删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

轮作下华北寒旱区作物生产的氮磷养分效果分析

本站小编 Free考研考试/2022-01-01

姚兆磊1,,
张立峰1, 2,,,
刘玉华1, 2,
张继宗1, 2,
杜玉琼1
1.河北农业大学农学院 保定 071000
2.农业部张北农业资源与生态环境重点野外科学观测试验站 张家口 076450
基金项目: 公益性行业(农业)科研专项201503120
河北省重点研发计划项目18227004D

详细信息
作者简介:姚兆磊, 主要从事作物生产制度研究。E-mail:1273990544@qq.com
通讯作者:张立峰, 主要从事农作制度与农业生态学研究。E-mail:zlf@hebau.edu.cn
中图分类号:S533

计量

文章访问数:370
HTML全文浏览量:0
PDF下载量:924
被引次数:0
出版历程

收稿日期:2019-11-08
录用日期:2020-03-05
刊出日期:2020-05-01

Nutrient effect analysis of nitrogen and phosphorus in crop production in cold and arid region of North China under rotation cropping

YAO Zhaolei1,,
ZHANG Lifeng1, 2,,,
LIU Yuhua1, 2,
ZHANG Jizong1, 2,
DU Yuqiong1
1. College of Agronomy, Agricultural University of Hebei, Baoding 071000, China
2. Zhangbei Agricultural Resources and Ecological Environment Key Field Research Station, Ministry of Agriculture, Zhangjiakou 076450, China
Funds: the Special Fund for Agro-scientific Research in the Public Interest of China201503120
the Key Research and Development Project of Hebei Province18227004D

More Information
Corresponding author:ZHANG Lifeng, E-mail:zlf@hebau.edu.cn


摘要
HTML全文
(0)(7)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:明晰华北寒旱区主栽作物的氮、磷养分利用效果,能够发挥作物生态适生性与养分高效性优势,是作物充分利用区域自然-社会资源进行生产配置技术创新的理论依据。在河北省张北县砂质栗钙土农田,采用交叉式种植方法,设计了包括马铃薯、亚麻、谷子、莜麦、甜菜等5种作物的轮作试验,研究在轮作条件下华北寒旱区主栽作物的养分利用效果。结果表明,5种作物间生物产量相差1.17~2.34倍,甜菜最高(10 291 kg·hm-2),莜麦次之,亚麻最低(4 393 kg·hm-2),作物间产量差异性显著;5种作物氮、磷携出量分别相差1.03~2.10倍、1.00~1.92倍,甜菜氮素携出量最高(199 kg·hm-2),莜麦磷素携出量最高(29 kg·hm-2),亚麻氮、磷携出量均最低(分别为95 kg·hm-2、15 kg·hm-2);氮、磷养分生物学效率分别在43.82~53.11 kg·kg-1、287.60~574.88 kg·kg-1,其中甜菜氮、磷养分生物学效率最高;5种作物氮、磷产投比变化在0.50~1.65、0.34~1.83,莜麦氮、磷产投比最高。在华北寒旱区,作物种类是引起作物产量、氮磷携出量及氮磷养分生物学效率差异的主要因素,茬口对诸性状的影响不明显。甜菜是对氮、磷吸收高效利用的高产作物,莜麦是对农田供给氮、磷高效利用的作物;马铃薯作为甜菜的前茬、甜菜作为莜麦的前茬更有利于提高作物产量。
关键词:华北寒旱区/
养分利用效率/
养分产投比/
甜菜/
莜麦/
马铃薯/
亚麻/
谷子
Abstract:To determine the nitrogen and phosphorus use efficiency of main crops in the cold and arid region of North China is the theoretical basis for innovating crop configuration technologies by exploiting the advantages of crop ecological adaptations and nutrient use efficiency to achieve the full utilization of regional natural and social resources. In the sandy chestnut soil farmland of Zhangbei County, Hebei Province, a rotation experiment with five crops, including potatoes, flax, millet, oat and sugar beets, was conducted in sandy chestnut soil by crossing plots design, to study the nutrient utilization effect of main crop in cold and arid region of North China. The results showed that the difference of biomass among five crops was 1.17-2.34 times, the highest was 10 290 kg·hm-2 in beets, followed by oat, the lowest was 4 393 kg·hm-2 in flax, and the yield difference among crops was significant. The differences in uptake of total nitrogen and total phosphorus in crops was 1.03-2.10 and 1.00-1.92 times respectively, the highest uptake of total nitrogen was 199 kg·hm-2 in beets, and the maximum uptake of total phosphorus was 29 kg·hm-2 in oat, and the lowest uptake of total nitrogen and total phosphorus was 95 kg·hm-2 and 15 kg·hm-2 in flax, respectively. The use efficiency of nitrogen and phosphorus was 43.82-53.11 kg·kg-1 and 287.60-574.88 kg·kg-1, among which beet had the highest use efficiency of nitrogen and phosphorus nutrients. N, P input and output ratios of five crops changed between 0.50-1.65 and 0.34-1.83, the ratios of oat were the highest. In cold arid region of North China, the crop type is the main factor that causes difference of crop yield, nitrogen and phosphorus uptake and use efficiency, the effect of previous crop on soil characters was not obvious. Beet is a crop that can achieve high yield and N, P use efficiency, oat is a crop that can efficiently use nitrogen and phosphorus from soil. Potato followed by beet, and beet followed by oat were more possible to improve yield.
Key words:Cold and arid region of North China/
Nutrient use efficiency/
Input and output ratio of nutrient/
Beet/
Oat/
Potato/
Flax/
Millet

