface current diagram of the proposed LCPC are analyzed and simulated by the full-wave simulation software HFSS and the effects of parameters r1 and r3 on the axial ratio are also discussed. When none of all the solid plasma regions are excited and T < 68 ℃ , the presented LCPC is in No. 1 state. On the basis of No. 1 state, if all the solid state plasma are excited, the presented LCPC is in No. 2 state. Similarly, on the basis of No. 1 state, the presented LCPC will be transformed to No. 3 state when T ≥ 68 ℃. The axial ratio band which is less than 3 dB (3 dB AR band) is 14.3?29.7 GHz (the relative bandwidth is 70%) in No. 2 state. The 3 dB AR bands which are 14.4?23.4 GHz and 28.6?35.9 GHz (the relative bandwidths are 47.61% and 22.64%) show that the proposed LCPC has the ability to shift the working band to high frequency range. When switching the LCPC to No. 3 state, the 3 dB AR bands which are 8.4?11.2 GHz and 18.7?29.5 GHz (the relative bandwidths are 28.57% and 44.81%) are shifted to low frequency region. Compared with traditional LCPC, our design has the advantages of diverse control means, wide bandwidth, flexible design and strong functionality. At the same time, this LCPC presents a new design method and idea for multiphysical field regulated devices. Keywords:linear-to-circular polarization converter/ ultra-broadband/ multiphysics/ tunability
全文HTML
--> --> -->
2.线-圆极化转换器模型该款基于多物理场调控的超宽带线-圆极化转换器单元结构如图1所示, 图1(a)—(c)分别为该线-圆极化转换器正视图、侧视图和立体图, 其中坐标轴设定如图1所示. 由图1可知, 该线-圆极化转换器单元由四层组成, 自下而上分别为: 第一层为铜反射板(电导率为5.8 × 107 S/m), 第二层为Neltec NY9220介质基板 (相对介电常数为2.2, 损耗角正切为0.0009), 第三层为二氧化硅 (SiO2)介质基板 (相对介电常数为4, 损耗角正切为0), 第四层为谐振单元层, 它由三种谐振单元构成, 分别为“糖果”形铜质谐振单元、四个“缺口直角梯”形VO2谐振单元和四个“梯形”固态等离子体谐振单元. Neltec NY9220介质基板的厚度h1 = 1.5 mm, 边长p = 4.8 mm. SiO2介质基板的厚度h2 = 0.5 mm, 边长p = 4.8 mm. 铜质谐振单元、铜反射板、固态等离子体谐振单元、VO2谐振单元的厚度均为w = 0.018 mm. “糖果”形铜质谐振单元是由短轴r1 = 0.81 mm, 长轴r2 = 1.1583 mm的椭圆与两个左右对称的“弓形”三部分组成, 左侧弓形对应圆心角为86°41′、半径r3 = 1.87 mm的扇形, 该扇形的顶点与所述椭圆中心点的距离为a = 0.2417 mm. “梯形”固态等离子体谐振单元上底d = 0.35 mm, 下底c = 0.47 mm, 高b = 0.48 mm, 从此梯形上底一端点引出的腰与两底边之间的垂线的夹角为45°. “缺口直角梯”形VO2谐振单元由一个上底r = 0.68 mm, 下底g = 0.8 mm, 高f = 1.2 mm的直角梯形剪去与铜质谐振单元重叠部分构成. 详细的结构参数如表1所列.
参数/mm
数值
参数/mm
数值
a
0.2417
h1
1.5
b
0.48
h2
0.5
c
0.47
p
4.8
d
0.35
r1
0.81
e
0.68
r2
1.1583
f
1.2
r3
1.87
g
0.8
w
0.018
表1线-圆极化转换器的参数 Table1.Parameters of linear-to-circular polarization converter.
图 1 线-圆极化转换器结构单元示意图 (a)正视图; (b)侧视图; (c)立体图 Figure1. Structure schematic of the unit cell for linear-to-circular polarization converter: (a) Front view; (b) side view; (c) stereogram.
