删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

施肥对灌漠土作物产量、土壤肥力与重金属含量的影响

本站小编 Free考研考试/2022-01-01

姚佳璇1, 2,,
俄胜哲1, 2,,,
袁金华2,
时晓娟2,
车宗贤2
1.甘肃农业大学资源与环境学院 兰州 730070
2.甘肃省农业科学院土壤肥料与节水农业研究所 兰州 730070
基金项目: 国家重点研发计划项目2017YFD0801103
兰州市人才创新项目2016-RC-112
临泽县凹凸棒石产业开发课题LZKFKT-1804

详细信息
作者简介:姚佳璇:主要从事资源利用研究。E-mail:1103241584@qq.com
通讯作者:俄胜哲, 主要从事植物营养与土壤生态等方面的研究工作。E-mail:eshengzhe@163.com
中图分类号:S153.3

计量

文章访问数:494
HTML全文浏览量:20
PDF下载量:529
被引次数:0
出版历程

收稿日期:2019-12-04
录用日期:2020-02-02
刊出日期:2020-06-01

Effects of different organic matters on crop yields, soil quality and heavy metal content in irrigated desert soil

YAO Jiaxuan1, 2,,
E Shengzhe1, 2,,,
YUAN Jinhua2,
SHI Xiaojuan2,
CHE Zongxian2
1. College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, China
2. Institute of Soil Fertilizer and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
Funds: the National Key Research and Development Program of China2017YFD0801103
Lanzhou Talent Innovation Project2016-RC-112
Linze Attapulgite Industry Development Research ProjectLZKFKT-1804

More Information
Corresponding author:E Shengzhe, E-mail:eshengzhe@163.com


摘要
HTML全文
(2)(9)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:有机物还田是提升土壤肥力的主要措施,但也存在造成土壤金属污染的潜在风险。为查明不同有机物还田对土壤质量及作物产量的影响,本文通过长期定位试验,研究了无肥对照、常规施化肥(氮磷配施)以及70%常规化肥与牛粪、沼渣、污泥、鸡粪、菌渣和猪粪配施对土壤理化性状、有机碳和氮的固存率、氮磷钾活化系数、作物产量及重金属含量的影响。结果表明:牛粪、沼渣、污泥、菌渣、鸡粪和猪粪与70%化肥配施虽作物产量与常规施化肥相似,但6种有机物处理土壤有机质、全氮和碱解氮含量都较常规施化肥处理显著增加,污泥、鸡粪和猪粪处理土壤全磷与速效磷含量较常规施化肥处理显著增加,而且牛粪、沼渣、鸡粪和猪粪处理的速效钾、土壤磷活化系数和土壤钾活化系数较常规施化肥处理也显著提升。牛粪、沼渣、污泥、菌渣、鸡粪和猪粪处理土壤有机碳固存率为36.42%~71.61%,较常规施化肥处理都显著提高;而其氮固存率为6.47%~49.44%,仅有菌渣处理与常规施化肥处理差异不显著,而其他处理较常规施化肥处理显著增加。长期施鸡粪和菌渣处理的土壤铜含量较常规施化肥处理显著增加,增加量分别为4.17 mg·kg-1和14.2 mg·kg-1;而污泥、鸡粪和菌渣处理的土壤锌含量较常规施化肥处理显著增加,增加量分别为13.53 mg·kg-1、22.60 mg·kg-1和49.73 mg·kg-1。综上,等有机质(4 500 kg·hm-2)的牛粪、沼渣、污泥、菌渣、鸡粪和猪粪可替代30%氮磷肥,作物产量不受影响;不同有机物培肥土壤效果为污泥、鸡粪和猪粪优于牛粪和沼渣,而沼渣的培肥效果略差。为保证土壤环境质量稳定不恶化,种植小麦时有机物铜和锌的年携入量应分别低于53.01 g·hm-2和221.30 g·hm-2,而种植玉米时应分别低于153.40 g·hm-2和347.04 g·hm-2
关键词:有机物/
作物产量/
土壤理化性状/
活化系数/
固存率/
重金属
Abstract:The Hexi Corridor is a famous irrigated agricultural area in Northwest China. However, ecological weakness and heavy long-term chemical fertilizer application has caused problems such as low organic matter content, soil structure degeneration, and low crop yield. Returning organic materials into the field is the main solution to improve soil fertility; however, it also risks causing heavy metal pollution in the soil. This study aimed to explore the effect of soil quality and crop yield response to different types of applied organic materials in the field. The long-term positioning experiment consisted of 8 treatments:no fertilizer (CK) as control, conventional fertilizer (NP), 70% conventional fertilizer respectively, with cow dung (0.7NP+NF), with biogas residue (0.7NP+ZZ), with sewage sludge (0.7NP+WN), with chicken manure (0.7NP+JF), with mushroom substrate residue (0.7NP+JZ), and with pig manure (0.7NP+ZF). We studied how partially replacing chemical fertilizers with different organic materials affected the physical and chemical soil properties, soil organic carbon sequestration efficiency, total nitrogen; the activation coefficients of nitrogen, potassium, and phosphorus, as well as crop yield, and heavy metal content. The results showed that the effect of annual applications of organic materials with 70% chemical fertilizer on yield was equivalent to that of NP of wheat and corn. Compared with NP the soil organic matter, total nitrogen, and available nitrogen content significantly increased under six organic materials treatments; the total phosphorus and available phosphorus content of sludge, chicken manure, and pig manure treatments significantly improved; and the available potassium content, soil phosphorus activity, and soil potassium activity of cow manure, biogas residue, and chicken and pig manure treatments also significantly improved. The organic carbon soil sequestration rate of cow dung, biogas residue, sewage sludge, mushroom substrate residue, and chicken and pig manure treatments were 36.42%-71.61% significantly higher than that of NP. While, the nitrogen soil sequestration rate was 6.47%-49.44% significantly higher than NP, except the mushroom residue treatment. Long-term applications of chicken manure and mushroom substrate residue significantly increased the total copper content by 4.17 mg·kg-1 and 14.2 mg·kg-1, respectively; sludge, chicken manure, and mushroom substrate significantly increased total content of zinc by 13.53 mg·kg-1, 22.60 mg·kg-1, and 49.73 mg·kg-1, respectively. In conclusion, applications of 4 500 kg·hm-2organic materials could replace 30% nitrogen and phosphorus fertilizer without reducing the crop yield. The degree that different organic materials affected soil fertilization was varied; sewage sludge, chicken manure, and pig manure were better than cow manure and biogas residue, while mushroom substrate residue was slight worse. When planting wheat, the annual carrying capacity for copper and zinc from organic materials should be less than 53.01 g·hm-2 and 221.30 g·hm-2, respectively. When planting corn, the annual carrying capacity of copper and zinc from organic matter should be lower than 153.40 g·hm-2 and 347.04 g·hm-2, respectively, to allow soil environmental quality to be stable without deteriorating.
Key words:Organic material/
Crop yield/
Soil physical and chemical properties/
Activation coefficient/
Sequestration rate/
Heavy metal