HTML全文

表12015—2018年各试验小区不同作物的种植顺序
Table1.Planting sequence of different crops of each plot in the experiment from 2015 to 2018
试验小区
Experimental plot
试验年份?Experimental year
2015 2016 2017 2018
1 B P B P
2 O P O P
3 M P M P
4 F P F P
5 P P P P
6 B F B F
7 O F O F
8 M F M F
9 F F F F
10 P F P F
11 B M B M
12 O M O M
13 M M M M
14 F M F M
15 P M P M
16 B O B O
17 O O O O
18 M O M O
19 F O F O
20 P O P O
21 B B B B
22 O B O B
23 M B M B
24 F B F B
25 P B P B
P:马铃薯; F:亚麻; M:饲用谷子; O:莜麦; B:甜菜。P: potato (Solanum tuberosum); F: flax (Linum usitatissimum); M: millet (Setaria italica); O: oat (Avena sativa); B: beet (Beta vulgaris).


下载: 导出CSV
表22015—2018年各作物的每年N、P施入量
Table2.N and P inputs of each crop every year from 2015 to 2018?kg·hm-2
年份?Year 养分?Nutrient 马铃薯?Potato 亚麻?Flax 谷子?Millet 莜麦?Oat 甜菜?Beet
2015 N 161 64 257 64 214
P 42 19 37 9 56
2016 N 161 64 257 64 214
P 42 19 37 9 56
2017 N 161 64 257 244 214
P 42 19 37 40 56
2018 N 161 64 257 244 214
P 42 19 37 40 56


下载: 导出CSV
表32016—2018年不同前茬下各作物的生物产量
Table3.Biological yield of each crop with different previous crops in 2016-2018 ?kg·hm-2
作物
Crop
年份
Year
前茬作物?Previous crop 平均
Average
马铃薯?Potato 亚麻?Flax 谷子?Millet 莜麦?Oat 甜菜?Beet
马铃薯
Potato
2016 2 579 4 346 4 742 4 856 4 374 4 179a
2017 6 858 5 850 6 581 6 819 6 631 6 548b
2018 4 832 7 125 5 571 7 474 6 420 6 284b
平均?Average 4 756a 5 773a 5 631a 6 383a 5 808 a 5 670AB
亚麻
Flax
2016 4 402 4 269 4 702 4 769 4 702 4 569b
2017 4 161 3 825 3 585 4 333 3 726 3 926a
2018 4 547 4 717 5 154 4 985 4 024 4 685b
平均?Average 4 370a 4 270a 4 480a 4 696a 4 151a 4 393A
谷子
Millet
2016 5 417 5 625 5 294 5 650 4 134 5 224a
2017 7 345 6 051 7 113 5 544 6 743 6 559ab
2018 10 479 9 883 5 436 7 483 6 914 8 039b
平均?Average 7 747a 7 186a 5 948a 6 226a 5 931a 6 607AB
莜麦
Oat
2016 11 572 11 739 11 106 11 372 12 573 11 673c
2017 6 614 4 912 4 960 4 974 5 901 5 472a
2018 7 589 7 756 7 218 6 718 8 743 7 605b
平均?Average 8 592a 8 136a 7 761a 7 688a 9 072a 8 250BC
甜菜
Beet
2016 13 583 9 404 9 752 11 650 10 444 10 967a
2017 9 738 10 303 8 698 9 257 7 400 9 079a
2018 11 834 11 803 10 754 11 031 8 708 10 826a
平均?Average 11 719b 10 503ab 9 735ab 10 646ab 8 851a 10 291C
每种作物平均值后不同小写字母表示不同前茬同一作物生物产量差异显著(P < 0.05), “平均”列不同小写字母表示不同年份同一作物生物产量差异显著(P < 0.05), “平均”列不同大写字母表示5种作物间生物产量差异显著(P < 0.05)。Different lowercase letters in the “Average” line of each crop represent significant differences in the biological yield of the crop among different previous crops (P < 0.05). Different lowercase letters in the “Average” column represent significant differences in the biological yield of the same crop among different years (P < 0.05). Different capital letters in the “Average” column represent significant differences in the biological yield among five crops (P < 0.05).