式中$\tau $为取向角(极化椭圆长轴与x轴的夹角), $\tau = 0.5\arctan \left[ {2{r_{{\rm{uv}}}}{r_{{\rm{uu}}}}\cos {\text{Δ}}\varphi /\left( {r_{{\rm{uv}}}^2 - r_{{\rm{uu}}}^2} \right)} \right]$. 为了进一步说明该线-圆极化转换器的可调谐性, 图3给出了该线-圆极化转换器在电控和温控时的轴比曲线. 图3(a)为该线-圆极化转换器在电控时的轴比曲线, 其中实线表示工作状态一的轴比曲线, 3 dB轴比频带为14.3—29.7 GHz, 相对带宽为70%; 虚线表示为工作状态二的轴比曲线, 3 dB轴比频带为14.4—23.4 GHz和28.6—35.9 GHz, 其相对带宽分别为48.28%和22.64%. 对比图3(a)的实线和虚线, 可以看出采用电控的方式来实现该线-圆极化转换器时, 其工作频带将向高频方向移动. 图3(b)为线-圆极化转换器工作在温控时的轴比曲线, 其中实线表示工作状态一的轴比曲线, 3 dB轴比频带为14.3—29.7 GHz, 其相对带宽为70%; 虚线表示工作状态三轴比曲线, 3 dB轴比频带为8.4—11.2 GHz与18.7—29.5 GHz, 其相对带宽分别为28.57%和44.81%. 对比图3(b)的实线和虚线, 可以看出可以采用温控的方式来实现该线-圆极化转换器时, 其工作频带将向低频方向移动. 图 3 线-圆极化转换器在电控和温控时的轴比曲线 (a)电控时, 工作状态一、二的轴比曲线; (b) 温控时, 工作状态一、三的轴比曲线 Figure3. Axial ratio curves of linear-to-circular polarization converter when using electric control and temperature control: (a) Axial ratio curves in No. 1 state and in No. 2 state when using electric control; (b) axial ratio curves in No. 1 state and in No. 3 state when using temperature control.
为了进一步说明该线-圆极化转换器的工作原理, 本文分别分析了三种工作状态下的表面电流图. 图4(a)和(b)给出了工作在状态一时, 顶层谐振单元和底层铜反射板在频点15.03 GHz和21.3 GHz处的表面电流图. 由图4(a)看出, 在频点15.03 GHz处底层反射板电流2可以分解成两个相互垂直的分量(电流3、电流4). 可以看出, 电流3与顶层谐振单元的电流1方向相反, 从而产生一个感应磁场H1, 并且可以分解为在u轴和v轴上的两个相互垂直的分量, 分别是H1u和H1v. 因此, 从图4(a)可以看出, H1v与入射磁场H方向均在v轴上不会产生交叉极化, H1u与入射磁场H相互垂直而产生了交叉极化. 图4(b)中频点21.3 GHz处产生极化转换原理与此相同. 当该线-圆极化转换器工作在状态二时, 工作频带向高频区域转移, 图4(c)给出了在工作在状态二时, 顶层的谐振单元和底层铜反射板在频点32.5 GHz处的表面电流图. 从图4(c)可以看出, 顶层电流11, 14, 17, 20均可以分解成垂直和水平两个分量. 其中, 它们对应的水平分量电流13, 15, 18, 21的方向与底层铜反射板电流23相反, 从而产生感应磁场H13, H15, H18, H21, 感应磁场分解在u轴的分量H13u, H15u, H18u, H21u与入射磁场H方向相互垂直从而导致交叉极化的产生, 而感应磁场分解在v轴的分量H13v, H15v, H18v, H21v与入射磁场H方向相同则不会产生交叉极化. 当该线-圆极化转换器工作在状态三时, 工作频带向低频区域转移, 图4(d)给出了在工作在状态三时, 顶层的谐振单元和位于底层的铜反射板在10 GHz处的表面电流图. 从图4(d)可以看出, 顶层电流24, 25与底层铜反射板电流26相反, 从而产生感应磁场H24, H25, 感应磁场分解在u轴的分量H24u, H25u与入射磁场H方向相互垂直从而导致交叉极化的产生, 而感应磁场分解在v轴的分量H24v, H25v与入射磁场H方向相同则不会产生交叉极化. 而当三种工作状态下的反射波中交叉极化分量与同极化分量幅值相等且相位相差为$ \pm {\text{π}}/2 + 2k{\text{π}}$(k为整数)时, 则产生了线-圆极化转换. 图 4 线-圆极化转换器在三种工作状态下, 顶层谐振单元与底层反射板在不同频点处的表面电流图 (a)工作状态一时, 15.03 GHz频点处; (b)工作状态一时, 21.3 GHz频点处; (c)工作状态二时, 32.5 GHz频点处; (d)工作状态三时, 10 GHz频点处 Figure4. Surface current diagrams of the top resonant unit and the bottom reflector at different frequency points in three states, respectively: (a) No.1 state at 15.03 GHz; (b) No.1 state at 21.3 GHz; (c) No.2 state at 32.5 GHz; (d) No.3 state at 10 GHz.