1.School of Science, Lanzhou University of Technology, Lanzhou 730050, China 2.College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China 3.Center for Micro- and Nano-scale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61505074) and the HongLiu First-class Disciplines Development Program of Lanzhou University of Technology, China.
Received Date:10 January 2019
Accepted Date:18 January 2019
Available Online:01 February 2019
Published Online:05 February 2019
Abstract:The composite structure of metal nanoparticle and metal film can be used as a surface-enhanced Raman scattering (SERS) substrate to significantly enhance the Raman signal of adsorbed molecules due to the strong coupling between local surface plasmons and propagating surface plasmons. An SERS substrate of the composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate (PMMA) film is proposed. The optimum thickness of PMMA is 15 nm obtained by numerical simulation through using finite element method. The composite structure of PMMA spacer with a thickness of 14 nm is prepared experimentally. Using R6G as the Raman probe molecules and He-Ne laser with a wavelength of 633 nm as an excitation source, the SERS effect of the composite structure and single gold nano-cubes are studied. It is found that the composite structure can make the probe molecules produce a stronger Raman signal than the single structure. Furthermore, the SERS spectra of R6G molecules on the composite structure under the condition of aqueous solution of gold nano-cubes with different concentrations are studied. The results show that when the concentration of gold nano-cubes’ aqueous solution is 5.625 ${\text{μ}}{\rm g/mL}$, the SERS signal of the R6G molecules on the composite structure is strongest. The lowest concentration of R6G molecules which can be detected is about 10–11 mol/L. Keywords:surface plasmon/ surface-enhanced Raman scattering/ gold nano-cube/ gold film
全文HTML
--> --> --> -->
3.1.单一金纳米立方体的SERS研究
先分别取5 ${\text {\rm μL}}$已经制备好的I, II和III号样品滴涂到玻璃基片上的三个不同的位置处, 自然晾干, 作对比实验. 每个样品任意取三个不同位置采集拉曼光谱, 最后取其平均值, 结果见图2. 从图2可以看出R6G的9个振动谱: 612, 773, 1125, 1182, 1307, 1361, 1502, 1575和1648 cm?1, 与R6G粉末的峰位相同, 且与文献[38]报道一致. 但是由于荧光背景很强导致R6G分子的拉曼峰不够明显. 图 2 10?4 mol/L的R6G、不同浓度金纳米立方体混合水溶液条件下玻璃基片上的SERS光谱 Figure2. SERS spectra of R6G molecules on the glass substrate in the conditions of the mixed aqueous solution of gold nano-cubes with different concentrations and R6G with the concentration of 10?4 mol/L.
23.2.PMMA间隔的金纳米立方体与金膜复合结构的SERS研究 -->
3.2.PMMA间隔的金纳米立方体与金膜复合结构的SERS研究
为了进一步增强R6G分子的拉曼信号, 提出了PMMA间隔的金纳米立方体与金膜复合结构作为SERS基底, 通过有限元方法优化PMMA的厚度, 得到了复合结构中最大电场增强与PMMA厚度之间的关系, 如图3(a)所示. 当PMMA的厚度为15 nm时, 复合结构的电场增强最大, 达1.76 × 106, 其高电场增强是金纳米立方体尖端激发的局域表面等离子体和PMMA与金薄膜分界面激发的传播表面等离子体发生了强共振耦合而导致的. 进一步数值模拟计算了最优参数条件下复合结构中的电场分布, 如图3(b)所示. 可以明显地观察到, 最大电场增强位于金纳米立方体的下顶点处. 图 3 (a)复合结构中最大电场增强因子与PMMA厚度的关系; (b) 15 nm PMMA厚度下复合结构中的电场分布 Figure3. (a) Relationship between maximum electric field enhancement factor and the thickness of PMMA in composite structure; (b) electric field distribution of composite structure with a 15-nm-thick PMMA spacer.