下载: 导出CSV
表42016—2018年不同前茬下各作物的氮(N)、磷(P)携出量
Table4.N and P uptake amounts of each crop with different previous crops from 2016 to 2018 ?kg·hm-2
作物
Crop
年份
Year
前茬作物?Previous crop 平均
Average
马铃薯?Potato 亚麻?Flax 谷子?Millet 莜麦?Oat 甜菜?Beet
N P N P N P N P N P N P
马铃薯
Potato
2016 52 7 97 13 102 14 98 14 91 13 88 12
2017 153 20 130 14 146 21 165 22 162 19 151 19
2018 131 19 172 27 129 22 187 27 164 24 156 24
平均?Average 112a 15a 133a 18a 126a 19a 150a 21a 139a 19a 132AB 18AB
亚麻
Flax
2016 99 18 91 16 92 15 100 16 96 16 95 16
2017 100 14 75 9 85 12 98 12 88 13 89 12
2018 96 17 85 15 108 17 124 22 88 17 100 18
平均?Average 99ab 16a 83a 13a 95ab 15a 107b 17a 91ab 15a 95A 15A
谷子
Mille
2016 114 17 119 19 118 18 115 16 87 12 111 17
2017 146 15 126 16 142 22 95 10 125 15 127 16
2018 196 30 176 28 93 14 137 23 126 20 145 23
平均?Average 152a 21a 141a 21a 118a 18a 116a 17a 113a 16a 128AB 18AB
莜麦
Oat
2016 232 32 267 44 248 44 218 44 257 39 244 41
2017 171 20 135 18 135 21 122 14 139 18 140 19
2018 118 24 157 28 128 25 139 27 177 38 144 28
平均?Average 173a 26a 186a 30a 170a 301a 160a 29a 191a 32a 176B 29B
甜菜
Beet
2016 319 29 222 21 227 25 246 22 251 18 253 23
2017 187 14 190 15 146 12 154 11 125 11 160 13
2018 202 21 179 22 175 24 202 20 163 17 184 21
平均?Average 236a 21a 197a 19a 183a 20a 200a 18a 180a 16a 199B 19AB
每种作物平均值后不同小写字母表示不同前茬同一作物养分携出量差异显著(P < 0.05), “平均”列不同大写字母表示5种作物间养分携出量差异显著(P < 0.05)。Different lowercase letters in the “Average” line of each crop represent significant differences in the nutrient uptake amounts of the crop among different previous crops (P < 0.05). Different capital letters in the “Average” column represent significant differences in the nutrient uptake amounts among five crops (P < 0.05).


下载: 导出CSV
表52016—2018年不同前茬下各作物氮素平均生物学效率与产投比
Table5.Average biological efficiency and output/input ratio of nitrogen of each crop with different previous crops from 2016 to 2018
作物
Crop
项目
Item
年份
Year
前茬作物?Previous crop 平均?Average
马铃薯
Potato
亚麻
Flax
谷子
Millet
莜麦
Oat
甜菜
Beet
马铃薯
Potato
氮素生物学效率
Biological
efficiency of nitrogen
(kg·kg-1)
2016 49.87 44.96 46.65 49.59 48.23 47.86c
2017 44.84 45.08 44.98 41.36 40.87 43.43b
2018 37.01 41.46 43.12 40.05 39.17 40.16a
平均?Average 43.91a 43.83a 44.92a 43.67a 42.76a 43.82A
氮素产投比
Output/input of nitrogen
平均?Average 0.69a 0.82a 0.78a 0.93a 0.86a 0.82B
亚麻
Flax
氮素生物学效率
Biological
efficiency of nitrogen
(kg·kg-1)
2016 44.35 47.14 51.35 47.93 48.87 47.93a
2017 41.69 51.14 42.18 44.21 42.52 44.35a
2018 47.14 55.45 47.70 40.26 45.86 47.28a
平均?Average 44.39a 51.24a 47.08a 44.13a 45.75a 46.52AB
氮素产投比
Output/input of nitrogen
平均?Average 1.53ab 1.30a 1.48ab 1.67b 1.41ab 1.48C
谷子
Millet
氮素生物学效率
Biological
efficiency of nitrogen
(kg·kg-1)
2016 47.55 47.17 44.70 49.29 47.67 47.28a
2017 50.37 47.96 50.07 58.17 53.83 52.08b
2018 53.54 56.06 58.65 54.79 54.86 55.58b
平均?Average 50.49a 50.40a 51.14a 54.08a 52.12a 51.65C
氮素产投比
Output/input of nitrogen
平均?Average 0.59a 0.55a 0.46a 0.45a 0.44a 0.50A
莜麦
Oat
氮素生物学效率
Biological
efficiency of nitrogen
(kg·kg-1)
2016 49.98 43.93 44.73 52.11 48.94 47.94b
2017 38.76 36.44 36.72 40.83 42.43 39.04a
2018 64.46 49.33 56.41 48.41 49.31 53.58b
平均?Average 51.07a 43.23a 45.95a 47.12a 46.89a 46.85B
氮素产投比
Output/input of nitrogen
平均?Average 1.59a 1.78a 1.65a 1.49a 1.76a 1.65D
甜菜
Beet
氮素生物学效率
Biological
efficiency of nitrogen
(kg·kg-1)
2016 42.58 42.43 42.92 47.41 41.69 43.41a
2017 52.15 54.37 59.78 60.16 59.06 57.10b
2018 58.46 66.08 61.51 54.74 53.31 58.82b
平均?Average 51.06a 54.29a 54.74a 54.11a 51.35a 53.11C
氮素产投比
Output/input of nitrogen
平均?Average 1.10a 0.92a 0.85a 0.94a 0.84a 0.93B
每种作物平均值后不同小写字母表示不同前茬同一作物氮素生物学效率或氮素产投比差异显著(P < 0.05), “平均”列不同小写字母表示不同年份同一作物氮素生物学效率或氮素产投比差异显著(P < 0.05), “平均”列不同大写字母表示5种作物间氮素生物学效率或氮素产投比差异显著(P < 0.05)。Different lowercase letters in the “Average” line of each crop represent significant differences in the biological efficiency or output/input ratio of nitrogen of the crop among different previous crops (P < 0.05). Different lowercase letters in the “Average” column represent significant differences in the biological efficiency or output/input ratio of nitrogen of the same crop among different years (P < 0.05). Different capital letters in the “Average” column represent significant differences in the biological efficiency or output/input ratio of nitrogen among five crops (P < 0.05).


