王琦1,,,
周旭姣1,
王小赟1,
赵晓乐1,
赵武成1,
雷俊2
1.甘肃农业大学草业学院/草业生态系统教育部重点实验室 兰州 730070
2.甘肃省定西市气象局 定西 744300
基金项目: 国家自然科学基金项目41661059
国家自然科学基金项目41461062
详细信息
作者简介:张登奎, 主要从事旱区节水和牧草栽培研究。E-mail:2605867938@qq.com
通讯作者:王琦, 主要从事旱区节水研究。E-mail:wangqigsau@gmail.com
中图分类号:S-3;S27;S541+4计量
文章访问数:488
HTML全文浏览量:5
PDF下载量:270
被引次数:0
出版历程
收稿日期:2019-09-28
录用日期:2019-11-15
刊出日期:2020-02-01
Effects of ridge-furrow rainwater harvesting with biochar-soil crust mulching on ridge runoff, soil hydrothermal properties, and sainfoin yield
ZHANG Dengkui1,,WANG Qi1,,,
ZHOU Xujiao1,
WANG Xiaoyun1,
ZHAO Xiaole1,
ZHAO Wucheng1,
LEI Jun2
1. College of Grassland Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China
2. Dingxi Meteorological Administration, Dingxi 744300, China
Funds: the National Natural Science Foundation of China41661059
the National Natural Science Foundation of China41461062
More Information
Corresponding author:WANG Qi, E-mail:wangqigsau@gmail.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探索半干旱黄土高原区垄沟集雨种植的可持续性,寻求垄沟集雨种植红豆草的适宜生物炭覆盖类型和最佳垄宽,采用随机区组大田试验,以传统平作为对照,研究不同集雨垄覆盖材料[土壤结皮(土垄)、玉米秸秆炭土壤结皮(玉米秸秆垄)和牛粪炭土壤结皮(牛粪炭垄)]和不同垄宽(30 cm、45 cm和60 cm,沟宽均为60 cm)对径流系数、土壤水热、红豆草干草产量和水分利用效率的影响。结果表明:土垄、玉米秸秆炭垄和牛粪炭垄的平均径流系数分别为29.7%、26.2%和25.1%。垄沟集雨种植增加根系层土壤含水量和垄上表层土壤温度,缓和沟中表层土壤温度极值,尤其生物炭覆盖垄沟集雨种植。与传统平作相比,土垄、玉米秸秆炭垄和牛粪炭垄的土壤含水量分别增加25.1mm、24.7 mm和19.4 mm,垄上表层土壤温度分别增加1.4℃、2.0℃和2.0℃。同一覆盖材料下,集雨垄径流系数、土壤贮水量和表层土壤温度均随垄宽增加而增加。与传统平作相比,土垄显著降低实际干草产量,玉米秸秆炭垄和牛粪炭垄显著增加实际干草产量,垄宽30 cm、45 cm和60 cm土垄的干草产量分别减少6.5%、12.1%和13.8%,玉米秸秆炭垄的干草产量分别增加19.7%、24.4%和22.5%,牛粪炭垄的干草产量分别增加8.0%、8.9%和6.8%。玉米秸秆炭和牛粪炭覆盖种植显著提高水分利用效率。与传统平作相比,玉米秸秆炭垄和牛粪炭垄的水分利用效率分别提高6.8~9.7 kg·hm-2·mm-1和4.4~4.8kg·hm-2·mm-1。玉米秸秆炭垄的实际干草产量和水分利用效率显著高于牛粪炭垄;同一覆盖材料下,不同垄宽对实际干草产量和水分利用效率的影响不显著。线性回归分析表明,当玉米秸秆炭垄宽49 cm(沟宽为60 cm)与牛粪炭垄宽为41 cm(沟宽为60 cm)时,红豆草的实际干草产量均达到最大值。因此,在半干旱地区,生物炭覆盖垄沟集雨种植红豆草具有较好的增产效益,尤其秸秆生物炭覆盖种植。
关键词:垄沟集雨/
红豆草/
生物炭覆盖/
土壤结皮/
径流系数/
干草产量/
水分利用效率
Abstract:Ridge-furrow rainwater harvesting (RFRH) with mulch offers farmers a means to address drought, water loss, and soil erosion in arid and semiarid regions. The purpose of this study was to determine a suitable biochar type and optimum ridge width for sainfoin (Onobrychis viciaefolia Scop.) production using the RFRH system with biochar application in the semi-arid regions in China. A field experiment with a completely random block design was conducted during the 2017 sainfoin growing season to (1) estimate runoff coefficient of the RFRH system with three ridge widths (30, 45, and 60 cm) and the same narrow width (60 cm), and mulched with three materials (soil crust, maize straw biochar-soil crust, and cow dung biochar-soil crust) and (2) assess the effects of three ridge widths and three mulching materials on soil water storage, topsoil temperature, as well as fodder yield and water use efficiency (WUE) of the RFRH system planted with sainfoin, and a traditional flat planting (FP) system was used as the control. The results showed that the predicted runoff coefficient for ridge-furrow planting with the ridges mulched with manually compacted soil crust, maize straw biochar-soil crust, and cow dung biochar-soil crust (MCS, MSB, and CMB, respectively) was 29.7%, 