林文雄,
福建农林大学农业生态研究所/福建省农业生态过程与安全监控重点实验室 福州 350002
基金项目: 国家自然科学基金项目81573530
中国博士后科学基金项目2019M650150
福建农林大学优秀博士学位论文基金324-1122YB031
详细信息
作者简介:吴红淼, 主要研究方向为根际生态学过程与调控。E-mail:wuhongmiao2010@163.com
通讯作者:林文雄, 主要研究方向为植物生理与分子生态学、农业生态学。E-mail:wenxiong181@163.com
中图分类号:S181计量
文章访问数:662
HTML全文浏览量:6
PDF下载量:583
被引次数:0
出版历程
收稿日期:2019-10-28
录用日期:2020-02-18
刊出日期:2020-06-01
A commentary and development perspective on the consecutive monoculture problems of medicinal plants
WU Hongmiao,LIN Wenxiong,
Institute of Agroecology, Fujian Agriculture and Forestry University/Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou 350002, China
Funds: the National Natural Science Foundation of China81573530
China Postdoctoral Science Foundation2019M650150
the Foundation of Graduate School of Fujian Agriculture and Forestry University324-1122YB031
More Information
Corresponding author:LIN Wenxiong, E-mail:wenxiong181@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:连作障碍作为现代农业生产中较普遍的问题,在药用植物栽培生产中表现尤为严重,据统计约70%以块根类入药的药用植物在种植过程中都存在严重的连作障碍问题。连作障碍已经成为制约药用植物品质和发展的关键性因素。本研究从药用植物连作障碍问题研究现状出发,分析了当前药用植物连作障碍形成的三大共性问题,即根系分泌物诱导根际土壤酸化、根际微生物群落结构失衡和植株病毒病严重,具体体现在:根系分泌物诱导根际土壤微生物差异性演化、土传病原菌的化感互作、根际微生物区系的失衡加大土壤酸化、根际病原菌增多和有益菌减少导致的土存真菌病害加重、病毒病伴生和发展。并分析了土壤灭菌法、功能微生物调控、作物多样性栽培和生物质炭改良的根际调控策略在减缓药用植物连作障碍中的潜在作用。作者呼吁从事连作障碍研究的工作者应重视从根际生态学角度出发,以土壤食物网为切入点,应用现代系统生物学和化学生态学技术与方法,全面系统探究根系分泌物介导下植物-土壤-微生物的相互作用过程与机制,并着重关注土壤线虫和土壤病毒在连作障碍发生发展中的生态位关系,以深入阐明连作介导土壤酸化的生态学机制和病原菌响应根系分泌物的协同进化机理,在此基础上,采用多种根际调控相结合的策略减缓连作障碍问题,全面考虑经济、社会和生态效益,做到"生态预防为主、综合治理为要"。
关键词:药用植物/
连作障碍/
化感作用/
土传病害/
根际互作/
根际调控
Abstract:The consecutive monoculture problem, also known as replant disease, is a common disorder from modern agricultural practices. It has been reported that more than 70% of medicinal plants, especially those tuberous roots, have been affected. This disease has become a key factor restricting the quality and development of medicinal plants. This study analyzed three common problems with the formation of continuous cropping obstacles in medicinal plants, which includes the acidification of rhizosphere soil induced by root exudates, microbial community structure imbalance in the rhizosphere, and the severity of plant virus disease. The primary factors include:differentiation and evolution of microorganisms mediated by root exudates in rhizosphere soil, allelopathic interactions of soil-borne pathogens, soil acidification induced by rhizosphere bacterial community imbalance, increased rhizosphere soil-borne pathogens, decrease of beneficial microorganisms aggravating soil fungal diseases, and concomitant development of viral diseases. We analyzed the potential advantages of new rhizosphere management strategies on abating continuous cropping obstacles such as soil sterilization, microbial fertilizer application, diverse crop cultivation, and biochar management. This study recommended researchers to focus on rhizosphere ecological processes in continuous cropping obstacles by selecting the soil food web as the starting point, utilizing modern system biology and chemical ecology technology to analyze the interaction and mechanisms among plant-soil-microorganisms mediated by root exudates under continuous monoculture regimes. Therefore, we need to focus on the niche relationship between soil nematodes and viruses during the occurrence and development of continuous cropping obstacles, and elucidate the ecological mechanisms of soil acidification mediated by continuous cropping, as well as the co-evolution mechanism of pathogens responding to root exudates. Furthermore, several strategies can be combined to alleviate the continuous cropping obstacles. Overall, we should consider the economic, social, and ecological benefits to achieve "prevention-oriented" and "comprehensive management".
Key words:Medicinal plants/
Continuous cropping obstacle/
Allelopathy/
Soil-borne pathogens/
Rhizosphere interactions/
Rhizosphere management
HTML全文
图1植物根系分泌物的组成
Figure1.The components of plant root exudates
下载: 全尺寸图片幻灯片
图2病害程度与作物栽培模式关系图[96]
Figure2.Relationship between disease severity and cultivation pattern[96]
下载: 全尺寸图片幻灯片
表1常见药用植物中的主要化感物质
Table1.The primary allelochemicals of common medicinal plants
药用植物Medicinal plant | 主要化感物质Primary allelochemicals |
太子参 Pseudostellaria heterophylla (Miq.) Pax | 酚酸类[30]:没食子酸、香豆酸、3, 4-二羟基苯甲酸、对羟基苯甲酸、香草酸、丁香酸、香兰素、阿魏酸、苯甲酸; 有机酸类[31]:草酸、甲酸、苹果酸、乳酸、乙酸、柠檬酸、酒石酸、琥珀酸。 Phenolic acids[30]: gallic acid, coumaric acid, protocatechuic acid, 4-hydroxybenzoic acid, vanillic acid, syringic acid, vanillin, ferulic acid, benzoic acid; Organic acids[31]: oxalic acid, formic acid, malic acid, lactic acid, acetic acid, citric acid, tartaric acid, butanedioic acid. |
地黄 Rehmannia glutinosa (Gaetn.) Libosch. ex Fisch. et Mey. | 萜类[32]:梓醇; 苷类[32-33]:异麦角甾苷、地黄苷、毛蕊花糖苷、洋地黄叶甙C; 酚酸类[34]:香豆酸、原儿茶酸、邻苯二甲酸、对羟基苯甲酸、香草酸、丁香酸、香兰素、阿魏酸、苯甲酸、水杨酸。 Terpenes[32]: catalpol; Glycosides[32-33]: isoacteoside, rehmannioside, verbascoside, purpureaside C; Phenolic acids[34]: coumaric acid, protocatechuic acid, phthalic acid, 4-hydroxybenzoic acid, vanillic acid, syringic acid, vanillin, ferulic acid, benzoic acid, salicylic acid. |