下载: 导出CSV
表62016—2018年不同前茬下各作物磷素平均生物学效率与产投比
Table6.Average biological efficiency and output/input ratio of phosphorus in each crop with different previous crops from 2016 to 2018
作物
Crop
项目
Item
年份
Year
前茬作物?Previous crop 平均?Average
马铃薯
Potato
亚麻
Flax
谷子
Millet
莜麦
Oat
甜菜
Beet
马铃薯
Potato
磷素生物学效率
Biological
efficiency of phosphorus
(kg·kg-1)
2016 368.52 342.08 344.94 337.63 332.13 345.06b
2017 338.22 417.87 312.65 312.15 351.69 346.52b
2018 252.16 261.66 259.15 278.82 263.28 263.01a
平均?Average 319.63a 340.54a 305.58a 309.53a 315.70a 318.20A
磷素产投比
Output/input of phosphorus
平均?Average 0.37a 0.43a 0.44a 0.50a 0.45a 0.44AB
亚麻
Flax
磷素生物学效率
Biological
efficiency of phosphorus
(kg·kg-1)
2016 246.51 271.12 321.79 293.28 294.96 285.53ab
2017 302.62 413.66 300.81 354.05 294.82 333.19b
2018 269.30 322.15 303.08 221.66 238.40 270.92a
平均?Average 272.81a 335.65a 308.56a 289.66a 276.06a 296.55A
磷素产投比
Output/input of phosphorus
平均?Average 0.85a 0.70a 0.76a 0.90a 0.80a 0.80C
谷子
Millet
磷素生物学效率
Biological
efficiency of phosphorus
(kg·kg-1)
2016 317.54 294.78 300.81 342.83 334.02 317.99a
2017 474.80 387.80 328.61 528.69 436.29 431.24b
2018 350.70 353.85 398.33 330.10 347.78 356.15a
平均?Average 381.01a 345.48a 342.58a 400.54a 372.69a 368.46B
谷子
Millet
磷素产投比
Output/input of phosphorus
平均?Average 0.56a 0.56a 0.47a 0.44a 0.42a 0.49B
莜麦
Oat
磷素生物学效率
Biological
efficiency of phosphorus
(kg·kg-1)
2016 356.58 269.32 253.94 255.86 323.42 291.82a
2017 327.64 268.16 231.26 344.64 324.32 299.21a
2018 311.28 276.88 286.87 251.48 232.27 271.76a
平均?Average 331.84b 271.45ab 257.36a 283.99ab 293.34ab 287.60A
磷素产投比
Output/input of phosphorus
平均?Average 1.52a 1.93a 1.94a 1.92a 1.84a 1.83D
甜菜
Beet
磷素生物学效率
Biological
efficiency of phosphorus
(kg·kg-1)
2016 464.25 450.32 394.99 519.24 576.78 481.11a
2017 714.22 677.44 721.07 843.88 646.56 720.64b
2018 559.48 543.88 446.93 556.61 507.57 522.89a
平均?Average 579.31a 557.21a 521.00a 639.91a 576.97a 574.88C
磷素产投比
Output/input of phosphorus
平均?Average 0.38a 0.34a 0.36a 0.32a 0.28a 0.34A
每种作物平均值后不同小写字母表示不同前茬同一作物磷素生物学效率或磷素产投比差异显著(P < 0.05), “平均”列不同小写字母表示不同年份同一作物磷素生物学效率或磷素产投比差异显著(P < 0.05), “平均”列不同大写字母表示5种作物间磷素生物学效率或磷素产投比差异显著(P < 0.05)。Different lowercase letters in the “Average” line of each crop represent significant differences in the biological efficiency or output/input ratio of phosphorus of the crop among different previous crops (P < 0.05). Different lowercase letters in the “Average” column represent significant differences in the biological efficiency or output/input ratio of phosphorus of the same crop among different years (P < 0.05). Different capital letters in the “Average” column represent significant differences in the biological efficiency or output/input ratio of phosphorus among five crops (P < 0.05).