26.2%, and 25.1%, respectively, whereas the threshold rainfall to produce runoff was 4.2, 4.6, and 5.1 mm, respectively. The runoff coefficient of ridge, soil water storage, and soil temperature increased with increase in ridge width using the same mulching materials. The RFRH system, especially MSB and CMB treatments, increased soil water storage of the root layer and ridge topsoil (0-25 cm) temperature, and decreased the rate of change of furrow top soil (0-25 cm) temperature. Compared with that of FP, the mean soil water storage (0-200 cm) increased by 25.1, 24.7, and 19.4 mm, on an average, under MCS, MSB, and CMB throughout the sainfoin growth period, respectively; whereas the topsoil temperature increased by 1.4℃, 2.0℃, and 2.0℃, respectively, on an average. For the same mulching material, soil water storage and topsoil temperature increased with increase in ridge width. MCS significantly decreased the actual fodder yield of sainfoin, but MSB and CMB significantly increased the actual fodder yield. Compared with that under FP treatment, the actual fodder yield under MCS with 30, 45, and 60 cm ridge width decreased by 6.5%, 12.1%, and 13.8%, respectively. Whereas, the actual fodder yield under MSB with 30, 45, and 60 cm ridge width increased by 19.7%, 24.4%, and 22.5%, and that under CMB increased by 8.0%, 8.9%, and 6.8%, respectively. MSB and CMB significantly increased WUE of sainfoin. Compared with FP, MSB and CMB increased WUE by 6.8-9.7 and 4.4-4.8 kg·hm-2·mm-1, respectively. The ridge width had no significant effect on the actual fodder yield and WUE with the same mulching materials. When the ridge width (furrow width was 60 cm) was 49 cm for MSB and 41 cm for CMB, the forage yield reached the maximum. The actual fodder yield and WUE of sainfoin under MSB were significantly higher than those under CMB, which were significantly higher than those under MCS. In summary, RFRH with biochar-soil crust mulching has beneficial effects on soil water storage and yield of sainfoin in the region, especially ridges with maize straw biochar-soil crust mulching.
Key words:Ridge-furrow rainwater harvesting/
Sainfoin (Onobrychis viciaefolia Scop.)/
Biochar mulching/
Soil crust/
Runoff coefficient/
Fodder yield/
Water use efficiency
HTML全文
图1生物炭覆盖垄沟集雨种植示意图
Figure1.Schematic diagram of ridge-furrow rainwater harvesting with biochar-soil crust mulching of sainfoin planting
下载: 全尺寸图片幻灯片
图2生物炭覆盖集雨垄径流观测示意图
Figure2.Schematic diagram of runoff measurement of ridge-furrow rainwater harvesting system with biochar-soil crust mulching
下载: 全尺寸图片幻灯片
图32017年红豆草生育期降雨和径流特征
Figure3.Characteristics of rainfall and runoff during the growth stage of sainfoin in 2017
下载: 全尺寸图片幻灯片
图4红豆草生育期内生物炭覆盖垄径流量与降雨量的关系
MCS、MSB和CMB分别表示土垄、玉米秸秆炭垄和牛粪炭垄。下标数字表示垄宽, 单位为cm。
Figure4.Relationship between rainfall and runoff of ridges mulched with soil crust and different biochar-soil crusts during sainfoin growth season
MCS, MSB and CMB are ridge-furrow planting with the ridges mulched with manually compacted soil crust, maize straw biochar-soil crust, and cow dung biochar-soil crust, respectively; their subscripts 30, 45 and 60 refer to ridge widths in cm.