三七 Panax notoginseng (Burkill) F. H. Chen ex C. H. | 人参皂苷[35-36]: Rh1、Rb1、Rb2、Rc、Rd、Re、R1、Rg1、Rg2; 黄酮类[35]:槲皮素; 酚酸类[37]:对羟基苯甲酸、香草酸、丁香酸、对香豆酸、阿魏酸、苯甲酸; 酯类[38]:邻苯二甲酸二异丁酯。 Ginsenoside[35-36]: Rh1, Rb1, Rb2, Rc, Rd, Re, R1, Rg1, Rg2; Flavones[35]: quercetin; Phenolic acids[37]: 4-hydroxybenzoic acid, vanillic acid, syringic acid, 4-coumaric acid, ferulic acid, benzoic acid; Esters[38]: diisobutyl phthalate. |
人参 Panax ginseng C. A. Mey. | 酚酸类[39]:水杨酸、没食子酸、苯甲酸、肉桂酸、香兰素、对羟基苯甲酸、3-苯基丙酸; 酯类[40]:邻苯二甲酸二异丁酯; 脂肪酸[41]:十六酸、己二酸; 有机酸[41]:丁二酸、乳酸。 Phenolic acids[39]: salicylic acid, gallic acid, benzoic acid, cinnamic acid, vanillin, 4-hydroxybenzoic acid, 3-phenylpropanoic acid; Esters[40]: diisobutyl phthalate; Fatty acids[41]: palmitic acid, adipic acid; Organic acids[41]: succinic acid, lactic acid. |
西洋参 Panax quiquefolium L. | 人参皂苷[42]: Rg1、Re、Rb1、Rd; 酚酸类[43]:香草酸、丁香酸、阿魏酸、香豆酸。 Ginsenoside[42]: Rg1, Re, Rb1, Rd; Phenolic acids[43]: vanillic acid, syringic acid, ferulic acid, coumaric acid. |
半夏 Pinellia ternata (Thunb.) Breit. | 酚酸类[44-45]:没食子酸、原儿茶酸、香草酸、丁香酸、香兰素、阿魏酸; 醌类[44-45]:大黄酚; 醛类[44-45]: 3, 4-二羟基苯甲醛; 酮类[45]: 2, 3-苯并呋喃、丁香醛; 酚类[44-45]:绿原酸。 Phenolic acids[44-45]: gallic acid, protocatechuic acid, vanillic acid, syringic acid, vanillin, ferulic acid; Quinones[44-45]: chrysophanic acid; Aldehydes[44-45]: 3, 4-dihydroxybenzaldehyde; Ketones[45]: coumarone, syringaldehyde; Phenols[44-45]: chlorogenic acid. |
白术 Atractylodes macrocephala Koidz. | 酚类[46]: 2, 4-二叔丁基酚。 Phenols[46]: 2, 4-Di-t-butylphenol. |
下载: 导出CSV
表2常见药用植物连作土壤中的主要致病菌
Table2.Primary pathogens of common medicinal plant soils under continuous monoculture regimes
药用植物Medicinal plant | 主要致病菌Primary pathogens |
太子参 Pseudostellaria heterophylla (Miq.) Pax | 肠杆菌、踝节霉菌、尖孢镰刀菌、串珠镰刀菌[30-31] Kosakonia sacchari, Talaromyces helicus, Fusarium oxysporum, F. moniliforme[30-31] |
地黄 Rehmannia glutinosa (Gaetn.) Libosch. ex Fisch. et Mey. | 尖孢镰刀菌、茄病镰刀菌[34, 52] F. oxysporum, F. solani[34, 52] |
三七 Panax notoginseng (Burkill) F. H. Chen ex C. H. | 尖孢镰刀菌、滕仓赤霉复合种、三线镰刀菌、串珠状赤霉、木贼镰刀菌[53] F. oxysporum, Gibberella intermedia, F. tricinctum, G. moniliformis, F. equiseti[53] |
人参 Panax ginseng C. A. Mey. | 畸雌腐霉、毁灭柱孢菌、立枯丝核菌、黑斑菌、疫病菌、菌病菌锈腐菌[39, 54] Pythium irregular, Cylindrocarpon destructans, Rhizoctonia solani, Alternaria panax, Phytophthora cactorum, Sclerotinia schinseng, C. destructans[39, 54] |
西洋参 Panax quiquefolium L. | 立枯丝核菌、茄病镰刀菌、尖孢镰刀菌、毁灭柱孢菌[42-43] R. solani, F. solani, F. oxysporum, C. destructans[42-43] |
丹参 Salvia miltiorrhiza Bge. | 茄病镰刀菌、尖孢镰刀菌、布雷正青霉、露湿漆斑菌、三线镰刀菌、焦曲霉[55] F. solani, F. oxysporum, Penicillium brefeldianum, Myrothecium roridum, F. tricinctum, Aspergillus spp. calidoustus[55] |
半夏 Pinellia ternata (Thunb.) Breit | 镰刀菌属、胡萝卜果胶杆菌、胡萝卜软腐果胶杆菌、产酸克雷伯氏杆菌、立枯丝核菌[56-57] Fusarium spp., Pectobacterium carotovora, P. carotovorum, Klebsiella oxytoca, R. solani[56-57] |
白术 Atractylodes macrocephala Koidz. | 茄病镰刀菌、立枯丝核菌、齐整小核菌、尖孢镰刀菌、细交链孢、半裸镰刀菌、长柄链格孢菌[58] F. solani, R. solani, Sclerotium rolfsii, F. oxysporum, Alternaria alternate, F. incarnatum, A. longipes[58] |
下载: 导出CSV
参考文献
[1] | 李芮.三部委联合印发《全国道地药材生产基地建设规划(2018–2025年)》[J].中医药管理杂志, 2018, 26(24): 220 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyyglzz201824080 LI R. The Construction and Planning of the Production Base of Chinese Medicinal Materials in the Whole Country (2018–2025) issued by the three ministries and commissions[J]. Journal of Traditional Chinese Medicine Management, 2018, 26(24): 220 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyyglzz201824080 |
[2] | 商务部市场秩序司. 2017年度中药材流通市场分析报告[N].中国中医药报, 2018-06-28(05) Ministry of Commerce of Market Supervision of China. Analysis Report on the Circulation Market of Traditional Chinese Medicine in 2017[N]. Newspaper of Traditional Chinese Medicine in China, 2018-06-28(05) |
[3] | 郭兰萍, 黄璐琦, 蒋有绪, 等.药用植物栽培种植中的土壤环境恶化及防治策略[J].中国中药杂志, 2006, 31(9): 714–717 doi: 10.3321/j.issn:1001-5302.2006.09.002 GUO L P, HUANG L Q, JIANG Y X, et al. Soil deterioration during cultivation of medicinal plants and ways to prevent it[J]. China Journal of Chinese Materia Medica, 2006, 31(9): 714–717 doi: 10.3321/j.issn:1001-5302.2006.09.002 |
[4] | 孙跃春, 林淑芳, 黄璐琦, 等.药用植物自毒作用及调控措施[J].中国中药杂志, 2011, 36(4): 387–390 http://d.old.wanfangdata.com.cn/Periodical/zgzyzz201104001 SUN Y C, LIN S F, HUANG L Q, et al. Review: Autotoxicity in medicinal plants and means to overcome[J]. China Journal of Chinese Materia Medica, 2011, 36(4): 387–390 http://d.old.wanfangdata.com.cn/Periodical/zgzyzz201104001 |
[5] | 杨婉珍, 康传志, 纪瑞锋, 等.中药材残留农药情况分析及其标准研制的思考[J].中国中药杂志, 2017, 42(12): 2284–2290 http://d.old.wanfangdata.com.cn/Periodical/zgzyzz201712009 YANG W Z, KANG C Z, JI R F, et al. Situation analysis and standard formulation of pesticide residues in traditional Chinese medicines[J]. China Journal of Chinese Materia Medica, 2017, 42(12): 2284–2290 http://d.old.wanfangdata.com.cn/Periodical/zgzyzz201712009 |
[6] | 黄璐琦, 李军德, 李哲, 等.我国现代大中药产业链发展趋势及对策[J].中国科技投资, 2010, (5): 67–69 doi: 10.3969/j.issn.1673-5811.2010.05.021 HUANG L Q, LI J D, LI Z, et al. Development trend and countermeasures of modern Chinese medicine industry chain in China[J]. China Venture Capital, 2010, (5): 67–69 doi: 10.3969/j.issn.1673-5811.2010.05.021 |
[7] | 李军德, 黄璐琦, 李哲, 等.我国现代大中药产业链发展现状与问题[J].中国科技投资, 2010, (3): 26–29 doi: 10.3969/j.issn.1673-5811.2010.03.012 LI J D, HUANG L Q, LI Z, et al. Development status and problem of modern Chinese medicine industry chain in China[J]. China Venture Capital, 2010, (3): 26–29 doi: 10.3969/j.issn.1673-5811.2010.03.012 |