HTML全文


图1不同有机物处理的土壤氮、磷、钾活化系数
CK、NP、NF、ZZ、WN、JF、JZ和ZF分别表示对照(不施肥)、常规施化肥(氮磷配施)、70%氮磷肥+牛粪、70%氮磷肥+沼渣、70%氮磷肥+污泥、70%氮磷肥+鸡粪、70%氮磷肥+菌渣和70%氮磷肥+猪粪。不同小写字母表示处理间在P < 0.05水平差异显著。
Figure1.Activation coefficients of nitrogen, phosphorus and potassium of soil under different organic material treatments
CK, NP, NF, ZZ, WN, JF, JZ and ZF stand for the treatments of no fertilizer, chemical fertilizers (NP), 70% NP coupled with cow dung, 70% NP coupled with biogas residue, 70% NP coupled with sewage sludge, 70% NP coupled with chicken manure, 70% NP coupled with mushroom substrate residue, and 70% NP coupled with pig manure, respectively. Different lowercase letters indicate significant differences among different treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2不同有机物处理土壤有机碳和全氮的固存率
CK、NP、NF、ZZ、WN、JF、JZ和ZF分别表示对照(不施肥)、常规施化肥(氮磷配施)、70%氮磷肥+牛粪、70%氮磷肥+沼渣、70%氮磷肥+污泥、70%氮磷肥+鸡粪、70%氮磷肥+菌渣和70%氮磷肥+猪粪。不同小写字母表示处理间在P < 0.05水平差异显著。
Figure2.Soil sequestration rates of organic carbon and total nitrogen of soil under different organic material treatments
CK, NP, NF, ZZ, WN, JF, JZ and ZF stand for the treatments of no fertilizer, chemical fertilizers (NP), 70% NP coupled with cow dung, 70% NP coupled with biogas residue, 70% NP coupled with sewage sludge, 70% NP coupled with chicken manure, 70% NP coupled with mushroom substrate residue, and 70% NP coupled with pig manure, respectively. Different lowercase letters indicate significant differences among different treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1供试不同有机物的理化性状和用量
Table1.Physical and chemical properties and average application amounts of different organic materials in the experiment
有机物
Organic material
pH有机质
Organic matter (g·kg–1)
全氮
Total N (g·kg–1)
全磷
Total P (g·kg–1)
全钾
Total K (g·kg–1)
平均施入量
Average input (kg·hm–2)
牛粪Cattle manure8.14351.4216.416.9125.2812 805.19
沼渣Biogas residue9.54387.1310.517.0729.2111 624.00
污泥Sludge7.39276.1814.6610.7816.5316 293.72
鸡粪Chicken manure7.94275.6216.2210.7827.1416 326.83
菌渣Mushroom residue7.85306.095.335.2718.1014 701.56
猪粪Pig manure7.98330.1518.7917.9427.3613 630.17


下载: 导出CSV
表2供试不同有机物的重金属含量
Table2.Total contents of some heavy metals in different organic materials in the experiment ?mg·kg–1
有机物Organic materialCrCuZnCdPb
牛粪Cattle manure59.7631.6976.720.3118.57
沼渣Biogas residue59.3427.6066.190.1918.54
污泥Sludge119.4578.80251.740.5833.89
鸡粪Chicken manure92.4684.65319.560.2823.98
菌渣Mushroom residue42.2519.3044.880.1720.16
猪粪Pig manure55.19401.97940.580.4721.67


