Abstract:In this paper, the stress distribution of Si/Ge interface and the mechanism of the point defect buffer layer in the stress release process of Si/Ge structure on a nanoscale are studied by the molecular dynamics method. The results show that in a one-dimensional interface model, the stress relaxation at the Si/Ge interface is closely related to the size of Ge of the simulation, and there is an approximately linear relationship between the decrease rate of interface stress and the size of Ge. The vacancy defect is introduced into the Ge film near the Si/Ge interface, and a point defect rich buffer layer forms, reducing the stress at the Si/Ge interface significantly. As the defect density in the buffer layer increases, the interface stress decreases step by step. Moreover, in the paper examined also is the mechanism by which the buffer layer affects the interface stress. The relationship between the stress variation caused by the point defect in the pure Ge structure and the defect density is compared and analyzed. The introduction of the defect buffer layer and the increase of the defect density can accelerate the release of the Si/Ge interface stress. The internal mechanism of the stress reduction would be that the defect introduces the compressive stress, which can offset the tensile stress generated by the lattice mismatch of the Si and Ge structure. Then the Si/Ge interface stress is reduced. Besides, as the defect density increases, the compressive stress introduced by the defect increases and the interface stress decreases. The examination shows that the introduction of the defect buffer layer into the growth of the pure Ge film on silicon can reduce the probability of the dislocation defect by structuring the buffer layer to reduce interface stress. And this method is indirectly confirmed by preliminary study of silicon-based Ge film growth with low-temperature buffer layer method. Keywords:Si/Ge interface/ molecular dynamics/ interface stress/ defect buffer layer
首先对不同Ge尺寸下的Si/Ge界面应力分布进行分析, 结果如图3所示. 从图3可以看出, 应力随着远离界面而迅速降低, 表明Si/Ge界面应力主要集中在界面附近. 图 3 不同Ge尺寸下Si/Ge界面应力的变化 Figure3. Variation of stress at Si/Ge interface under different sizes of Ge.
式中LGstress为应力下降到200 MPa需要的距离; 在一维界面模型中A近似为一个常数; Ftotal为Si/Ge界面总应力; VStress为应力释放速度. Ftotal与Si/Ge界面面积成正比, VStress与Si/Ge界面周长成正比, 而在一维界面模型下界面面积与周长的比值与Ge尺寸成正比, 由此推导LGstress与Ge尺寸成正相关, 这与图4所示的计算结果一致. 图 4 应力下降到200 MPa的位置与界面间距LGstress与Ge尺寸的关系 Figure4. Relationship between distance LGstress and Ge when stress is relaxed to 200 MPa.
23.2.缺陷缓冲层存在下的Si/Ge界面应力释放机制 -->
3.2.缺陷缓冲层存在下的Si/Ge界面应力释放机制
为了研究缺陷缓冲层在Si/Ge界面应力释放过程中的作用机制, 在上述模型基础上, 固定Ge尺寸为100 ?, 在Si/Ge界面引入不同缺陷密度的缓冲层, 研究缺陷密度对界面应力的影响. 引入缺陷层后的界面应力分布如图5所示. 从图5可以看出, 缺陷层中的应力水平显著降低, 缺陷的存在可以有效释放Si/Ge界面应力; 随着缓冲层缺陷密度的增加, 应力降低程度越明显. 同时观察到Ge中没有缺陷的区域, 应力有一定程度的增加, 这与缺陷层在Ge内部形成的新的缺陷界面有关. 图 5 缓冲层缺陷密度对Si/Ge界面应力的影响 Figure5. Effect of different point defect density on stress at Si/Ge interface in buffer layer.
为了进一步分析缺陷在Si/Ge界面应力释放过程中的作用机制, 采用x-y方向尺寸为100 ?的周期性Ge材料模型, 并在内部引入厚度为20 ?的缺陷层, 缺陷密度分别为0.5 × 1021, 1.0×1021, 2.0 × 1021和3.0×1021 cm?3. 采用与第2节相同的弛豫过程, 对Ge体系进行充分弛豫, 计算其z方向应力分布, 结果如图6所示. 缺陷在Ge体系内部引入了压应力, 并且随着缺陷密度越高, 引入的压应力越大, 这也证实在Si基Ge结构中, 缺陷层是降低界面应力的主要机制. 图 6 不同密度的空位缺陷对应力的影响规律 Figure6. Effect of different point defect density on the stress.
从图5和图6的结果均可以看出, 缺陷的引入使得界面应力发生变化, 且缺陷密度对界面应力有较大的影响. 为了更深入分析Ge缺陷密度对Si/Ge界面应力的影响, 计算在不同缺陷密度条件下界面应力差, 同时计算了单独缺陷存在时Ge内部产生的应力差, 结果如图7所示. 当缺陷密度小于1.0 × 1021 cm?3时, Si/Ge界面应力差与缺陷密度存在比较好的线性递减关系, 随着缺陷密度的继续增加, 应力下降速度降低. 同时可以看到, 在只有缺陷存在时, Ge内部应力差与缺陷密度呈近似线性递减, 且当下降的速度与缺陷密度小于1.0 ×1021 cm?3时, 下降速度相当. 由此可以推断, 当缺陷密度小于1.0 × 1021 cm?3时, 缺陷密度产生的应力变化起主要作用, 当缺陷密度进一步增大时, 存在其他的机制抵消了一部分缺陷产生的应力变化, 使得随缺陷密度增加, 应力下降速度降低. 图 7 Si/Ge界面应力差及单缺陷产生的应力差与缺陷密度的关系 Figure7. Relationship of the Si/Ge interface stress difference and the single defect interface stress difference with the defect density.