[8] | HUANG L F, SONG L X, XIA X J, et al. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 2013, 39(2): 232–242 doi: 10.1007/s10886-013-0244-9 |
[9] | LIN W Z, FANG C X, CHEN T, et al. Rice allelopathy and its properties of molecular ecology[J]. Frontiers in Biology, 2010, 5(3): 255–262 doi: 10.1007/s11515-010-0035-4 |
[10] | 林文雄, 熊君, 周军建, 等.化感植物根际生物学特性研究现状与展望[J].中国生态农业学报, 2007, 15(4): 1–8 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2007401&journal_id=zgstny LIN W X, XIONG J, ZHOU J J, et al. Research status and its perspective on the properties of rhizosphere biology mediated by allelopathic plants[J]. Chinese Journal of Eco-Agriculture, 2007, 15(4): 1–8 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2007401&journal_id=zgstny |
[11] | 孙秀山, 封海胜, 万书波, 等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J].作物学报, 2001, 27(5): 617–621 doi: 10.3321/j.issn:0496-3490.2001.05.010 SUN X S, FENG H S, WAN S B, et al. Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions[J]. Acta Agronomica Sinica, 2001, 27(5): 617–621 doi: 10.3321/j.issn:0496-3490.2001.05.010 |
[12] | 张重义, 林文雄.药用植物的化感自毒作用与连作障碍[J].中国生态农业学报, 2009, 17(1): 189–196 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2009136&journal_id=zgstny ZHANG Z Y, LIN W X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 189–196 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2009136&journal_id=zgstny |
[13] | 张一鸣.人参根际土壤提取物对人参病原菌和拮抗菌的影响研究[D].长春: 吉林农业大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10193-1014052875.htm ZHANG Y M. Effect of Ginseng rhizosphere soil extracts on pathogenic fungi and their antagonistic microorganisms[D]. Changchun: Jilin Agricultural University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10193-1014052875.htm |
[14] | 喻敏, 余均沃, 曹培根, 等.百合连作土壤养分及物理性状分析[J].土壤通报, 2004, 35(3): 377–379 doi: 10.3321/j.issn:0564-3945.2004.03.032 YU M, YU J W, CAO P G, et al. Agrochemical characteristics of soil for continuous cropping lily[J]. Chinese Journal of Soil Science, 2004, 35(3): 377–379 doi: 10.3321/j.issn:0564-3945.2004.03.032 |
[15] | 吴林坤, 黄伟民, 王娟英, 等.不同连作年限野生地黄根际土壤微生物群落多样性分析[J].作物学报, 2015, 41(2): 308–317 doi: 10.3969/j.issn.1000-2561.2015.02.015 WU L K, HUANG W M, WANG J Y, et al. Diversity analysis of rhizosphere microflora of wild R. glutinosa grown in monocropping for different years[J]. Acta Agronomica Sinica, 2015, 41(2): 308–317 doi: 10.3969/j.issn.1000-2561.2015.02.015 |
[16] | WU L K, CHEN J, WU H M, et al. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing[J]. Scientific Reports, 2016, 6: 26601 doi: 10.1038/srep26601 |
[17] | 吴林坤, 林向民, 林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报, 2014, 38(3): 298–310 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201403009 WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298–310 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201403009 |
[18] | HARTUNG A C, STEPHENS C T. Effects of allelopathic substances produced by asparagus on incidence and severity of asparagus decline due to Fusarium crown rot[J]. Journal of Chemical Ecology, 1983, 9(8): 1163–1174 doi: 10.1007/BF00982219 |
[19] | HARTUNG A C, NAIR M G, PUTNAM A R. Isolation and characterization of phytotoxic compounds from asparagus (Asparagus officinalis L.) roots[J]. Journal of Chemical Ecology, 1990, 16(5): 1707–1718 doi: 10.1007/BF01014102 |
[20] | ZHOU X G, WU F Z. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen[J]. PLoS One, 2012, 7(10): e48288 doi: 10.1371/journal.pone.0048288 |
[21] | ZHANG N, WANG D D, LIU Y P, et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains[J]. Plant and Soil, 2014, 374(1/2): 689–700 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db23b2ace7a10169285d4a45ca5b5f06 |
[22] | SOLTYS D, KRASUSKA U, BOGATEK R, et al. Allelochemicals as bioherbicides — present and perspectives[M] // PRICE A J, KELTON J A. Herbicides-Current Research and Case Studies in Use. Rijeka, Croatia: IntechOpen, 2013 |
[23] | LIU J G, LI X G, JIA Z J, et al. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases[J]. Applied Soil Ecology, 2017, 110: 34–42 doi: 10.1016/j.apsoil.2016.11.001 |
[24] | LATIF S, CHIAPUSIO G, WESTON L A. Allelopathy and the role of allelochemicals in plant defence[J]. Advances in Botanical Research, 2017, 82: 19–54 doi: 10.1016/bs.abr.2016.12.001 |
[25] | BALDWIN I T. Plant volatiles[J]. Current Biology, 2010, 20(9): R392–R397 doi: 10.1016/j.cub.2010.02.052 |
[26] | LI X G, DING C F, HUA K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 2014, 78: 149–159 doi: 10.1016/j.soilbio.2014.07.019 |
[27] | KAUR H, KAUR R, KAUR S, et al. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites[J]. PLoS One, 2009, 4(3): e4700 doi: 10.1371/journal.pone.0004700 |
[28] | ZHOU X G, YU G B, WU F Z. Responses of soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid[J]. Journal of Chemical Ecology, 2012, 38(8): 975–983 doi: 10.1007/s10886-012-0156-0 |
[29] | WARDLE D A, BARDGETT R D, KLIRONOMOS J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677): 1629–1633 doi: 10.1126/science.1094875 |