下载: 导出CSV
表3长期减施化肥和配施有机物对小麦和玉米籽粒产量的影响
Table3.Effects of long-term application of reduced chemical fertilizer and organic materials on grain yield of wheat and corn ?kg?hm-2
处理
Treat-ment
小麦籽粒产量Wheat grain yield玉米籽粒产量Corn grain yield
2011201220132015201620182019平均值
Average
20142017平均值
Average
CK4 396±886a3 241±273c5 058±1 161ab3 630±610d2 202±64d2 368±219b2 608±611b3 357±77c14 594±802b13 373±1 444b13 984±336b
NP5 115±733a5 106±520ab5 976±406a5 239±491abc4 502±1 272bc6 459±443a6 142±1 054a5 505±196ab15 162±996ab16 460±524a15 811±738a
NF5 533±465a4 743±1 324ab4 929±124ab5 249±593abc5 569±1 141abc6 170±836a5 419±935a5 373±389ab14 998±357ab17 933±1 591a16 466±961a
ZZ6 004±791a4 851±336ab5 307±497ab4 741±341bc4 175±1 159c5 625±288a6 364±1 063a5 295±85ab16 738±1 646a17 620±1 410a17 179±1 527a
WN5 987±761a6 112±1 211a4 897±1 148ab5 651±464ab6 405±384ab6 348±725a6 075±338a5 925±527a16 806±930a16 933±717a16 870±822a
JF5 770±689a5 632±699ab5 517±393ab5 652±556ab5 787±719abc6 525±1 620a5 986±1 596a5 839±378a15 867±1 418ab18 093±480a16 980±854a
JZ4 728±1 424a5 619±561ab4 352±896b4 424±722cd4 496±1 710bc5 814±270a5 619±989a5 007±631b15 434±669ab17 727±421a16 580±541a
ZF5 691±634a4 275±155bc5 580±507ab6 146±207a6 711±914a6 770±639a5 908±696a5 869±217a16 703±487a16 967±1904a16 835±733a
CK、NP、NF、ZZ、WN、JF、JZ和ZF分别表示对照(不施肥)、常规施化肥(氮磷配施)、70%氮磷肥+牛粪、70%氮磷肥+沼渣、70%氮磷肥+污泥、70%氮磷肥+鸡粪、70%氮磷肥+菌渣和70%氮磷肥+猪粪。同列不同小写字母表示处理间在P < 0.05水平差异显著。CK, NP, NF, ZZ, WN, JF, JZ and ZF stand for the treatments of no fertilizer, chemical fertilizers (NP), 70% NP coupled with cow dung, 70% NP coupled with biogas residue, 70% NP coupled with sewage sludge, 70% NP coupled with chicken manure, 70% NP coupled with mushroom substrate residue, and 70% NP coupled with pig manure, respectively. Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表4不同有机物处理对土壤理化性状的影响(0~20 cm土层)
Table4.Effects of different organic material treatments on soil physic and chemical properties at 0-20 cm soil layer
处理
Treatment
容重
Soil bulk density (g·cm-3)
pH有机质
Organic matter (g·kg–1)
全氮
Total N (g·kg–1)
全磷
Total P (g·kg–1)
全钾
Total K (g·kg–1)
碱解氮
Available N (mg·kg–1)
速效磷
Available P (mg·kg–1)
速效钾
Available K (mg·kg–1)
CK1.43±0.01bc8.55±0.02a18.6±0.04e1.04±0.005e0.87±0.004d22.6±0.06a79.3±6.25d15.5±1.90e88.3±2.89b
NP1.50±0.03a8.46±0.04b18.9±0.13e1.03±0.004e0.95±0.003cd22.3±0a79.3±9.54d38.3±9.12de93.3±32.15b
NF1.40±0.05cd8.33±0.10c24.6±0.08bcd1.38±0.006c1.11±0.015c22.4±0.02a107.6±7.28c98.3±35.10d149.0±20.07a
ZZ1.47±0.02ab8.45±0.02b22.8±0.10d1.20±0.007d1.04±0.007c22.3±0a92.5±2.08cd57.6±9.2d140.0±21.79a
WN1.39±0.05cd8.12±0.01d28.8±0.42a1.53±0.003b1.40±0.001b22.0±0.06a133.4±3.61ab159.2±1.34c103.3±11.55b
JF1.37±0.05cd7.98±0.04e26.8±0.17ab1.74±0.007a1.93±0.014a22.5±0.03a143.0±14.57a314.1±35.67b173.3±18.93a
JZ1.39±0.01cd8.48±0.03ab24.1±0.14cd1.23±0.007d1.07±0.003c22.2±0.09a96.7±2.76c56.5±4.95d105.0±5.00b
ZF1.35±0.03d8.08±0.05d26.4±0.23abc1.50±0.012b1.94±0.131a22.6±0.06a123.8±12.66b380.9±13.27a158.3±17.56a
CK、NP、NF、ZZ、WN、JF、JZ和ZF分别表示对照(不施肥)、常规施化肥(氮磷配施)、70%氮磷肥+牛粪、70%氮磷肥+沼渣、70%氮磷肥+污泥、70%氮磷肥+鸡粪、70%氮磷肥+菌渣和70%氮磷肥+猪粪。同列不同小写字母表示处理间在P < 0.05水平差异显著。CK, NP, NF, ZZ, WN, JF, JZ and ZF stand for the treatments of no fertilizer, chemical fertilizers (NP), 70% NP coupled with cow dung, 70% NP coupled with biogas residue, 70% NP coupled with sewage sludge, 70% NP coupled with chicken manure, 70% NP coupled with mushroom substrate residue, and 70% NP coupled with pig manure, respectively. Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表5作物产量、固存率与土壤理化性状的相关性分析