下载: 导出CSV
表7不同作物生物产量与养分携出量、养分生物学效率间的关系
Table7.Relationship between biological yield and nutrient uptake amount, nutrient biological efficiency of different crops
项目
Item
养分
Nutrient
马铃薯
Potato
亚麻
Flax
谷子
Millet
莜麦
Oat
甜菜
Beet
与生物量的相关系数
Correlation coefficient (r)
养分携出量
Nutrient uptake amount
N 0.971** 0.694** 0.985** 0.921** 0.775**
P 0.888** 0.682** 0.873** 0.912** 0.772**
养分生物学效率
Nutrient biological efficiency
N -0.611* 0.291 0.397 0.369 0.178
P 0.353 0.256 0.016 0.035 -0.394
养分生物学效率的变异系数
Coefficient of variation of nutrient biological efficiency (%)
N 8.75 8.94 8.40 16.17 15.04
P 14.91 15.95 17.96 14.19 21.53
*与**分别表示在P < 0.05和P < 0.01水平差异显著。* and ** represent significant relationship at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(41)
[1]DAVIS K F, RULLI M C, SEVESO A, et al. Publisher correction:Increased food production and reduced water use through optimized crop distribution[J]. Nature Geoscience, 2018, 11(3):217
[2]张立峰, 徐长金.北方高寒半干旱农牧交错带资源环境障碍与农牧生产力开发[J].资源科学, 1999, 21(5):62-65 doi: 10.3321/j.issn:1007-7588.1999.05.011
ZHANG L F, XU C J. Environmental problems and development of agro-pastoral productivity in ecotone between agriculture and animal husbandry in cold semiarid areas in northern China[J]. Resources Science, 1999, 21(5):62-65 doi: 10.3321/j.issn:1007-7588.1999.05.011
[3]董艳, 王瑞杰, 卫华, 等.中国四大区农业发展的比较优势分析[J].山西师范大学学报:自然科学版, 2009, 23(4):115-119 http://d.old.wanfangdata.com.cn/Periodical/shanxsfdxxb200904028
DONG Y, WANG R J, WEI H, et al. Comparative advantage analysis of agricultural development of China's four major areas[J]. Journal of Shanxi Normal University:Natural Science Edition, 2009, 23(4):115-119 http://d.old.wanfangdata.com.cn/Periodical/shanxsfdxxb200904028
[4]汪秀芬.我国主要粮食作物生产能力区域比较优势分析[J].内蒙古农业科技, 2006, (4):19-21 doi: 10.3969/j.issn.1007-0907.2006.04.011
WANG X F. Comparative advantage analysis in major grain crop producing regions in China[J]. Inner Mongolia Agricultural Science and Technology, 2006, (4):19-21 doi: 10.3969/j.issn.1007-0907.2006.04.011
[5]牛乔丽.我国粮食主产区主要粮食作物生产能力区域比较优势分析[J].当代经济, 2013, (9):76-78 http://d.old.wanfangdata.com.cn/Periodical/ddjj201309032
NIU Q L. Regional comparative advantage analysis of the production capacity of major grain crops in major grain producing areas of China[J]. Contemporary Economics, 2013, (9):76-78 http://d.old.wanfangdata.com.cn/Periodical/ddjj201309032
[6]张绍波.基于综合比较优势指数法的云南省主要粮食作物生产优势分析[J].云南农业, 2016, (11):55-57 doi: 10.3969/j.issn.1005-1627.2016.11.030
ZHANG S B. Analysis of production advantages of major food crops in Yunnan Province based on comprehensive comparative advantage index method[J]. Yunnan Agriculture, 2016, (11):55-57 doi: 10.3969/j.issn.1005-1627.2016.11.030
[7]马春玥, 买买提·沙吾提, 依尔夏提·阿不来提, 等.新疆棉花种植业地理集聚特征及影响因素研究[J].作物学报, 2019, 45(12):1859-1867 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201912010
MA C Y, SAWUT M, ABLET E, et al. Characteristics and influencing factors of geographical agglomeration of cotton plantation in Xinjiang[J]. Acta Agronomica Sinica, 2019, 45(12):1859-1867 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201912010
[8]周贤君, 邹冬生, 王敏.湖南省主要农作物区域比较优势分析[J].农业现代化研究, 2009, 30(6):712-715 doi: 10.3969/j.issn.1000-0275.2009.06.017
ZHOU X J, ZOU D S, WANG M. Analysis on regional comparative advantage of main crops in Hunan Province[J]. Research of Agricultural Modernization, 2009, 30(6):712-715 doi: 10.3969/j.issn.1000-0275.2009.06.017
[9]马丽荣, 王恒炜.甘肃省主要油料作物比较优势分析[J].中国农业资源与区划, 2014, 35(5):8-12 http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201405002