[30] | WU H M, WU L K, WANG J Y, et al. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil[J]. Frontiers in Microbiology, 2016, 7: 335 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004600475 |
[31] | WU H M, WU L K, ZHU Q, et al. The role of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous monoculture regimes[J]. Scientific Reports, 2017, 7: 3497 doi: 10.1038/s41598-017-03793-8 |
[32] | ZHANG B, WESTON P A, GU L, et al. Identification of phytotoxic metabolites released from Rehmannia glutinosa suggest their importance in the formation of its replant problem[J]. Plant and Soil, 2019, 441(1/2): 439–454 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=125c0aee5dcd99dd1026606e77fa139f |
[33] | ZHANG B, LI X Z, WANG F Q, et al. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its 'autotoxic circle'[J]. Plant and Soil, 2016, 407(1/2): 307–322 |
[34] | WU L K, WANG J Y, HUANG W M, et al. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture[J]. Scientific Reports, 2015, 5: 15871 doi: 10.1038/srep15871 |
[35] | 游佩进.连作三七土壤中自毒物质的研究[D].北京: 北京中医药大学, 2009 http://cdmd.cnki.com.cn/article/cdmd-10026-2009089707.htm YOU P J. Study on autotoxic allelochemicals in continuous cropping soil of Panax notoginseng[D]. Beijing: Beijing University of Chinese Medicine, 2009 http://cdmd.cnki.com.cn/article/cdmd-10026-2009089707.htm |
[36] | YANG M, ZHANG X D, XU Y G, et al. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng[J]. PLoS One, 2015, 10(2): e0118555 doi: 10.1371/journal.pone.0118555 |
[37] | 吴立洁.三七根际土壤中酚酸类物质化感作用及其干预措施研究[D].北京: 北京中医药大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10026-1014249387.htm WU L J. A study on the effects of phenolic acids in the rhizosphere of Panax notoginseng and its intervention[D]. Beijing: Beijing University of Chinese Medicine, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10026-1014249387.htm |
[38] | 赵静, 张晓东, 王连春, 等.三七重茬根际土壤中化感物质的测定及其对三七根腐菌的生长作用[J].中国微生态学杂志, 2018, 30(2): 146–149 http://d.old.wanfangdata.com.cn/Periodical/zgwstxzz201802005 ZHAO J, ZHANG X D, WANG L C, et al. Detection and allelopathic effect of allelochemicals in the rhizosphere soil of continuously cropped Panax notoginseng (BurK.) F. H. Chen[J]. Chinese Journal of Microecology, 2018, 30(2): 146–149 http://d.old.wanfangdata.com.cn/Periodical/zgwstxzz201802005 |
[39] | 李自博.人参根系自毒物质在连作障碍中的化感作用及其缓解途径研究[D].沈阳: 沈阳农业大学, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10157-1019703802.htm LI Z B. Allelopathy of autotoxic compounds and mitigation method for ginseng continuous cropping obstacle[D]. Shenyang: Shenyang Agricultural University, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10157-1019703802.htm |
[40] | 王梓, 李勇, 丁万隆.人参化感自毒作用与连作障碍机制研究进展[J].中国现代中药, 2017, 19(7): 1040–1044 http://d.old.wanfangdata.com.cn/Periodical/zyyjyxx201707029 WANG Z, LI Y, DING W L. Advances in allelopathic autotoxicity and continuous cropping obstacle of Panax ginseng[J]. Modern Chinese Medicine, 2017, 19(7): 1040–1044 http://d.old.wanfangdata.com.cn/Periodical/zyyjyxx201707029 |
[41] | 任晶.人参根际有机酸的化感活性及环境行为研究[D].长春: 吉林农业大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10193-1016732563.htm REN J. The research of allelopathic activity and environmental behavior of organic acid of ginseng rhizosphere[D]. Changchun: Jilin Agricultural University, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10193-1016732563.htm |
[42] | 蒋景龙, 余妙, 李丽, 等.西洋参根腐病与人参皂苷积累关系[J].中成药, 2019, 41(9): 2164–2169 doi: 10.3969/j.issn.1001-1528.2019.09.030 JIANG J L, YU M, LI L, et al. Relationship between root rot and accumulation of ginsenosides in Panax quinquefolius[J]. Chinese Traditional Patent Medicine, 2019, 41(9): 2164–2169 doi: 10.3969/j.issn.1001-1528.2019.09.030 |
[43] | 杨家学, 高微微.酚酸类化感物质对两种西洋参病原真菌的作用[J].中国农学通报, 2009, 25(9): 207–211 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200909045 YANG J X, GAO W W. Effects of phenolic allelochemicals on the pathogen of Panax quiquefolium L.[J]. Chinese Agricultural Science Bulletin, 2009, 25(9): 207–211 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200909045 |
[44] | 何志贵.半夏连作障碍发生机制与轮作修复研究[D].杨凌: 西北农林科技大学, 2019 http://cdmd.cnki.com.cn/Article/CDMD-10712-1019844355.htm HE Z G. Mechanism of continuous cropping obstacles and crop rotation restoration in Pinellia ternate[D]. Yangling: Northwest A & F University, 2019 http://cdmd.cnki.com.cn/Article/CDMD-10712-1019844355.htm |
[45] | LIU J J, YAN Z Q, LI X Z, et al. Characterization of allelochemicals from the rhizosphere soil of Pinellia ternate (Thnub.) and their inhibition activity on protective enzymes[J]. Applied Soil Ecology, 2018, 125: 301–316 doi: 10.1016/j.apsoil.2018.01.001 |
[46] | ZHENG F, CHEN L, GAO J M, et al. Identification of autotoxic compounds from Atractylodes macrocephala Koidz and preliminary investigations of their influences on immune system[J]. Journal of Plant Physiology, 2018, 230: 33–39 doi: 10.1016/j.jplph.2018.08.006 |
[47] | WU L K, CHEN J, XIAO Z G, et al. Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of Rehmannia glutinosa under consecutive monoculture[J]. International Journal of Molecular Sciences, 2018, 19(3): 850 doi: 10.3390/ijms19030850 |
[48] | WU L K, CHEN J, KHAN M U, et al. Rhizosphere fungal community dynamics associated with Rehmannia glutinosa replant disease in a consecutive monoculture regime[J]. Phytopathology, 2018, 108(12): 1493–1500 doi: 10.1094/PHYTO-02-18-0038-R |