Table5.Correlation analysis of crop yield, soil sequestration rate and soil physical and chemical properties
小麦产量
Wheat yield
玉米产量
Corn yield
有机碳固存率
CSE
氮固存率
NSE
容重
Soil bulk density
pH有机质
Organic matter
全氮
Total N
全磷
Total P
全钾
TotalK
碱解氮
AvailableN
速效磷
AvailableP
速效钾
Available K
小麦产量Wheat yield1.00
玉米产量Corn yield0.71**1.00
有机碳固存率CSE0.70**0.65**1.00
氮固存率NSE0.48*0.150.75**1.00
容重Soil bulk density-0.19-0.15-0.41*-0.46*1.00
pH-0.70**-0.48*-0.64**-0.82**0.57**1.00
有机质Organic matter0.57**0.51*0.94**0.77**-0.66**-0.73**1.00
全氮Total N0.61**0.43*0.76**0.91**-0.67**-0.89**0.87**1.00
全磷Total P0.59**0.41*0.52*0.70**-0.62**-0.92**0.66**0.84**1.00
全钾Total K-0.03-0.05-0.030.10-0.16-0.170.080.170.281.00
碱解氮Available N0.59**0.48*0.83**0.86**-0.63**-0.92**0.90**0.95**0.84**0.111.00
速效磷Available P0.56**0.390.47*0.66**-0.61**-0.89**0.61**0.78**0.98**0.270.78**1.00
速效钾Available K0.43*0.300.250.68**-0.34-0.52*0.350.61**0.62**0.220.48*0.63**1.00
CSENSE分别表示有机碳和全氮土壤固存率。*和**分别表示在P < 0.05和P < 0.01水平显著相关。CSE and NSE stand for soil sequestration rate of organic carbon and total nitrogen, respectively. * and ** represent significant correlation at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表6不同有机物处理的土壤重金属含量(0~20 cm土层)
Table6.Contents of soil heavy metals under different organic material treatments at 0-20 cm soil layer mg·kg–1
处理TreatmentCrCuZnCdPb
CK114.00±2.65a33.27±1.01bc73.60±0.72d0.21±0.01a23.80±0.53a
NP109.67±3.21a32.33±1.11c71.27±2.15d0.21±0.06a23.73±1.26a
NF110.67±1.53a33.90±0.36bc78.20±2.11cd0.21±0.02a23.23±1.19a
ZZ115.00±3.00a32.40±1.61c73.70±4.09d0.22±0.01a23.50±1.21a
WN112.67±3.06a34.93±1.29b84.80±5.01c0.24±0.02a25.47±2.80a
JF113.67±4.93a36.50±2.33b93.87±6.31b0.24±0.03a27.47±7.32a
JZ110.67±2.31a46.50±3.66a121.00±8.54a0.23±0.03a30.07±12.27a
ZF110.67±2.08a32.87±0.81c71.00±1.44d0.21±0.01a24.70±1.65a
CK、NP、NF、ZZ、WN、JF、JZ和ZF分别表示对照(不施肥)、常规施化肥(氮磷配施)、70%氮磷肥+牛粪、70%氮磷肥+沼渣、70%氮磷肥+污泥、70%氮磷肥+鸡粪、70%氮磷肥+菌渣和70%氮磷肥+猪粪。同列不同小写字母表示处理间在P < 0.05水平差异显著。CK, NP, NF, ZZ, WN, JF, JZ and ZF stand for the treatments of no fertilizer, chemical fertilizers (NP), 70% NP coupled with cow dung, 70% NP coupled with biogas residue, 70% NP coupled with sewage sludge, 70% NP coupled with chicken manure, 70% NP coupled with mushroom substrate residue, and 70% NP coupled with pig manure, respectively. Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表7小麦和玉米籽粒重金属含量
Table7.Contents of heavy metals in wheat and corn grains ? mg·kg–1
处理Treatment小麦籽粒重金属含量Content of heavy metal in wheat grain玉米籽粒重金属含量Content of heavy metal in corn grain
CrCuZnCdPbCrCuZnCdPb
CK1.26±0.38a5.55±0.52ab33.46±2.67a0.05±0.00a0.17±0.08a0.27±0.02a0.89±0.04b12.17±0.86a0.002±0a0.06±0.01a
NP1.38±0.48a5.76±0.20a29.93±0.56abc0.02±0.03a0.08±0.03a0.34±0.07a1.01±0.05a11.63±0.21ab0.003±0a0.06±0a
NF1.41±0.70a5.12±0.23b30.16±2.65abc0.02±0.03a0.13±0.14a0.33±0.10a0.85±0.05bc10.03±1.00c0.003±0a0.06±0.01a
ZZ1.63±1.20a5.37±0.20ab28.92±2.76c0.05±0.05a0.03±0.16a0.32±0.10a0.90±0.08b10.27±0.46c0.003±0a0.06±0.01a
WN1.20±0.96a5.21±0.21b30.12±0.54abc0.03±0.03a0.07±0.55a0.27±0a0.85±0.02bc10.63±0.40bc0.003±0a0.06±0.01a