MA L R, WANG H W. Analysis of comparative advantages of oil crops in Gansu Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(5):8-12 http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201405002
[10]孔令聪, 王光宇, 胡永年.安徽省主要粮食作物区域比较优势分析[J].中国农学通报, 2006, 22(5):396-399 doi: 10.3969/j.issn.1000-6850.2006.05.102
KONG L C, WANG G Y, HU Y N. Analysis on comparative advantage of major grain crop regions in Anhui Province[J]. Chinese Agricultural Science Bulletin, 2006, 22(5):396-399 doi: 10.3969/j.issn.1000-6850.2006.05.102
[11]MOLL R H, KAMPRATH E J, JACKSON W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal, 1982, 74(3):562-564 doi: 10.2134/agronj1982.00021962007400030037x
[12]王艳朋, 靳静晨, 汤继华, 等.作物氮素高效利用研究与现代农业[J].中国农学通报, 2007, 23(10):179-183 doi: 10.3969/j.issn.1000-6850.2007.10.040
WANG Y P, JIN J C, TANG J H, et al. Research on the high nitrogen use efficiency of crops and modern agriculture[J]. Chinese Agricultural Science Bulletin, 2007, 23(10):179-183 doi: 10.3969/j.issn.1000-6850.2007.10.040
[13]邱化蛟, 许秀美, 冷寿慈, 等.植物磷素利用效率[J].莱阳农学院学报, 2001, 18(2):116-120 doi: 10.3969/j.issn.1674-148X.2001.02.016
QIU H J, XU X M, LENG S C, et al. Utilization efficiency of plant phosphorus[J]. Journal of Laiyang Agricultural College, 2001, 18(2):116-120 doi: 10.3969/j.issn.1674-148X.2001.02.016
[14]RAUN W R, JOHNSON G V. Improving nitrogen use efficiency for cereal production[J]. Agronomy Journal, 1999, 91(3):357-363 doi: 10.2134-agronj1999.00021962009100030001x/
[15]欧立军, 康林玉, 赵激, 等.作物氮素吸收与利用研究进展[J].北方园艺, 2018, (7):151-156 http://d.old.wanfangdata.com.cn/Periodical/bfyany201807028
OU L J, KANG L Y, ZHAO J, et al. Research progress in nitrogen uptake and utilization of crops[J]. Northern Horticulture, 2018, (7):151-156 http://d.old.wanfangdata.com.cn/Periodical/bfyany201807028
[16]王东, 桑晓光, 周杰, 等.不同类型冬小麦氮、硫积累分配及利用效率的差异[J].中国农业科学, 2010, 43(22):4587-4597 doi: 10.3864/j.issn.0578-1752.2010.22.005
WANG D, SANG X G, ZHOU J, et al. Differences in accumulation and distribution and use efficiency of nitrogen and sulfur in different types of winter wheat[J]. Scientia Agricultura Sinica, 2010, 43(22):4587-4597 doi: 10.3864/j.issn.0578-1752.2010.22.005
[17]张国平, 张光恒.小麦氮素利用效率的基因型差异研究[J].植物营养与肥料学报, 1996, 2(4):331-336 doi: 10.3321/j.issn:1008-505X.1996.04.006
ZHANG G P, ZHANG G H. Studies on variation among wheat genotypes in N utilization[J]. Journal of Plant Nutrition and Fertilizers, 1996, 2(4):331-336 doi: 10.3321/j.issn:1008-505X.1996.04.006
[18]何丹, 张锡洲, 李廷轩, 等.稻种资源的磷利用效率差异及其分类评价[J].中国土壤与肥料, 2012, (3):70-76 doi: 10.3969/j.issn.1673-6257.2012.03.015
HE D, ZHANG X Z, LI T X, et al. Classification and evaluation of phosphorus utilization efficiency for different rice germplasms[J]. Soil and Fertilizer Sciences in China, 2012, (3):70-76 doi: 10.3969/j.issn.1673-6257.2012.03.015
[19]于天一, 王春晓, 孙学武, 等.不同产量及磷利用效率花生品种磷素及干物质累积、分配特点[J].中国油料作物学报, 2016, 38(6):788-794 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201606012
YU T Y, WANG C X, SUN X W, et al. Accumulation and distribution characteristics of phosphorus and dry matter for various peanut varieties with different yields and phosphorus use efficiency[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(6):788-794 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201606012
[20]袁园园, 董贝, 张翼博, 等.山东省23个小麦品种产量、品质及养分利用效率的差异分析[J].中国种业, 2018, (2):57-62 doi: 10.3969/j.issn.1671-895X.2018.02.019
YUAN Y Y, DONG B, ZHANG Y B, et al. Difference analysis of yield, quality and nutrient utilization efficiency of 23 wheat varieties in Shandong Province[J]. China Seed Industry, 2018, (2):57-62 doi: 10.3969/j.issn.1671-895X.2018.02.019
[21]何丹丹, 贾立国, 秦永林, 等.不同马铃薯品种的氮利用效率及其分类研究[J].作物学报, 2019, 45(1):153-159 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201901017