用同样的方法将I, II和III号样品滴涂在14 nm厚的PMMA薄膜-金膜-玻璃基片上(S1基底), 自然晾干后, 制备得到PMMA间隔的金纳米立方体与金膜复合结构的SERS基底. 同上, 每个样品上测量3个点的SERS光谱, 取平均后的拉曼光谱如图4所示, 发现复合结构的SERS强度远高于上述单一的金纳米立方结构的SERS强度, 且10?4 mol/L的R6G, 5.625 ${\text {\rm μg/mL}}$金纳米立方体的混合水溶液条件下的SERS效应最明显. 这是由于: 在金纳米立方体水溶液浓度较高的条件下, 金纳米立方体的排列可能比较紧密, 故激发金纳米立方体尖端处的局域表面等离子体的效率较低, 进而局域表面等离子体和传播表面等离子体的耦合也较弱, 导致的电场增强也较低, 故SERS信号不是很强; 当金纳米立方体水溶液的浓度适中时, 金纳米立方体会分散得较好, 大部分金纳米立方体尖端处的局域表面等离子体和PMMA与金膜分界面的传播表面等离子体发生共振耦合, 且金纳米立方体之间的局域表面等离子体的耦合也会使得场强进一步增大, 故拉曼分子的SERS信号也会很强. 显然, 立方体水溶液浓度很低的条件下, 也不利于SERS的检测. 本文在浓度5.625 ${\text {\rm μg/mL}}$的金纳米立方体水溶液条件下, 得到了复合结构中最强的SERS信号. 图 4 10?4 mol/L的R6G、不同浓度金纳米立方体混合水溶液条件下复合结构中的SERS光谱 Figure4. SERS spectra of R6G molecules on the composite structure in the conditions of the mixed aqueous solution of gold nano-cubes with different concentrations and R6G with the concentration of 10?4 mol/L.
为了更清楚地对比不同基底上R6G的拉曼信号的强弱, 分别单独取图2和图4中10?4 mol/L的R6G、浓度为5.625 ${\text{μ}}{\rm g/mL}$的金纳米立方体的混合水溶液在玻璃基片和S1基底上平均后的拉曼光谱, 如图5所示. 可以看出, 在S1基底的SERS峰均高于玻璃基片上所对应的拉曼峰. 这也再一次说明, 在金纳米立方体与金薄膜之间增加介质层后, 表面等离子体之间发生了耦合作用, 且这种耦合导致了更强的拉曼信号. 从更定量的角度出发, 拉曼峰高为峰的最高点与其最低点处的强度差, 10?4 mol/L的R6G, 5.625 ${\text{μ}}{\rm g/mL}$金纳米立方体的混合水溶液条件下在玻璃基片上的峰612, 773, 1125, 1182, 1307, 1361, 1502, 1575和1648 cm?1处的拉曼峰高分别为448, 1323, 327, 240, 460, 1515, 1196, 417, 374, 1031 (arb. units), 在S1基底上相应的拉曼峰高分别为5896, 4001, 398, 1203, 6677, 18282, 16179, 3172, 10589 (arb. units). 可以看出, 在S1基底上相应的拉曼峰高比在玻璃基片上的高很多, 平均峰高比为9倍. 图 5 10?4 mol/L的R6G, 5.625 ${\text {\rm μg/mL}}$的金纳米立方体混合水溶液条件下玻璃基片和复合结构的SERS光谱 Figure5. SERS spectra of R6G molecules on the glass substrate and composite structure in the condition of the mixed aqueous solution of gold nano-cubes with the concentration of 5.625 ${\text {\rm μg/mL}}$ and R6G with the concentration of 10?4 mol/L.
最后, 为了研究复合结构的灵敏度, 将10?6, 10?8, 10?10, 10?11 mol/L的R6G, 5.625 ${\text {\rm μg/mL}}$的金纳米立方体混合水溶液(即上述制备好的IV号、V号、VI号、VII号样品)滴涂于S1基底上, 测其SERS信号. 在样品上随机测了3个点, 取平均值后的拉曼光谱如图6(a)所示. 为了更清楚地表征低浓度R6G的拉曼光谱, 单独取10?11 mol/L的R6G, 5.625 ${\text {\rm μg/mL}}$的金纳米立方体的混合水溶液在S1基底上的拉曼光谱, 如图6(b)所示, 即使R6G的浓度降至10?11 M, 仍然能够得到R6G的拉曼峰. 即R6G的检测极限可达10?11 mol/L. 图 6 5.625 ${\text {\rm μg/mL}}$的金纳米立方体混合水溶液条件下, 复合结构的SERS光谱 (a)不同R6G浓度; (b) 10?11 mol/L的R6G浓度(1 M = 1 mol/L) Figure6. SERS spectra of R6G molecules on the composite structure in the conditions of the mixed aqueous solution of gold nano-cubes with the concentration of 5.625 ${\text{\rm μg/mL}} \!\! :$(a) R6G with different concentrations of 10–6, 10?8, 10?10, 10–11 mol/L; (b) R6G with the concentration of 10?11 mol/L.