JF1.53±0.70a5.17±0.06b31.01±1.07abc0.03±0.03a0.07±0.10a0.29±0a0.76±0.06c9.50±0.56c0.003±0a0.06±0.01a
JZ1.40±1.26a5.35±0.17ab33.09±1.98ab0.07±0.03a0.02±0.10a0.29±0.02a0.82±0.06bc11.67±0.06ab0.003±0a0.06±0.01a
ZF1.41±1.28a5.30±0.18ab29.48±0.85bc0.04±0.03a0.12±0.15a0.30±0.06a1.05±0.07a11.50±0.70ab0.003±0a0.06±0.01a
CK、NP、NF、ZZ、WN、JF、JZ和ZF分别表示对照(不施肥)、常规施化肥(氮磷配施)、70%氮磷肥+牛粪、70%氮磷肥+沼渣、70%氮磷肥+污泥、70%氮磷肥+鸡粪、70%氮磷肥+菌渣和70%氮磷肥+猪粪。同列不同小写字母表示处理间在P < 0.05水平差异显著。CK, NP, NF, ZZ, WN, JF, JZ and ZF stand for the treatments of no fertilizer, chemical fertilizers (NP), 70% NP coupled with cow dung, 70% NP coupled with biogas residue, 70% NP coupled with sewage sludge, 70% NP coupled with chicken manure, 70% NP coupled with mushroom substrate residue, and 70% NP coupled with pig manure, respectively. Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表8不同有机物处理小麦和玉米的重金属年携出量
Table8.Annual heavy metal uptake by wheat and corn under different organic material treatments ? g·kg-1
处理Treatment小麦年重金属携出量Annual heavy metal uptake by wheat玉米年重金属携出量Annual heavy metal uptake by corn
CrCuZnCdPbCrCuZnCdPb
CK24.83±2.21a38.34±1.64c169.74±13.05c0.39±0.02abc7.51±1.27a516.16±212.81ab99.72±9.06b381.90±86.16a0.89±0.03a12.99±0.28a
NP32.21±3.95a58.80±2.44ab237.04±6.43ab0.21±0.19c6.35±2.03a363.55±31.84b154.89±5.55a394.46±97.98a1.42±0.55a13.85±3.70a
NF36.55±5.37a55.69±5.74ab239.90±24.19ab0.43±0.15abc10.64±7.74a459.04±50.11ab178.07±27.61a358.51±42.07a1.50±0.47a14.86±1.36a
ZZ35.80±7.90a55.01±4.32ab221.30±10.11b0.82±0.43a7.21±4.83a486.55±119.19ab171.06±5.24a361.02±25.39a1.59±0.27a14.80±1.03a
WN34.65±4.90a62.85±7.26a261.5±25.201ab0.71±0.09ab9.11±4.92a352.72±65.77b154.05±6.55a382.57±33.61a1.26±0.08a18.39±5.93a
JF37.56±10.49a64.07±5.93a274.82±20.84a0.34±0.08bc8.38±1.47a501.25±165.48ab153.40±47.70a347.04±65.17a1.30±0.33a13.74±3.93a
JZ29.99±8.16a53.01±6.57b240.70±35.32a0.43±0.16abc6.09±1.91a524.20±56.50ab162.80±26.32a433.34±78.55a1.27±0.53a20.50±7.43a
ZF26.03±6.57a62.04±4.08ab257.77±0.83ab0.46±0.40abc4.66±2.11a742.90±324.80a176.49±20.45a405.45±43.19a1.65±0.71a19.29±6.61a
CK、NP、NF、ZZ、WN、JF、JZ和ZF分别表示对照(不施肥)、常规施化肥(氮磷配施)、70%氮磷肥+牛粪、70%氮磷肥+沼渣、70%氮磷肥+污泥、70%氮磷肥+鸡粪、70%氮磷肥+菌渣和70%氮磷肥+猪粪。同列不同小写字母表示处理间在P < 0.05水平差异显著。CK, NP, NF, ZZ, WN, JF, JZ and ZF stand for the treatments of no fertilizer, chemical fertilizers (NP), 70% NP coupled with cow dung, 70% NP coupled with biogas residue, 70% NP coupled with sewage sludge, 70% NP coupled with chicken manure, 70% NP coupled with mushroom substrate residue, and 70% NP coupled with pig manure, respectively. Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表9不同有机物年携入重金属的量
Table9.Heavy metal amounts input into soil by different organic materials ?g·hm–2
处理TreatmentCrCuZnCdPb
CK00000
NP00000
NF765.24405.80982.423.97237.79
ZZ689.77320.82769.402.21215.51
WN1 946.311 283.964 101.839.45551.20
JF1 509.611 382.095 217.504.57391.52
JZ621.14283.74629.802.50296.38
ZF752.245 478.8512 820.116.41295.36
CK、NP、NF、ZZ、WN、JF、JZ和ZF分别表示对照(不施肥)、常规施化肥(氮磷配施)、70%氮磷肥+牛粪、70%氮磷肥+沼渣、70%氮磷肥+污泥、70%氮磷肥+鸡粪、70%氮磷肥+菌渣和70%氮磷肥+猪粪。CK, NP, NF, ZZ, WN, JF, JZ and ZF stand for the treatments of no fertilizer, chemical fertilizers (NP), 70% NP coupled with cow dung, 70% NP coupled with biogas residue, 70% NP coupled with sewage sludge, 70% NP coupled with chicken manure, 70% NP coupled with mushroom substrate residue, and 70% NP coupled with pig manure, respectively.