下载: 全尺寸图片幻灯片
图5生物炭覆盖垄沟集雨种植对红豆草生育期土壤贮水量的影响
FP、MCS、MSB和CMB分别表示传统平作、土垄、玉米秸秆炭垄和牛粪炭垄。下标数字表示垄宽, 单位为cm。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure5.Effects of mulching materials of ridge-furrow rainwater harvesting system on soil water storage during sainfoin growth season
FP is the traditional flat planting. MCS, MSB and CMB are ridge-furrow planting with the ridges mulched with manually compacted soil crust, maize straw biochar-soil crust, and cow dung biochar-soil crust, respectively; their subscripts 30, 45 and 60 refer to ridge widths in cm. Different lowercase letters mean significant differences among treatments at P < 0.05 level.
下载: 全尺寸图片幻灯片
图6生物炭覆盖垄沟集雨种植对红豆草生育期表层(0~25 cm)土壤温度的影响
FP、MCS、MSB和CMB分别表示传统平作、土垄、玉米秸秆炭垄和牛粪炭垄。下标数字表示垄宽, 单位为cm。图A为红豆草生育期传统平作的表层(0~25 cm)土壤温度变化, 图B和图C分别代表生物碳覆盖垄沟集雨种植与传统平作相比红豆草生育期垄沟集雨种植处理垄上和沟中表层土壤温度的变化量。
Figure6.Effects of mulching materials of ridge-furrow rainwater harvesting system on 0–25 cm soil temperature during sainfoin growth season
FP is the traditional flat planting. MCS, MSB and CMB are ridge-furrow planting with the ridges mulched with manually compacted soil crust, maize straw biochar-soil crust, and cow dung biochar-soil crust, respectively; their subscripts 30, 45 and 60 refer to ridge widths in cm. Fig. A is the topsoil (0-25 cm) temperature of FP. Fig. B and C are the variations of ridge and furrow topsoil temperature in ridge-furrow rainwater harvesting system during sainfoin growth season, respectively, compared with FP.
下载: 全尺寸图片幻灯片
图7玉米秸秆炭结皮(MSB)和牛粪炭结皮(CMB)覆盖垄沟集雨种植的红豆草产量与垄宽的关系
Figure7.Relationships between of sainfoin fodder yield and ridge width of ridge-furrow rainwater harvesting system under mulching of maize straw biochar-soil crust (MSB) and cow dung biochar-soil curst (CMB)
下载: 全尺寸图片幻灯片
表1不同材料覆盖垄沟集雨种植红豆草试验设计
Table1.Experimental design for sainfoin production of ridge-furrow rainwater harvesting with different mulching materials
处理 Treatment | 垄宽 Ridge width (cm) | 沟宽 Furrow width (cm) | 垄面积 Ridge area (m2) | 沟面积 Furrow area (m2) | 小区面积 Plot area (m2) | 垄覆盖材料 Ridge mulching materials |
FP | — | — | — | — | 36 | 平作无覆盖 Flat planting without mulching |
MCS30 | 30 | 60 | 12 | 18 | 30 | 土壤结皮 Soil crust |
MCS45 | 45 | 60 | 18 | 18 | 36 | |
MCS60 | 60 | 60 | 24 | 18 | 42 | |
MSB30 | 30 | 60 | 12 | 18 | 30 | 玉米秸秆炭土壤结皮 Maize straw biochar-soil crust |
MSB45 | 45 | 60 | 18 | 18 | 36 | |
MSB60 | 60 | 60 | 24 | 18 | 42 | |
CMB30 | 30 | 60 | 12 | 18 | 30 | 牛粪炭土壤结皮 Cow dung biochar-soil crust |
CMB45 | 45 | 60 | 18 | 18 | 36 | |
CMB60 | 60 | 60 | 24 | 18 | 42 |
下载: 导出CSV
表2红豆草生育期生物炭覆盖集雨垄的径流量与降雨量回归模型综合分析
Table2.Analysis of regression models between rainfall and runoff of ridges mulched with soil crust and different biochar-soil crust during sainfoin growth season
处理 Treatment | R | R2 | 德宾-沃森值 Durbin-Watson value (DW) | df | 均方 Mean square | P |
MCS30 | 0.953 | 0.905 | 1.720 | 1 | 121.8 | 0.000 |
MCS45 | 0.965 | 0.926 | 1.712 | 1 | 145.2 | 0.000 |
MCS60 | 0.970 | 0.933 | 1.708 | 1 | 168.2 | 0.000 |
MSB30 | 0.902 | 0.814 | 1.595 | 1 | 83.1 | 0.000 |
MSB45 | 0.936 | 0.876 | 1.558 | 1 | 125.0 | 0.000 |
MSB60 | 0.938 | 0.880 | 1.489 | 1 | 131.4 | 0.000 |
CMB30 | 0.896 | 0.803 | 1.447 | 1 | 78.6 | 0.000 |
CMB45 | 0.924 | 0.855 | 1.422 | 1 | 105.9 | 0.000 |