[49] | WU H M, QIN X J, WANG J Y, et al. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 19–31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6662bbbb705d7fc88066a2bb2708c5ff |
[50] | CHEN J, WU L K, XIAO Z G, et al. Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR[J]. Frontiers in Microbiology, 2017, 8: 1748 doi: 10.3389/fmicb.2017.01748 |
[51] | 朱有勇.农业生物多样性与作物病虫害控制[M].北京:科学出版社, 2013 ZHU Y Y. Agrobiodiversity and Crop Pest Management[M]. Beijing: Science Press, 2013 |
[52] | 王妍.抗地黄根腐病微生态制剂的研发及抗病机制研究[D].新乡: 河南师范大学, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10476-1018241150.htm WANG Y. Study on development of microorganism inoculant against root rot diseases on Rehmanmia glutinosa and antimicrobial mechanism of the probiotics[D]. Xinxiang: Henan Normal University, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10476-1018241150.htm |
[53] | 赵芝, 罗丽芬, 郑建芬, 等.三七种子带菌检测及致病菌鉴定研究[J].云南农业大学学报:自然科学版, 2017, 32(6): 1012–1021 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynnydxxb201706008 ZHAO Z, LUO L F, ZHENG J F, et al. Testing of seed borne fungi of Panax notoginseng and identification of seed pathogens[J]. Journal of Yunnan Agricultural University: Natural Science, 2017, 32(6): 1012–1021 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynnydxxb201706008 |
[54] | 李勇, 刘时轮, 黄小芳, 等.人参(Panax ginseng)根系分泌物成分对人参致病菌的化感效应[J].生态学报, 2009, 29(1): 161–168 http://d.old.wanfangdata.com.cn/Periodical/stxb200901020 LI Y, LIU S L, HUANG X F, et al. Allelopathy of ginseng root exudates on pathogens of ginseng[J]. Acta Ecologica Sinica, 2009, 29(1): 161–168 http://d.old.wanfangdata.com.cn/Periodical/stxb200901020 |
[55] | 段佳丽.丹参根部病害发生微生态机制与放线菌促生作用研究[D].杨凌: 西北农林科技大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10712-1014162955.htm DUAN J L. Studies on microecological mechanism of Salvia miltiorrhiza Bge. root diseases and growth-promoting effect of antimicrobial Actinomycetes[D]. Yangling: Northwest A & F University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10712-1014162955.htm |
[56] | 黄旭.半夏软腐病菌的分离鉴定及致病性研究[D].武汉: 华中农业大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10504-1012458296.htm HUANG X. Isolation, identification and pathogenicity of bacterial diseases in Pinellia ternate[D]. Wuhan: Huazhong Agricultural University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10504-1012458296.htm |
[57] | HU X F, FANG Q L, LI S X, et al. Isolation and characterization of endophytic and rhizosphere bacterial antagonists of soft rot pathogen from Pinellia ternata[J]. FEMS Microbiology Letters, 2009, 295(1): 10–16 doi: 10.1111/j.1574-6968.2009.01558.x |
[58] | 檀国印.白术真菌病害的分离鉴定及其根际促生菌的筛选[D].北京: 中国林业科学研究院, 2013 http://cdmd.cnki.com.cn/Article/CDMD-82201-1013378462.htm TAN G Y. Isolation and identification of fungal pathogens in Atractylodes macrocephala and selection of plant growth-promoting rhizobacteria (PGPR)[D]. Beijing: Chinese Academy of Forestry, 2013 http://cdmd.cnki.com.cn/Article/CDMD-82201-1013378462.htm |
[59] | HARTMANN A, ROTHBALLER M, SCHMID M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research[J]. Plant and Soil, 2008, 312(1/2): 7–14 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24c79aa0e284837f8dfef179c1b34873 |
[60] | PATERSON E, GEBBING T, ABEL C, et al. Rhizodeposition shapes rhizosphere microbial community structure in organic soil[J]. New Phytologist, 2007, 173(3): 600–610 doi: 10.1111/j.1469-8137.2006.01931.x |
[61] | BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478–486 doi: 10.1016/j.tplants.2012.04.001 |
[62] | VERGANI L, MAPELLI F, ZANARDINI E, et al. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions[J]. Science of the Total Environment, 2017, 575: 1395–1406 doi: 10.1016/j.scitotenv.2016.09.218 |
[63] | RUGOVA A, PUSCHENREITER M, KOELLENSPERGER G, et al. Elucidating rhizosphere processes by mass spectrometry — A review[J]. Analytica Chimica Acta, 2017, 956: 1–13 doi: 10.1016/j.aca.2016.12.044 |
[64] | ZHOU X, YU G, WU F. Soil phenolics in a continuously mono-cropped cucumber (Cucumis sativus L.) system and their effects on cucumber seedling growth and soil microbial communities[J]. European Journal of Soil Science, 2012, 63(3): 332–340 doi: 10.1111/j.1365-2389.2012.01442.x |
[65] | INDERJIT, WARDLE D A, KARBAN R, et al. The ecosystem and evolutionary contexts of allelopathy[J]. Trends in Ecology & Evolution, 2011, 26(12): 655–662 https://www.sciencedirect.com/science/article/abs/pii/S0169534711002394 |
[66] | WU H M, XU J J, WANG J Y, et al. Insights into the mechanism of proliferation on the special microbes mediated by phenolic acids in the Radix pseudostellariae rhizosphere under continuous monoculture regimes[J]. Frontiers in Plant Science, 2017, 8: 659 doi: 10.3389/fpls.2017.00659 |
[67] | WANG C M, LI T C, JHAN Y L, et al. The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum[J]. PLoS One, 2013, 8(12): e85162 doi: 10.1371/journal.pone.0085162 |
[68] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008–1010 doi: 10.1126/science.1182570 |
[69] | 张玲玉, 赵学强, 沈仁芳.土壤酸化及其生态效应[J].生态学杂志, 2019, 38(6): 1900–1908 http://d.old.wanfangdata.com.cn/Thesis/Y1994074 ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6): 1900–1908 http://d.old.wanfangdata.com.cn/Thesis/Y1994074 |