下载: 导出CSV

参考文献(41)
[1]黄东风, 王利民, 李卫华, 等.培肥措施培肥土壤的效果与机理研究进展[J].中国生态农业学报, 2014, 22(2): 127-135 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2014201&journal_id=zgstny
HUANG D F, WANG L M, LI W H, et al. Research progress on the effect and mechanism of fertilization measure on soil fertility[J]. Chinese Journal of Eco-Agriculture, 2014, 22(2): 127-135 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2014201&journal_id=zgstny
[2]郭新勇, 张树清.甘肃省有机肥资源分布与利用潜力[J].土壤通报, 2007, 38(4): 677-680 http://d.old.wanfangdata.com.cn/Periodical/trtb200704012
GUO X Y, ZHANG S Q. Distribution and utilization of organic manure resources in Gansu[J]. Chinese Journal of Soil Science, 2007, 38(4): 677-680 http://d.old.wanfangdata.com.cn/Periodical/trtb200704012
[3]王芳, 张金水, 高鹏程, 等.不同有机物料对渭北旱塬耕地土壤短期培肥效应的综合评价[J].应用生态学报, 2010, 21(4): 930-936 http://d.old.wanfangdata.com.cn/Periodical/yystxb201004018
WANG F, ZHANG J S, GAO P C, et al. Short term effect of applying organic materials in improving soil fertility of Weibei rainfed highland[J]. Chinese Journal of Applied Ecology, 2010, 21(4): 930-936 http://d.old.wanfangdata.com.cn/Periodical/yystxb201004018
[4]全孝飞, 颜晓元, 王书伟, 等.长期施用有机物料对稻田生态系统服务功能的影响[J].农业环境科学学报, 2017, 36(7): 1406-1415 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707024
QUAN X F, YAN X Y, WANG S W, et al. Effects of long-term application of organic materials on the ecosystem services of paddy fields[J]. Journal of Agro-Environment Science, 2017, 36(7): 1406-1415 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707024
[5]马桂秀, 林治安, 李志杰, 等.有机物料与化肥配施改良盐碱耕地的效果研究[J].中国土壤与肥料, 2019, (3): 69-75 http://d.old.wanfangdata.com.cn/Periodical/trfl201903011
MA G X, LIN Z A, LI Z J, et al. Effect of combination of organic material and chemical fertilizer on the improvement of saline soil[J]. Soil and Fertilizer Sciences in China, 2019, (3): 69-75 http://d.old.wanfangdata.com.cn/Periodical/trfl201903011
[6]ZHAO S C, LI K J, ZHOU W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems & Environment, 2016, 216: 82-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42823237cc8a7accef7821e62492a87b
[7]陆海飞, 郑金伟, 余喜初, 等.长期无机有机肥配施对红壤性水稻土微生物群落多样性及酶活性的影响[J].植物营养与肥料学报, 2015, 21(3): 632-643 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503010
LU H F, ZHENG J W, YU X C, et al. Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 632-643 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503010
[8]韩晓增, 王凤仙, 王凤菊, 等.长期施用有机肥对黑土肥力及作物产量的影响[J].干旱地区农业研究, 2010, 28(1): 66-71 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201001013
HAN X Z, WANG F X, WANG F J, et al. Effects of long-term organic manure application on crop yield and fertility of black soil[J]. Agricultural Research in the Arid Areas, 2010, 28(1): 66-71 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201001013
[9]宁川川, 王建武, 蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报, 2016, 25(1): 175-181 http://d.old.wanfangdata.com.cn/Periodical/njkj-xxk201910233
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: A review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175-181 http://d.old.wanfangdata.com.cn/Periodical/njkj-xxk201910233
[10]魏益华, 邱素艳, 张金艳, 等.农业废弃物中重金属含量特征及农用风险评估[J].农业工程学报, 2019, 35(14): 212-220 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201914027
WEI Y H, QIU S Y, ZHANG J Y, et al. Characteristic of heavy metal contents in agricultural wastes and agricultural risk assessment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 212-220 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201914027
[11]张强, 卜玉山.污泥对不同土壤全氮和有机质及重金属含量的影响[J].山西农业科学, 2017, 45(3): 433-437 http://d.old.wanfangdata.com.cn/Periodical/shanxnykx201703028
ZHANG Q, BU Y S. Effect of sewage sludge on total nitrogen, organic matter and heavy metals content in different soils[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(3): 433-437 http://d.old.wanfangdata.com.cn/Periodical/shanxnykx201703028
[12]俄胜哲, 车宗贤, 曾希柏, 等.长期施肥对河西绿洲灌漠土有机碳库储量及水稳性团聚体的影响[J].土壤通报, 2014, 45(5): 1157-1163 http://d.old.wanfangdata.com.cn/Periodical/trtb201405022
E S Z, CHE Z X, ZENG X B, et al. Effects of long-term fertilization on irrigated desert soil organic carbon stock and soil aggregate in Hexi oasis[J]. Chinese Journal of Soil Science, 2014, 45(5): 1157-1163 http://d.old.wanfangdata.com.cn/Periodical/trtb201405022
[13]俄胜哲, 丁宁平, 李利利, 等.长期施肥条件下黄土高原黑垆土作物产量与土壤碳氮的关系[J].应用生态学报, 2018, 29(12): 4047-4055 http://d.old.wanfangdata.com.cn/Periodical/yystxb201812019
E S Z, DING N P, LI L L, et al. Relationship of crop yield and soil organic carbon and nitrogen under long-term fertilization in black loessial soil region on the Loess Plateau in China[J]. Chinese Journal of Applied Ecology, 2018, 29(12): 4047-4055 http://d.old.wanfangdata.com.cn/Periodical/yystxb201812019
[14]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000: 11-18, 27-28, 129, 370-397