CMB60 | 0.937 | 0.879 | 1.467 | 1 | 121.2 | 0.000 |
平均Mean | ||||||
MCS | 0.962 | 0.925 | 1.673 | 1 | 144.3 | 0.000 |
MSB | 0.930 | 0.864 | 1.509 | 1 | 112.1 | 0.000 |
CMB | 0.925 | 0.855 | 1.428 | 1 | 102.9 | 0.000 |
MCS、MSB和CMB分别表示土垄、玉米秸秆炭垄和牛粪炭垄; 下标数字表示垄宽, 单位为cm。|R|→1表明两个变量线性相关性越强。德宾-沃森值(DW)检验因变量取值是否独立, 若0 < DW < dl或4-dl < DW < 4, 则因变量之间存在自相关, 若du < DW < 4-du, 则因变量之间不存在自相关(dl20, 1=1.201和du20, 1=1.411)。MCS, MSB and CMB are ridge-furrow planting with the ridges mulched with manually compacted soil crust, maize straw biochar-soil crust, and cow dung biochar-soil crust, respectively; their subscripts 30, 45 and 60 refer to the ridge width in cm. |R|→1 indicates a stronger linear correlation between the independent and dependent variables. The Durbin-Watson statistic is a test statistic used to detect the presence of autocorrelation at the prediction errors from a regression analysis. If du < DW < 4-du, the error terms are not statistically autocorrelated; if 0 < DW < dl or 4-dl < DW < 4, the error terms are statistically autocorrelated (dl20, 1 = 1.201, du20, 1 = 1.411)。 |
下载: 导出CSV
表3生物炭覆盖垄沟集雨种植对红豆草干草产量、蒸散量(ET)和水分利用效率(WUE)的影响
Table3.Effects of ridge-furrow rainwater harvesting system with biochar-soil crust mulching on fodder yield, evapotranspiration (ET) and water use efficiency (WUE) of sainfoin
处理 Treatment | 第1茬 First cut (kg·hm-2) | 第2茬 Second cut (kg·hm-2) | 全生育期 Annual (kg·hm-2) | ET (mm) | WUE (kg·hm-2·mm-1) | ||||||
NFY | AFY | NFY | AFY | NFY | AFY | ||||||
FP | 3 620±226f | 3 620±226de | 3 611±127e | 3 611±127bc | 7 231±125g | 7 231±125c | 336±0.5a | 21.5d | |||
MCS30 | 5 497±204e | 3 298±123ef | 5 778±609d | 3 467±336cd | 11 275±510f | 6 765±306d | 300±1.6c | 22.5d | |||
MCS45 | 6 336±270de | 3 168±135f | 6 370±358cd | 3 185±179d | 12 707±450e | 6 353±225de | 288±2.5e | 22.0d | |||
MCS60 | 7 068±114cd | 3 029±49f | 7 472±394b | 3 202±169d | 14 540±408d | 6 231±175e | 278±1.8g | 22.4d | |||
MSB30 | 7 330±424cd | 4 398±254b | 7 093±112bc | 4 256±67a | 14 423±408d | 8 654±245a | 306±1.4b | 28.3b | |||
MSB45 | 9 580±614b | 4 790±307a | 8 417±528a | 4 208±264a | 17 997±928b | 8 998±464a | 295±1.9d | 30.5a | |||
MSB60 | 11 944±309a | 5 119±133a | 8 731±443a | 3 742±190bc | 20 676±572a | 8 861±245a | 284±1.8f | 31.2a | |||
CMB30 | 6 454±231de | 3 872±139cd | 6 565±143c | 3 939±86ab | 13 019±363e | 7 811±218b | 302±0.8c | 25.9c | |||
CMB45 | 8 136±417c | 4 068±208bc | 7 611±594b | 3 806±297bc | 15 747±415c | 7 873±207b | 300±1.6c | 26.3c | |||
CMB60 | 9 503±934b | 4 073±400bc | 8 519±512a | 3 651±220bc | 18 022±484b | 7 724±208b | 296±1.8d | 26.1c | |||
平均Mean | |||||||||||
FP | 3 620±226c | 3 620±226c | 3 611±127c | 3 611±127b | 7 231±125c | 7 231±125c | 336±0.5a | 21.5c | |||
MCS | 6 300±196b | 3 165±102d | 6 540±454b | 3 285±238c | 12 841±456b | 6 450±235d | 289±2.0b | 22.3c | |||
MSB | 9 618±449a | 4 769±231a | 8 080±361a | 4 069±174a | 17 699±636a | 8 838±318a | 295±1.7b | 30.0a | |||
CMB | 8 031±527a | 4 004±249b | 7 565±416a | 3 798±201ab | 15 596±421a | 7 803±211b | 299±1.4b | 26.1b | |||