[70] | 尹永强, 何明雄, 邓明军.土壤酸化对土壤养分及烟叶品质的影响及改良措施[J].中国烟草科学, 2008, 29(1): 51–54 doi: 10.3969/j.issn.1007-5119.2008.01.012 YIN Y Q, HE M X, DENG M J. Effects of soil acidification on soil nutrients and quality of flue-cured tobacco and its countermeasures[J]. Chinese Tobacco Science, 2008, 29(1): 51–54 doi: 10.3969/j.issn.1007-5119.2008.01.012 |
[71] | ROUSK J, BROOKES P C, B??TH E. The microbial PLFA composition as affected by pH in an arable soil[J]. Soil Biology and Biochemistry, 2010, 42(3): 516–620 doi: 10.1016/j.soilbio.2009.11.026 |
[72] | ROUSK J, BROOKES P C, B??TH E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization[J]. Applied and Environmental Microbiology, 2009, 75(6): 1589–1596 doi: 10.1128/AEM.02775-08 |
[73] | KURTZWEIL N C, GRAU C R, MACGUIDWIN A E, et al. Soil pH in relation to brown stem rot and soybean cyst nematode[C]//Proceedings of the 2002 Wisconsin Fertilizer, Aglime and Pest Management Conference. Madison: University of Wisconsin Press, 2002: 177–185 |
[74] | KIM J M, ROH A S, CHOI S C, et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea[J]. Journal of Microbiology, 2016, 54(12): 838–845 doi: 10.1007/s12275-016-6526-5 |
[75] | DOMSCH K H, GAMS W, ANDERSON T H. Compendium of Soil Fungi[M]. Volume 1. London: Academic Press, 1980 |
[76] | RAMOS A C, FA?ANHA A R, FEIJó J A. Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi[J]. New Phytologist, 2008, 178(1): 177–188 doi: 10.1111/j.1469-8137.2007.02344.x |
[77] | LI J, BAO S Q, ZHANG Y H, et al. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus×canescens under sodium chloride stress[J]. Plant Physiology, 2012, 159(4): 1771–1786 doi: 10.1104/pp.112.195370 |
[78] | 林文雄, 陈婷.中国农业的生态化转型与发展生态农业新视野[J].中国生态农业学报, 2019, 27(2): 169–176 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2019-0202&journal_id=zgstny LIN W X, CHEN T. Transition of agricultural systems to ecologicalizaton and new vision of modern eco-agriculture development in China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 169–176 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2019-0202&journal_id=zgstny |
[79] | 陆涛, 李燕, 傅正伟, 等.农药对根际微生物群落的影响及潜在风险[J].农药学学报, 2019, 21(5/6): 865–870 http://d.old.wanfangdata.com.cn/Periodical/nyxxb201905026 LU T, LI Y, FU Z W, et al. Effects of pesticides on the rhizosphere microbial community and potential risks[J]. Chinese Journal of Pesticide Science, 2019, 21(5/6): 865–870 http://d.old.wanfangdata.com.cn/Periodical/nyxxb201905026 |
[80] | LASSALETTA L, BILLEN G, GRIZZETTI B, et al. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland[J]. Environmental Research Letters, 2014, 9(10): 105011 doi: 10.1088/1748-9326/9/10/105011 |
[81] | DE DEYN G, RAAIJMAKERS C E, VAN DER PUTTEN W H. Plant community development is affected by nutrients and soil biota[J]. Journal of Ecology, 2004, 92(5): 824–834 doi: 10.1111/j.0022-0477.2004.00924.x |
[82] | KARDOL P, DE DEYN G B, LALIBERTé E, et al. Biotic plant–soil feedbacks across temporal scales[J]. Journal of Ecology, 2013, 101(2): 309–315 doi: 10.1111/1365-2745.12046 |
[83] | SOLOMON P S, TAN K C, OLIVER R P. The nutrient supply of pathogenic fungi; a fertile field for study[J]. Molecular Plant Pathology, 2003, 4(3): 203–210 doi: 10.1046/j.1364-3703.2003.00161.x |
[84] | WALTERS D R, BINGHAM I J. Influence of nutrition on disease development caused by fungal pathogens: Implications for plant disease control[J]. Annals of Applied Biology, 2007, 151(3): 307–324 doi: 10.1111/j.1744-7348.2007.00176.x |
[85] | BULLUCK Ⅲ L R, BROSIUS M, EVANYLO G K, et al. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms[J]. Applied Soil Ecology, 2002, 19(2): 147–160 doi: 10.1016/S0929-1393(01)00187-1 |
[86] | LIN W W, LIN M H, ZHOU H Y, et al. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. PLoS One, 2019, 14(5): e0217018 doi: 10.1371/journal.pone.0217018 |
[87] | WEI W, YANG M, LIU Y X, et al. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system[J]. Science of the Total Environment, 2018, 633: 796–807 doi: 10.1016/j.scitotenv.2018.03.219 |
[88] | 吕娜.辽宁药用植物病毒病调查研究[D].沈阳: 沈阳农业大学, 2016 LYU N. Studies on the medicinal plant virus diseases in Liaoning Province[D]. Shenyang: Shenyang Agricultural University, 2016 |
[89] | 马妮, 王勇, 刘云芝, 等.三七病毒病对三七产量和质量的影响研究[J].现代农业科技, 2015, (14): 110–111 doi: 10.3969/j.issn.1007-5739.2015.14.069 MA N, WANG Y, LIU Y Z, et al. Effects of Notoginseng virus disease on yield and quality[J]. Modern Agricultural Sciences and Technology, 2015, (14): 110–111 doi: 10.3969/j.issn.1007-5739.2015.14.069 |
[90] | 匡云波, 陈满足, 陆伊荣, 等.太子参芜菁花叶病毒和蚕豆萎蔫病毒的双重RT-PCR检测[J].园艺学报, 2017, 44(4): 784–791 http://d.old.wanfangdata.com.cn/Periodical/yyxb201704017 KUANG Y B, CHEN M Z, LU Y R, et al. Detection of Turnip mosaic virus and Broad bean wilt virus in Pseudostellaria heterophylla by duplex RT-PCR[J]. Acta Horticulturae Sinica, 2017, 44(4): 784–791 http://d.old.wanfangdata.com.cn/Periodical/yyxb201704017 |
[91] | 谢联辉.普通植物病理学[M]. 2版.北京:科学出版社, 2013 XIE L H. General Plant Pathology[M]. 2nd ed. Beijing: Science Press, 2013 |
[92] | WHITMAN W B, COLEMAN D C, WIEBE W J. Prokaryotes: The unseen majority[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6578–6583 doi: 10.1073/pnas.95.12.6578 |