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 11-18, 27-28, 129, 370-397
[15]蔡岸冬, 张文菊, 申小冉, 等.长期施肥土壤不同粒径颗粒的固碳效率[J].植物营养与肥料学报, 2015, 21(6): 1431-1438 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201506008
CAI A D, ZHANG W J, SHEN X R, et al. Soil carbon sequestration efficiency of different particle-size fractions after long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1431-1438 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201506008
[16]王琼, 展晓莹, 张淑香, 等.长期有机无机肥配施提高黑土磷含量和活化系数[J].植物营养与肥料学报, 2018, 24(6): 1679-1688 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201806029
WANG Q, ZHAN X Y, ZHANG S X, et al. Increment of soil phosphorus pool and activation coefficient through long-term combination of NPK fertilizers with manures in black soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1679-1688 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201806029
[17]贾兴永, 李菊梅.土壤磷有效性及其与土壤性质关系的研究[J].中国土壤与肥料, 2011, (6): 76-82 http://d.old.wanfangdata.com.cn/Periodical/trfl201106015
JIA X Y, LI J M. Study on soil phosphorus availability and its relation to the soil properties in 14 soils from different sites in China[J]. Soil and Fertilizer Sciences in China, 2011, (6): 76-82 http://d.old.wanfangdata.com.cn/Periodical/trfl201106015
[18]吴启华.长期不同施肥下三种土壤磷素有效性和磷肥利用率的差异机制[D].北京: 中国农业大学, 2018: 18 http://cdmd.cnki.com.cn/Article/CDMD-10019-1018065402.htm
WU Q H. Mechanism of difference in phosphorus availability and fertilization P use efficiency in three soils under long-term different fertilizations[D]. Beijing: China Agricultural University, 2018: 18 http://cdmd.cnki.com.cn/Article/CDMD-10019-1018065402.htm
[19]姜桂英.中国农田长期不同施肥的固碳潜力及预测[D].北京: 中国农业科学院, 2013: 20 http://cdmd.cnki.com.cn/Article/CDMD-82101-1013357105.htm
JIANG G Y. Prediction of carbon sequestration potential of Chinese arable land under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013: 20 http://cdmd.cnki.com.cn/Article/CDMD-82101-1013357105.htm
[20]LI C S, FROLKING S, HARRISS R. Modeling carbon biogeochemistry in agricultural soils[J]. Global Biogeochemical Cycles, 1994, 8(3): 237-254 doi: 10.1029-94GB00767/
[21]全国农业技术推广服务中心.中国有机肥料养分志[M].北京:中国农业出版社, 1999: 57-62
National Agricultural Technology Extension Service Center. Organic Fertilizer Nutrition Records of China[M]. Beijing: China Agriculture Press, 1999: 57-62
[22]郝小雨, 马星竹, 周宝库, 等.长期不同施肥措施下黑土有机碳的固存效应[J].水土保持学报, 2016, 30(5): 316-321 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201605052
HAO X Y, MA X Z, ZHOU B K, et al. Effect of different long-term fertilization practices on carbon sequestration in black soil[J]. Journal of Soil and Water Conservation, 2016, 30(5): 316-321 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201605052
[23]盖霞普, 刘宏斌, 杨波, 等.不同施肥年限下作物产量及土壤碳氮库容对增施有机物料的响应[J].中国农业科学, 2019, 52(4): 676-689 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201904009
GAI X P, LIU H B, YANG B, et al. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years[J]. Scientia Agricultura Sinica, 2019, 52(4): 676-689 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201904009
[24]林葆, 林继雄, 李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报, 1994, (1): 6-18 http://d.old.wanfangdata.com.cn/Periodical/yystxb200605012
LIN B, LIN J X, LI J K. The changes of crop yield and soil fertility with long-term fertilizer application[J]. Plant Nutrition and Fertilizer Science, 1994, (1): 6-18 http://d.old.wanfangdata.com.cn/Periodical/yystxb200605012
[25]朱振国.不同有机肥与化肥配施对土壤氮的转化迁移及作物产量的影响[D].吉林: 吉林农业大学, 2008: 34 http://cdmd.cnki.com.cn/Article/CDMD-10193-2009162989.htm
ZHU Z G. Effect of different organic manure and chemical fertilizers combined application on the soi1 nitrogen of the transformation, migration and crop yield[D]. Jilin: Jilin Agricultural University, 2008: 34 http://cdmd.cnki.com.cn/Article/CDMD-10193-2009162989.htm
[26]邢鹏飞, 高圣超, 马鸣超, 等.有机肥替代部分无机肥对华北农田土壤理化特性、酶活性及作物产量的影响[J].中国土壤与肥料, 2016, (3): 98-104 http://d.old.wanfangdata.com.cn/Periodical/trfl201603016
XING P F, GAO S C, MA M C, et al. Impact of organic manure supplement chemical fertilizer partially on soil nutrition, enzyme activity and crop yield in the North China Plain[J]. Soil and Fertilizer Sciences in China, 2016, (3): 98-104 http://d.old.wanfangdata.com.cn/Periodical/trfl201603016
[27]康国栋, 魏家星, 邬梦成, 等.有机物料施用对旱地红壤作物产量和有机质活性组分的影响[J].土壤, 2017, 49(6): 1084-1091 http://d.old.wanfangdata.com.cn/Periodical/tr201706003
KANG G D, WEI J X, WU M C, et al. Effects of organic material application on crop yield and active organic components in upland red soil[J]. Soils, 2017, 49(6): 1084-1091 http://d.old.wanfangdata.com.cn/Periodical/tr201706003
[28]周立祥, 胡霭堂, 戈乃鈖.城市生活污泥农田利用对土壤肥力性状的影响[J].土壤通报, 1994, 25(3): 126-129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400475709