HE D D, JIA L G, QIN Y L, et al. Classification of potato cultivars by their nitrogen use efficiency[J]. Acta Agronomica Sinica, 2019, 45(1):153-159 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201901017
[22]王兰, 黄国勤, 孙丹平, 等.稻田水旱复种轮作对作物产量及土壤养分的影响[J].生态学杂志, 2018, 37(11):3284-3290 http://d.old.wanfangdata.com.cn/Periodical/stxzz201811014
WANG L, HUANG G Q, SUN D P, et al. Crop yield and soil nutrients under paddy-upland multiple cropping rotation systems[J]. Chinese Journal of Ecology, 2018, 37(11):3284-3290 http://d.old.wanfangdata.com.cn/Periodical/stxzz201811014
[23]徐文修, 罗明, 李银平, 等.作物茬口对连作棉田土壤环境及棉花产量的影响[J].农业工程学报, 2011, 27(3):271-275 doi: 10.3969/j.issn.1002-6819.2011.03.051
XU W X, LUO M, LI Y P, et al. Effects of crop stubbles on cotton yield and soil environment in continuously cropped cotton field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3):271-275 doi: 10.3969/j.issn.1002-6819.2011.03.051
[24]郑成岩, 于振文, 王西芝, 等.灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响[J].植物营养与肥料学报, 2009, 15(6):1324-1332 doi: 10.3321/j.issn:1008-505X.2009.06.012
ZHENG C Y, YU Z W, WANG X Z, et al. Effects of irrigation amount and stage on nitrogen accumulation, distribution, translocation and soil content in high-yield wheat[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6):1324- 1332 doi: 10.3321/j.issn:1008-505X.2009.06.012
[25]王周琼, 李述刚.荒漠绿洲农业生态系统养分平衡与调控[J].中国生态农业学报, 2001, 9(2):75-76 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2001224&flag=1
WANG Z Q, LI S G. Balance and control of soil nutrient in agro-ecosystem in the desert oases[J]. Chinese Journal of Eco-Agriculture, 2001, 9(2):75-76 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2001224&flag=1
[26]徐炳成, 梁银丽, 黄占斌.黄土旱塬麦田生态系统物质平衡及评价[J].水土保持学报, 2001, 15(1):85-89 doi: 10.3321/j.issn:1009-2242.2001.01.023
XU B C, LIANG Y L, HUANG Z B. Characteristics and evaluation of material flow of wheat farmland ecosystem on loess plateau rainfed highland[J]. Journal of Soil and Water Conservation, 2001, 15(1):85-89 doi: 10.3321/j.issn:1009-2242.2001.01.023
[27]杨志会, 张立峰, 张继宗.甜菜"南苗北植"的生产效应[J].作物杂志, 2019, (4):154-158 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201904023
YANG Z H, ZHANG L F, ZHANG J Z. The production effect of "south seedling and north planting" of beet[J]. Crops, 2019, (4):154-158 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201904023
[28]宋素芳, 秦豪荣, 赵聘.生物统计学[M].北京:中国农业大学出版社, 2008:59-60
SONG S F, QIN H R, ZHAO P. Biostatistics[M]. Beijing:China Agricultural University Press, 2008:59-60
[29]雷玉桃, 王雅鹏.论农业资源高效利用与粮食生产可持续发展[J].生态经济, 2001, (12):30-32 doi: 10.3969/j.issn.1671-4407.2001.12.010
LEI Y T, WANG Y P. Discussion on utilization of agricultural resource and sustainable development of grain[J]. Ecological Economy, 2001, (12):30-32 doi: 10.3969/j.issn.1671-4407.2001.12.010
[30]张福锁, 马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境, 2000, 9(2):154-157 doi: 10.3969/j.issn.1674-5906.2000.02.019
ZHANG F S, MA W Q. The relationship between fertilizer input level and nutrient use efficiency[J]. Soil and Environmental Sciences, 2000, 9(2):154-157 doi: 10.3969/j.issn.1674-5906.2000.02.019
[31]徐振华, 郭彩娟, 马文奇, 等.典型区域粮食作物产量、养分效率和经济效益关系实证研究[J].中国农学通报, 2011, 27(11):116-122 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201111025
XU Z H, GUO C J, MA W Q, et al. Study on the relationship among yield, nutrient efficiency and benefits of grain crop in typical regional areas of China[J]. Chinese Agricultural Science Bulletin, 2011, 27(11):116-122 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201111025
