1.School of Marine Science and Technology, Tianjin University, Tianjin 300072, China 2.College of Underwater Acoustics Engineering, Harbin Engineering University, Harbin 150001, China 3.Systems Engineering Research Institute, Beijing 100036, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC1401203), the National Natural Science Foundation of China (Grant No. 11474074), and the Foundation of National Key Laboratory on Ship Vibration & Noise, China (Grant No. 61422040102162204001).
Received Date:30 July 2018
Accepted Date:27 November 2018
Available Online:01 January 2019
Published Online:20 January 2019
Abstract:It can be a difficult problem to precisely predict the acoustic field radiated from a finite elastic structure in shallow water channel because of its strong coupling with up-down boundaries and the fluid medium, whose acoustic field cannot be calculated directly by existing methods, such as Ray theory, normal mode theory and other different methods, which are adaptable to sound fields from idealized point sources in waveguide. So, there is no reliable research method of predicting the acoustic radiation of elastic structure in shallow water at present. Based on the finite element method (FEM) coupled with the parabolic equation (PE), the theoretical model for structure acoustic radiation in shallow water at low frequency is established in this paper. This model mainly consists of three sections. First, obtaining the near-field vibro-acoustic characteristics of the elastic structure in shallow water by the multi-physics coupling model established by FEM, whose FEM model includes the up-down boundaries and the completely absorbent sound boundaries in the horizontal direction. Second, getting the acoustic information in the depth, which is set as the acoustic input condition i.e. starting field for the PE. Third, the acoustic information in the far-field quickly calculated by the PE and the finite difference method (FDM). The accuracy, efficiency and fast convergence of FEM-PE method are validated by numerical simulation and theoretical analysis through using a monopole source and structural source in the Pekeris waveguide, respectively. The vibro-acoustic characteristics of elastic cylinder influenced by upper and lower fluid boundaries of the Pekeris waveguide are calculated and analyzed. The cylindrical shell material is steel, and it is 1 m in radius and 10 m in length. The shallow water channel is a Pekeris waveguide with 30 m in depth, at the upper boundary, i.e., the free surface, the lower boundary is the semi-infinite liquid boundary. The analyzed frequencies range from 50 Hz to 200 Hz. The study shows that when the cylindrical shell approaches to the sea surface or bottom, the coupled frequency is higher or lower respectively than that of the shell immersed in the free field. When the diving depth reaches a certain distance range, the coupled frequency tends to be the same as that in free field. The acoustic field radiated from an elastic shell in Pekeris waveguide is similar to that from a point source at low frequency, but there exists a significant difference in high frequency between them, so the structural source can be equivalent to a point source conditionally. The sound radiation attenuation of the structure happens in sequence according to the near-field acoustic shadow zone, the spherical wave attenuation zone, the region between spherical wave and the cylindrical wave attenuation zone, and the cylindrical wave attenuation zone. Keywords:shallow water/ finite cylindrical shell/ finite element-parabolic equation method/ vibro-acoustic characteristics
根据(27)式以及Pekeris波导环境参数计算了该波导中1—6阶的简正频率, 如表4所列. 可看出第一阶简正频率即截止频率为35.52 Hz, 虽然在低于截止频率下结构也会产生辐射声场, 但这些辐射声场为非均匀波, 即随着距离成指数衰减而无法远距离传播, 所以为了进行波导下弹性圆柱壳远场声辐射分析, 计算频率须高于35.52 Hz.
n
1
2
3
4
5
6
f/Hz
35.52
106.56
177.60
248.65
319.69
390.73
表4Pekeris波导中各阶简正波频率 Table4.Normal mode frequencies in Pekeris waveguide.
为了清楚地看出Pekeris波导中弹性圆柱壳辐射声场的整体分布情况, 图10采用该方法分别计算了50, 100, 150 和200 Hz频率下圆柱壳在波导二维截面上的辐射场传播伪彩图, 截面为圆柱壳轴线方向, 圆柱壳潜深为15 m. 图 10 不同频率下结构声场传播伪彩图 (a) f = 50 Hz; (b) f = 100 Hz; (c) f=150 Hz; (d) f = 200 Hz Figure10. Colour maps of structural sound propagation at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz.