[93] | BREITBART M, ROHWER F. Here a virus, there a virus, everywhere the same virus?[J]. Trends in Microbiology, 2005, 13(6): 278–284 doi: 10.1016/j.tim.2005.04.003 |
[94] | HYMAN P, STEPHEN T A. Viruses of Microorganisms[M]. Norwich: Caister Academic Press, 2018 |
[95] | 张福锁, 申建波, 冯固.根际生态学——过程与调控[M].北京:中国农业大学出版社, 2009 ZHANG F S, SHEN J B, FENG G. Rhizosphere Ecology: Processes & Management[M]. Beijing: China Agricultural University Press, 2009 |
[96] | 蔡祖聪, 黄新琦.土壤学不应忽视对作物土传病原微生物的研究[J].土壤学报, 2016, 53(2): 305–310 http://d.old.wanfangdata.com.cn/Periodical/trxb201602003 CAI Z C, HUANG X Q. Soil-borne pathogens should not be ignored by soil science[J]. Acta Pedologica Sinica, 2016, 53(2): 305–310 http://d.old.wanfangdata.com.cn/Periodical/trxb201602003 |
[97] | SUGIMURA T, NISHIZAKI M, HORIMOTO K. Control of Fusarium wilt of strawberry by soil solarization using mulching and tunnel-covering combining with irrigation of solar-heated water[J]. Bulletin of the Nara Prefectural Agricultural Experiment Station, 2001, 32: 1–7 |
[98] | LI J, HUANG B, WANG Q X, et al. Effect of fumigation with chloropicrin on soil bacterial communities and genes encoding key enzymes involved in nitrogen cycling[J]. Environmental Pollution, 2017, 227: 534–542 doi: 10.1016/j.envpol.2017.03.076 |
[99] | MAO L G, WANG Q X, YAN D D, et al. Evaluation of chloropicrin as a soil fumigant against Ralstonia solanacarum in ginger (Zingiber officinale Rosc.) production in China[J]. PLoS One, 2014, 9(3): e91767 doi: 10.1371/journal.pone.0091767 |
[100] | MOMMA N, KOBARA Y, UEMATSU S, et al. Development of biological soil disinfestations in Japan[J]. Applied Microbiology and Biotechnology, 2013, 97(9): 3801–3809 doi: 10.1007/s00253-013-4826-9 |
[101] | 蔡祖聪, 张金波, 黄新琦, 等.强还原土壤灭菌防控作物土传病的应用研究[J].土壤学报, 2015, 52(3): 469–476 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201503001 CAI Z C, ZHANG J B, HUANG X Q, et al. Application of reductive soil disinfestation to suppress soil-borne pathogens[J]. Acta Pedologica Sinica, 2015, 52(3): 469–476 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201503001 |
[102] | MESSIHA N A S, VAN DIEPENINGEN A D, WENNEKER M, et al. Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2[J]. European Journal of Plant Pathology, 2007, 117(4): 403–415 doi: 10.1007/s10658-007-9109-9 |
[103] | FU L, PENTON C R, RUAN Y Z, et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease[J]. Soil Biology and Biochemistry, 2017, 104: 39–48 doi: 10.1016/j.soilbio.2016.10.008 |
[104] | XIONG W, GUO S, JOUSSET A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry, 2017, 114: 238–247 doi: 10.1016/j.soilbio.2017.07.016 |
[105] | 梁晓琳, 孙莉, 张娟, 等.利用Bacillus amyloliquefaciens SQR9研制复合微生物肥料[J].土壤, 2015, 47(3): 558–563 http://d.old.wanfangdata.com.cn/Thesis/Y2974560 LIANG X L, SUN L, ZHANG J, et al. Utilization of Bacillus amyloliquefaciens SQR9 for developing compound microbial fertilizer[J]. Soils, 2015, 47(3): 558–563 http://d.old.wanfangdata.com.cn/Thesis/Y2974560 |
[106] | 刘波, 陈倩倩, 王阶平, 等.整合微生物组菌剂的提出、研发与应用[J].中国农业科学, 2019, 52(14): 2450–2467 doi: 10.3864/j.issn.0578-1752.2019.14.006 LIU B, CHEN Q Q, WANG J P, et al. Proposition, development and application of the Integrated Microbiome Agent (IMA)[J]. Scientia Agricultura Sinica, 2019, 52(14): 2450–2467 doi: 10.3864/j.issn.0578-1752.2019.14.006 |
[107] | WU L K, YANG B, LI M L, et al. Modification of rhizosphere bacterial community structure and functional potentials to control Pseudostellaria heterophylla replant disease[J]. Plant Disease, 2020, 104(1): 25–34 doi: 10.1094/PDIS-04-19-0833-RE |
[108] | WU L K, CHEN J, WU H M, et al. Insights into the regulation of rhizosphere bacterial communities by application of bio-organic fertilizer in Pseudostellaria heterophylla monoculture regime[J]. Frontiers in Microbiology, 2016, 7: 1788 |
[109] | WANG X F, WEI Z, YANG K M, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12): 1513–1520 doi: 10.1038/s41587-019-0328-3 |
[110] | XIE J T, JIANG D H. New insights into mycoviruses and exploration for the biological control of crop fungal diseases[J]. Annual Review of Phytopathology, 2014, 52: 45–68 doi: 10.1146/annurev-phyto-102313-050222 |
[111] | ZHANG L, SPIERTZ J H J, ZHANG S, et al. Nitrogen economy in relay intercropping systems of wheat and cotton[J]. Plant and Soil, 2008, 303(1/2): 55–68 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1185b0d33e065edd288efe0053b92e83 |
[112] | ZHU Y Y, CHEN H R, FAN J H, et al. Genetic diversity and disease control in rice[J]. Nature, 2000, 406(6797): 718–722 doi: 10.1038/35021046 |
[113] | WAN N F, CAI Y M, SHEN Y J, et al. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture[J]. eLife, 2018, 7: e35103 doi: 10.7554/eLife.35103 |
[114] | LI X G, DE BOER W, ZHANG Y N, et al. Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea[J]. Soil Biology and Biochemistry, 2018, 116: 120–130 doi: 10.1016/j.soilbio.2017.09.029 |
[115] | 徐立军.林药间作对掌叶半夏产量和质量的影响及生理生态机制研究[D].北京: 北京中医药大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10026-1011117881.htm XU L J. Effects of forest and medicine intercropping on yield and quality of Pinellia ternata and its physiological and ecological mechanism[D]. Beijing: Beijing University of Chinese Medicine, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10026-1011117881.htm |