NFY:净干草产量; AFY:实际干草产量。FP、MCS、MSB和CMB分别表示传统平作、土垄、玉米秸秆炭垄和牛粪炭垄。下标数字表示垄宽, 单位为cm。不同小写字母表示不同处理间差异显著(P < 0.05)。NFY: net fodder yield; AFY: actual fodder yield. FP is the traditional flat planting. MCS, MSB and CMB are ridge-furrow planting with the ridges mulched with manually compacted soil crust, maize straw biochar-soil crust, and cow dung biochar-soil crust, respectively; their subscripts 30, 45 and 60 refer to ridge widths in cm. Different lowercase letters mean significant differences among treatments at P < 0.05 level. |
下载: 导出CSV
参考文献
[1] | 姚玉璧, 杨金虎, 肖国举, 等.气候变暖对西北雨养农业及农业生态影响研究进展[J].生态学杂志, 2018, 37(7):2170-2179 http://d.old.wanfangdata.com.cn/Periodical/stxzz201807032 YAO Y B, YANG J H, XIAO G J, et al. Research advances in the impacts of climate warming on rainfed agriculture and agroecology in Northwest China[J]. Chinese Journal of Ecology, 2018, 37(7):2170-2179 http://d.old.wanfangdata.com.cn/Periodical/stxzz201807032 |
[2] | 谢军红, 柴强, 李玲玲, 等.黄土高原半干旱区不同覆膜连作玉米产量的水分承载时限研究[J].中国农业科学, 2015, 48(8):1558-1568 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201508010 XIE J H, CHAI Q, LI L L, et al. The time loading limitation of continuous cropping maize yield under different plastic film mulching modes in semi-arid region of Loess Plateau of China[J]. Scientia Agricultura Sinica, 2015, 48(8):1558-1568 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201508010 |
[3] | 白盛元, 汪有科, 马建鹏, 等.黄土高原半干旱区降雨入渗试验研究[J].干旱地区农业研究, 2016, 34(2):218-223 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201602035 BAI S Y, WANG Y K, MA J P, et al. Experimental study on rainfall infiltration in semiarid region of the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2016, 34(2):218-223 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201602035 |
[4] | WANG Q, REN X, SONG X Y, et al. The optimum ridge-furrow ratio and suitable ridge-covering material in rainwater harvesting for oats production in semiarid regions of China[J]. Field Crops Research, 2015, 172:106-118 doi: 10.1016/j.fcr.2014.11.015 |
[5] | 董孔军, 刘天鹏, 何继红, 等.黄土高原半干旱区不同覆膜方式对土壤水热环境及糜子耗水特性的影响[J].中国农业科学, 2018, 51(12):2274-2287 doi: 10.3864/j.issn.0578-1752.2018.12.005 DONG K J, LIU T P, HE J H, et al. Effects of different film mulching-patterns on soil thermal-moisture and broomcorn millet water consumption characteristics in semiarid region on Northwest Loess Plateau[J]. Scientia Agricultura Sinica, 2018, 51(12):2274-2287 doi: 10.3864/j.issn.0578-1752.2018.12.005 |
[6] | 贾宇, 徐炳成, 王晓凌, 等.半干旱黄土丘陵区垄沟集雨对紫花苜蓿人工草地土壤水分和产草量的影响[J].植物生态学报, 2007, 31(3):470-475 doi: 10.3321/j.issn:1005-264X.2007.03.018 JIA Y, XU B C, WANG X L, et al. Effect of ridge and furrow micro-catchment on soil water in seeded Medicago sativa grassland in the semiarid loess hill and gully region of northwestern China[J]. Journal of Plant Ecology, 2007, 31(3):470-475 doi: 10.3321/j.issn:1005-264X.2007.03.018 |
[7] | 胡广荣, 王琦, 宋兴阳, 等.沟覆盖材料对垄沟集雨种植土壤温度、作物产量和水分利用效率的影响[J].中国生态农业学报, 2016, 24(5):590-599 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016505&flag=1 HU G R, WANG Q, SONG X Y, et al. Effects of furrow-mulching materials on soil temperature, crop yield and water use efficiency in ridge-furrow rainwater harvesting systems[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5):590-599 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016505&flag=1 |