结合表4可看出, 当频率为50 Hz时, 波导中只包含了一个简正波模式的声传播, 辐射场在二维截面上的分布只出现了一个辐射状云图, 并随着距离按一定规律衰减. 随着频率的增加, Pekeris波导中包含的简正波模式也在增加, 各阶简正波模式相互干涉叠加, 加大了波导中圆柱壳结构辐射声场干涉结构的复杂性. 虽然Pekeris波导中圆柱壳辐射声场整体分布与点源声场分布具有一定的相似性, 但也存在一定的区别. 如图11所示, 在进行点源(强度)与结构声功率等效处理之后, 进行了不同频率下结构辐射声场与点源声场的对比. 结构潜深与点源深度均为15 m, 各场点深度为15 m, 场点连线方向为圆柱壳轴线方向. 结合表3 和表4的计算结果, 在频率为50 Hz的低频段时, 因为在近场, 辐射声场空间分布主要受结构辐射直达声的影响, 海面海底反射声对结构振动和辐射声场的影响较小. 且在该频率下, 结构具有(4, 1), (4, 2), (6, 1), (6, 2)和(6, 3)阶等少量振动模态, 该频率下结构近场辐射声场空间分布曲线的有较小的波动. 达到一定距离(如500 m左右), 结构本身对辐射声场的影响减小, 上下界面反射声对声场叠加的影响占主要部分, 而该频率下包含一个简正波模式, 总声场无不同模态辐射声与简正模式的干涉叠加影响, 辐射曲线出现平滑衰减, 衰减规律与相同强度下点源产生声场分布是一致的. 但随着频率的增加, 结构振动模态数增加, 各阶模态激励出的辐射场对总声场的干涉影响加大, 且随着频率的增加, 相对于低频, 频率较高时需要达到更远的距离才能降低结构自身对声场的影响作用, 从而使波导中上下边界的影响(或上下边界束缚的简正波)起主导作用, 才会与点源产生声场相似的分布规律. 因为总声场是由结构各阶不同强度模态声场经过波导上下边界干涉叠加而来的, 所以, 波导中结构辐射总声场与相同强度下点源声场在幅值上有一定差异, 这与文献[17]得出的结论是一致的. 对于结构声源和点源相似性条件的判据公式, 可以用$\displaystyle\frac{a}{\lambda } \ll 1$(a为结构最大尺寸)近似表示[36]. 图 11 不同频率下结构辐射声场与点源声场对比 (a) f = 50 Hz; (b) f = 100 Hz; (c)f = 150 Hz; (d) f = 200 Hz Figure11. Acoustic propagation contrast between structure and point souce at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz.
分析声场衰减规律能够更好地掌握浅海波导下声传播特性, 典型点源在具有声吸收的均匀浅海声传播过程中, 平均声强的衰减规律由三部分构成, 即声强随距离按$-2 $次方的球面波衰减区、介于球面波和柱面之间的$-3/2 $次方规律衰减区和$ -1$次方的柱面波衰减区, 并通过海洋声传播理论推导了各个衰减区的距离判据以及传播损失的分段表达式和半经验式[35]. 同样, 本文对弹性圆柱壳辐射声场在Pekeris波导中的传播特性进行了研究. 如图12所示, 分别为圆柱壳在不同潜深下的声压级随距离的变化曲线, 各场点深度为15 m, 场点连线方向为圆柱壳的轴线方向. 可看出, 在近场, 因为总声场主要由不同振动模态结构辐射的直达声组成, 浅海边界的影响很小, 声场干涉复杂而并非出现类似点源的近场球面波衰减规律, 而是在圆柱壳轴线方向上出现了受结构自身振动和几何尺寸共同影响的近场声影响区. 随着距离的进一步增加, 虽然上下界面反射声已对声场产生了一定程度影响, 但由结构辐射的直达波仍然还是总声场的主要贡献者, 只是随着距离的增加, 结构的几何尺寸对声场的影响减小, 即声场指向性分布减弱, 导致辐射场传播按球面波衰减规律进行[36]. 当场点距离位于“介于球面波和柱面波”衰减区时, 此时 结构不同模态的辐射声和上下边界束缚的简正波模式共同干涉叠加形成总声场, 总声场的波动变化规律较为复杂, 难以给出规律性的描述. 当传播距离足够远以后, 结构的几何尺寸和模态辐射声场对总声场的影响很小, 声场主要由波导上下边界限制的有限阶数简正波干涉叠加构成, 各阶简正波均按柱面扩展规律$1/\sqrt r $衰减, 当频率为50 Hz时, 只有一阶简正波, 所以其在柱面波衰减区的辐射曲线是平滑的, 随着频率的增加, 总声场由各阶简正波干涉叠加构成, 增加了结构辐射曲线的波动细节, 但辐射曲线的包络面(或声场幅值)仍然按照柱面$1/\sqrt r $的规律进行衰减, 即传播距离每增加一倍, 声压级降低3 dB. 图 12 不同频率下结构辐射场传播特性分析 (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz Figure12. Analysis of structural sound propagation at different frequencies: (a) f = 50 Hz; (b) f = 100 Hz; (c) f = 150 Hz; (d) f = 200 Hz.