[116] | 孙文帅.桔梗//大葱间作对桔梗根系及根际的调控研究[D].泰安: 山东农业大学, 2019 SUN W S. Regulation of Platycodon grandiflorum intercropped with Allium fistulosum on the root and its rhizosphere of platycodon grandiflorum[D]. Tai'an: Shandong Agricultural University, 2019 |
[117] | 王田涛.间套种植对当归连作障碍的修复机理[D].兰州: 甘肃农业大学, 2013 http://cdmd.cnki.com.cn/article/cdmd-10733-1014012250.htm WANG T T. Remediation mechanisms of intercropping patterns on continuous cropping obstacle of Angelica sinensis[D]. Lanzhou: Gansu Agricultural University, 2013 http://cdmd.cnki.com.cn/article/cdmd-10733-1014012250.htm |
[118] | WOOLF D, LEHMANN J, LEE D R. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration[J]. Nature Communications, 2016, 7: 13160 doi: 10.1038/ncomms13160 |
[119] | 刘晓雨, 卞荣军, 陆海飞, 等.生物质炭与土壤可持续管理:从土壤问题到生物质产业[J].中国科学院院刊, 2018, 33(2): 184–190 http://d.old.wanfangdata.com.cn/Periodical/zgkxyyk201802010 LIU X Y, BIAN R J, LU H F, et al. Biochar for sustainable soil management: Biomass technology and industry from soil perspectives[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 184–190 http://d.old.wanfangdata.com.cn/Periodical/zgkxyyk201802010 |
[120] | 潘根兴, 卞荣军, 程琨.从废弃物处理到生物质制造业:基于热裂解的生物质科技与工程[J].科技导报, 2017, 35(23): 82–93 http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201723021.htm PAN G X, BIAN R J, CHENG K. From biowaste treatment to novel bio-material manufacturing: Biomaterial science and technology based on biomass pyrolysis[J]. Science & Technology Review, 2017, 35(23): 82–93 http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201723021.htm |
[121] | CAYUELA M L, VAN ZWIETEN L, SINGH B P, et al. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment, 2014, 191: 5–16 |
[122] | BIAN R J, JOSEPH S, CUI L Q, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121–128 doi: 10.1016/j.jhazmat.2014.03.017 |
[123] | ZHANG D X, PAN G X, WU G, et al. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol[J]. Chemosphere, 2016, 142: 106–113 doi: 10.1016/j.chemosphere.2015.04.088 |
[124] | BIAN R J, CHEN D, LIU X Y, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment[J]. Ecological Engineering, 2013, 58: 378–383 doi: 10.1016/j.ecoleng.2013.07.031 |
[125] | OMONDI M O, XIA X, NAHAYO A, et al. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data[J]. Geoderma, 2016, 274: 28–34 doi: 10.1016/j.geoderma.2016.03.029 |
[126] | ZHOU H M, ZHANG D X, WANG P, et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis[J]. Agriculture, Ecosystems & Environment, 2017, 239: 80–89 https://www.sciencedirect.com/science/article/pii/S0167880917300087 |
[127] | KOLTON M, GRABER E R, TSEHANSKY L, et al. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere[J]. New Phytologist, 2017, 213(3): 1393–1404 doi: 10.1111/nph.14253 |
[128] | JEFFERY S, VERHEIJEN F G A, VAN DER VELDE M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 175–187 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e342c36216bb0d322bfe4cb872cd30c |
[129] | HUANG W K, JI H L, GHEYSEN G, et al. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections[J]. BMC Plant Biology, 2015, 15: 267 doi: 10.1186/s12870-015-0654-7 |
[130] | MASIELLO C A, CHEN Y, GAO X D, et al. Biochar and microbial signaling: Production conditions determine effects on microbial communication[J]. Environmental Science & Technology, 2013, 47(20): 11496–11503 http://europepmc.org/articles/PMC3897159 |
[131] | GU Y A, HOU Y G, HUANG D P, et al. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption[J]. Plant and Soil, 2017, 415(1/2): 269–281 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d069518acdd720ca7503857c679e6d7 |
[132] | WU H, QIN X, WU H, et al. Biochar mediates microbial communities and their metabolic characteristics under continuous monoculture[J]. Chemosphere, 2020, 125835 https://www.ncbi.nlm.nih.gov/pubmed/31927385 |
[133] | EGAMBERDIEVA D, WIRTH S, BEHRENDT U, et al. Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria[J]. Frontiers in Microbiology, 2016, 7: 209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004602491 |
[134] | GEORGE C, WAGNER M, KUECKE M, et al. Divergent consequences of hydrochar in the plant-soil system: Arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects[J]. Applied Soil Ecology, 2012, 59: 68–72 doi: 10.1016/j.apsoil.2012.02.021 |
[135] | VAN DEN HOOGEN J, GEISEN S, ROUTH D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572(7768): 194–198 doi: 10.1038/s41586-019-1418-6 |
[136] | 王光华.掀开土壤生物"暗物质"——土壤病毒的神秘面纱[J].中国科学院院刊, 2017, 32(6): 575–584 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672625573 WANG G H. Lift mysterious veil of soil virus: 'Dark Matter' of soil biota[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 575–584 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672625573 |
[137] | 吴红淼, 吴林坤, 王娟英, 等.根际调控在缓解连作障碍和提高土壤质量中的作用和机理[J].生态科学, 2016, 35(5): 225–232 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx201605031 WU H M, WU L K, WANG J Y, et al. The mechanisms of the rhizosphere management on the remission in consecutive monoculture problem and the improvement of soil quality[J]. Ecological Science, 2016, 35(5): 225–232 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx201605031 |