[8] | GAN Y T, SIDDIQUE K H M, TURNER N C, et al. Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments[M]//Advances in Agronomy. Elsevier, 2013:429-476 |
[9] | 寇江涛, 师尚礼, 王琦, 等.垄沟集雨对紫花苜蓿草地土壤水分、容重和孔隙度的影响[J].中国生态农业学报, 2011, 19(6):1336-1342 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110618&flag=1 KOU J T, SHI S L, WANG Q, et al. Effect of ridge/furrow rain harvesting on soil moisture, bulk density and porosity in Medicago sativa field[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6):1336-1342 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110618&flag=1 |
[10] | 王晓凌, 陈明灿, 易现峰, 等.垄沟覆膜集雨系统垄宽和密度效应对玉米产量的影响[J].农业工程学报, 2009, 25(8):40-47 doi: 10.3969/j.issn.1002-6819.2009.08.008 WANG X L, CHEN M C, YI X F, et al. Effects of ridge width and planting density on corn yields in rainwater-harvesting system with plastic film mulching on ridge[J]. Transactions of the CSAE, 2009, 25(8):40-47 doi: 10.3969/j.issn.1002-6819.2009.08.008 |
[11] | 蒋锐, 郭升, 马德帝.旱地雨养农业覆膜体系及其土壤生态环境效应[J].中国生态农业学报, 2018, 26(3):317-328 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0301&flag=1 JIANG R, GUO S, MA D D. Review of plastic film mulching system and its impact on soil ecological environment in China's rainfed drylands[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3):317-328 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0301&flag=1 |
[12] | 严昌荣, 梅旭荣, 何文清, 等.农用地膜残留污染的现状与防治[J].农业工程学报, 2006, 22(11):269-272 doi: 10.3321/j.issn:1002-6819.2006.11.055 YAN C R, MEI X R, HE W Q, et al. Present situation of residue pollution of mulching plastic film and controlling measures[J]. Transactions of the CSAE, 2006, 22(11):269-272 doi: 10.3321/j.issn:1002-6819.2006.11.055 |
[13] | 王鑫, 胥国斌, 任志刚, 等.无公害可降解地膜对玉米生长及土壤环境的影响[J].中国生态农业学报, 2007, 15(1):78-81 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2007121&flag=1 WANG X, XU G B, REN Z G, et al. Effects of environment-friendly degradable films on corn growth and soil environment[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1):78-81 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2007121&flag=1 |
[14] | PAETSCH L, MUELLER C W, RUMPEL C, et al. A multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter composition[J]. Organic Geochemistry, 2017, 112:177-186 doi: 10.1016/j.orggeochem.2017.06.012 |
[15] | PARMAR A, NEMA P, AGARWAL T. Biochar production from agro-food industry residues:A sustainable approach for soil and environmental management[J]. Current Science, 2014, 107(25):1673-1682 http://cn.bing.com/academic/profile?id=467bbe3a8927cfc4fea95a6d50a2b0d3&encoded=0&v=paper_preview&mkt=zh-cn |
[16] | REDDY K R, YARGICOGLU E N, YUE D B, et al. Enhanced microbial methane oxidation in landfill cover soil amended with biochar[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(9):04014047 doi: 10.1061/(ASCE)GT.1943-5606.0001148 |
[17] | LEHMANN J, SILVA, J P D, STEINER C, et al. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin:fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2):343-357 doi: 10.1023/A:1022833116184 |
[18] | HARDIE M, CLOTHIER B, BOUND S, et al. Does biochar influence soil physical properties and soil water availability?[J]. Plant and Soil, 2014, 376(1/2):347-361 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232308334/ |