[32]陈颖, 周振翔, 周天阳, 等.水稻氮高效吸收利用机制及栽培调控措施[J].作物杂志, 2016, (6):26-32 http://d.old.wanfangdata.com.cn/Periodical/zwzz201606005
CHEN Y, ZHOU Z X, ZHOU T Y, et al. Mechanisms of high efficiency of N uptake and usage in rice and its cultivation practice[J]. Crops, 2016, (6):26-32 http://d.old.wanfangdata.com.cn/Periodical/zwzz201606005
[33]米国华, 陈范骏, 春亮, 等.玉米氮高效品种的生物学特征[J].植物营养与肥料学报, 2007, 13(1):155-159 doi: 10.3321/j.issn:1008-505X.2007.01.026
MI G H, CHEN F J, CHUN L, et al. Biological characteristics of nitrogen efficient maize genotypes[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(1):155-159 doi: 10.3321/j.issn:1008-505X.2007.01.026
[34]刘敏娜, 刘晓霞, 丁文雅, 等.不同菠菜基因型氮素吸收与利用效率的差异及其评价[J].浙江大学学报:农业与生命科学版, 2012, 38(5):599-607 http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm201205014
LIU M N, LIU X X, DING W Y, et al. Variation in nitrogen uptake and utilization efficiency in spinach genotypes and its evaluation[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2012, 38(5):599-607 http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm201205014
[35]杨睿, 伍晓明, 安蓉, 等.不同基因型油菜氮素利用效率的差异及其与农艺性状和氮营养性状的关系[J].植物营养与肥料学报, 2013, 19(3):586-596 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201303008
YANG R, WU X M, AN R, et al. Differences of nitrogen use efficiency of rapeseed (Brassica napus L.) genotypes and their relations to agronomic and nitrogen characteristics[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3):586-596 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201303008
[36]翟勇.中国生态农业理论与模式研究[D].杨凌: 西北农林科技大学, 2006 http://cdmd.cnki.com.cn/Article/CDMD-10712-2007045939.htm
ZHAI Y. Study on theory and model of Chinese ecological agriculture[D]. Yangling: Northwest A & F University, 2006 http://cdmd.cnki.com.cn/Article/CDMD-10712-2007045939.htm
[37]马强.内蒙古自治区现代特色农业发展研究[D].北京: 中国农业科学院, 2012 http://cdmd.cnki.com.cn/Article/CDMD-82101-1012415969.htm
MA Q. Study on modern characteristic agriculture development of Inner Mongolia Autonomous Region[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012 http://cdmd.cnki.com.cn/Article/CDMD-82101-1012415969.htm
[38]王春晓, 凌飞, 鹿泽启, 等.不同氮效率花生品种氮素累积与利用特征[J].中国生态农业学报(中英文), 2019, 27(11):1706-1713 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1110&flag=1
WANG C X, LING F, LU Z Q, et al. Characteristics of nitrogen accumulation and utilization in peanuts (Arachis hypogaea) with different nitrogen use efficiencies[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11):1706-1713 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1110&flag=1
[39]徐晴, 许甫超, 董静, 等.小麦氮素利用效率的基因型差异及相关特性分析[J].中国农业科学, 2017, 50(14):2647-2657 doi: 10.3864/j.issn.0578-1752.2017.14.002
XU Q, XU F C, DONG J, et al. Genotypic difference of nitrogen use efficiency of wheat and correlation analysis of the related characters[J]. Scientia Agricultura Sinica, 2017, 50(14):2647-2657 doi: 10.3864/j.issn.0578-1752.2017.14.002
[40]王永华, 胡卫丽, 李刘霞, 等.不同基因型小麦产量和氮利用效率的差异及其相互关系[J].麦类作物学报, 2013, 33(2):301-308 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201302016
WANG Y H, HU W L, LI L X, et al. Differences in grain yield, nitrogen efficiency of different genotypes of winter wheat and their correlations[J]. Journal of Triticeae Crops, 2013, 33(2):301-308 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201302016
[41]阳显斌, 张锡洲, 李廷轩, 等.小麦磷素利用效率的品种差异[J].应用生态学报, 2012, 23(1):60-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201201009
YANG X B, ZHANG X Z, LI T X, et al. Differences in phosphorus utilization efficiency among wheat cultivars[J]. Chinese Journal of Applied Ecology, 2012, 23(1):60-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201201009

相关话题/作物 生物学 资源 农业 生物