ZHOU L X, HU A T, GE N F. Study on utilization of municipal sewage sludge in farmland and forest land[J]. Chinese Journal of Soil Science, 1994, 25(3): 126-129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400475709
[29]龙攀, 高旺盛, 隋鹏, 等.农业废弃物料还田对土壤团聚体及土壤C和N的影响[J].中国农业大学学报, 2014, 19(6): 107-118 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201406015
LONG P, GAO W S, SUI P, et al. Effects of agricultural organic wastes incorporation on soil water-stable aggregates and C, N contents[J]. Journal of China Agricultural University, 2014, 19(6): 107-118. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201406015
[30]宓文海, 吴良欢, 马庆旭, 等.有机物料与化肥配施提高黄泥田水稻产量和土壤肥力[J].农业工程学报, 2016, 32(13): 103-108 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201613015
MI W H, WU L H, MA Q X, et al. Combined application of organic materials and inorganic fertilizers improving rice yield and soil fertility of yellow clayey paddy soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 103-108 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201613015
[31]安思羽, 李艳霞, 张雪莲, 等.我国果菜茶中畜禽粪便有机肥替代化肥潜力[J].农业环境科学学报, 2019, 38(8): 1712-1722 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201908008
AN S Y, LI Y X, ZHANG X L, et al. Potential of animal manure in replacing chemical fertilizers for fruit, vegetable, and tea production in China[J]. Journal of Agro-Environment Science, 2019, 38(8): 1712-1722 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201908008
[32]张旺运.旱作梯田不同施肥方式下土壤质量与作物产量动态研究[D].兰州: 兰州大学, 2017: 29-31 http://cdmd.cnki.com.cn/Article/CDMD-10730-1017715590.htm
ZHANG W Y. Dynamic study of soil quality and crop yield under different fertilization methods in dry terraced fields[D]. Lanzhou: Lanzhou University, 2017: 29-31 http://cdmd.cnki.com.cn/Article/CDMD-10730-1017715590.htm
[33]HESKETH N, BROOKES P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105-110 doi: 10.2134-jeq2000.00472425002900010013x/
[34]赵芸晨, 王治江, 孙晓娟, 等.制种玉米连作恒量施磷对灌漠土与潮土中磷素利用的影响[J].水土保持通报, 2018, 38(1): 47-55 http://d.old.wanfangdata.com.cn/Periodical/stbctb201801009
ZHAO Y C, WANG Z J, SUN X J, et al. Effects of constant phosphorus fertilization and continuous cropping of corn seed on phosphorus utilization of irrigated desert soil and alluvial soil[J]. Bulletin of Soil and Water Conservation, 2018, 38(01): 47-55 http://d.old.wanfangdata.com.cn/Periodical/stbctb201801009
[35]孟安华, 张振都, 吴景贵.不同处理牛粪对大豆重茬土壤腐殖质组成和结构特征的影响[J].西北农林科技大学学报:自然科学版, 2016, 44(10): 141-149 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201610020
MENG A H, ZHANG Z D, WU J G. Effect of cow dung on elemental composition and structural characteristics of soil humus in soybean continuous cropping field[J]. Journal of Northwest A & F University: Natural Science Edition, 2016, 44(10): 141-149 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201610020
[36]李发, 徐应明, 王林, 等.黄淮海地区鸡粪有机肥重金属含量特征及环境风险[J].环境科学, 2018, 39(9): 4375-4384 http://d.old.wanfangdata.com.cn/Periodical/hjkx201809049
LI F, XU Y M, WANG L, et al. Characteristics of heavy metals in chicken manure organic fertilizers in the Huang-Huai- Hai region and related environmental risk assessment[J]. Environmental Science, 2018, 39(9): 4375-4384 http://d.old.wanfangdata.com.cn/Periodical/hjkx201809049
[37]黄小洋, 邵劲松, 马运涛.施用猪粪有机肥对土壤环境质量的影响[J].河南农业科学, 2017, 46(11): 60-68 http://d.old.wanfangdata.com.cn/Periodical/hnnykx201711011
HUANG X Y, SHAO J S, MA Y T. Effects of the application of pig manure organic fertilizers on soil environment quality[J]. Journal of Henan Agricultural Sciences, 2017, 46(11): 60-68 http://d.old.wanfangdata.com.cn/Periodical/hnnykx201711011
[38]安康.城市污泥资源化利用对灌漠土重金属累积的影响及安全性评价[D].兰州: 甘肃农业大学, 2014: 26-31 http://cdmd.cnki.com.cn/Article/CDMD-10733-1015021349.htm
AN K. Effects of utilization of municipal sewage sludge on irrigated desert soil and safety evaluation[D]. Lanzhou: Gansu Agricultural University, 2014: 26-31 http://cdmd.cnki.com.cn/Article/CDMD-10733-1015021349.htm
[39]宋姿蓉, 俄胜哲, 袁金华, 等.不同有机物料对灌漠土重金属累积特征及作物效应的影响[J].中国农业科学, 2019, 52(19): 3367-3379 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201919008
SONG Z R, E S Z, YUAN J H, et al. Heavy metal accumulation in irrigated desert soils and their crop effect after applying different organic materials[J]. Scientia Agricultura Sinica, 2019, 52(19): 3367-3379 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201919008
[40]王菲菲.河西走廊农田土壤重金属污染评价及源解析[D].兰州: 兰州大学, 2019: 40
WANG F F. Contamination assessment and source apportionment of heavy metals in agricultural soil in Hexi Corridor[D]. Lanzhou: Lanzhou University, 2019: 40
[41]贾武霞.畜禽粪便施用对土壤中重金属累积及植物有效性影响研究[D].北京: 中国农业科学院, 2016: 23-33 http://cdmd.cnki.com.cn/Article/CDMD-82101-1016171359.htm
JIA W X. Effects of livestock manure application on soil heavy metal accumulation and phytoavailability[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 23-33 http://cdmd.cnki.com.cn/Article/CDMD-82101-1016171359.htm

相关话题/土壤 作物 理化 农业 植物