[19] | ROSENANI A B, AHMAD S H, NURUL ADILA S, et al. Biochar as a soil amendment to improve crop yield and soil carbon sequestration[J]. Acta Horticulturae, 2014(1018):203-209 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_816e671c7018ee16c0f3ac0cfe19b74e |
[20] | BARONTI S, VACCARI F P, MIGLIETTA F, et al. Impact of biochar application on plant water relations in Vitis vinifera (L.)[J]. European Journal of Agronomy, 2014, 53:38-44 doi: 10.1016/j.eja.2013.11.003 |
[21] | 王艳红, 李盟军, 唐明灯, 等.稻壳基生物炭对生菜Cd吸收及土壤养分的影响[J].中国生态农业学报, 2015, 23(2):207-214 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015210&flag=1 WANG Y H, LI M J, TANG M D, et al. Effect of rice husk biochar on lettuce Cd uptake and soil fertility[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2):207-214 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015210&flag=1 |
[22] | LAIRD D, FLEMING P, WANG B Q, et al. Biochar impact on nutrient leaching from a Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4):436-442 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=495a3a76fc2048000de3fae10afd4c16 |
[23] | 魏小燕, 毕华兴, 霍云梅, 等.高羊茅草地地表径流系数影响因素研究[J].北京林业大学学报, 2017, 39(5):82-88 http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201705011 WEI X Y, BI H X, HUO Y M, et al. Study on the factors influencing surface runoff coefficient in Festuca arundinacea grassland[J]. Journal of Beijing Forestry University, 2017, 39(5):82-88 http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201705011 |
[24] | LI X Y, GONG J D. Effects of different ridge:furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches[J]. Agricultural Water Management, 2002, 54(3):243-254 doi: 10.1016/S0378-3774(01)00172-X |
[25] | 宋兴阳, 王琦, 李富春, 等.覆盖材料和沟垄比对土壤水分和紫花苜蓿干草产量的影响[J].生态学报, 2017, 37(3):798-809 http://d.old.wanfangdata.com.cn/Periodical/stxb201703009 SONG X Y, WANG Q, LI F C, et al. Effects of mulching materials and furrow-to-ridge ratios on soil moisture and alfalfa forage yield[J]. Acta Ecologica Sinica, 2017, 37(3):798-809 http://d.old.wanfangdata.com.cn/Periodical/stxb201703009 |
[26] | 黄国如, 芮孝芳.流域降雨径流时间序列的混沌识别及其预测研究进展[J].水科学进展, 2004, 15(2):255-260 doi: 10.3321/j.issn:1001-6791.2004.02.024 HUANG G R, RUI X F. Study advances in diagnosis of chaotic behaviour and its prediction for rainfall and streamflow time series in watershed[J]. Advances in Water Science, 2004, 15(2):255-260 doi: 10.3321/j.issn:1001-6791.2004.02.024 |
[27] | WANG Q, SONG X Y, LI F C, et al. Optimum ridge-furrow ratio and suitable ridge-mulching material for Alfalfa production in rainwater harvesting in semi-arid regions of China[J]. Field Crops Research, 2015, 180:186-196 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a63d09bff7cc4e4b8fa33148fa93432 |
[28] | 吴秋菊, 吴佳, 王林华, 等.黄土区坡耕地土壤结皮对入渗的影响[J].土壤学报, 2015, 52(2):303-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201502006 WU Q J, WU J, WANG L H, et al. Effects of soil crust on infiltration in slope land in the loess area[J]. Acta Pedologica Sinica, 2015, 52(2):303-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201502006 |
[29] | SADEGHI S H, HAZBAVI Z, HARCHEGANI M K. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar[J]. Science of the Total Environment, 2016, 541:483-490 doi: 10.1016/j.scitotenv.2015.09.068 |
[30] | LIU X H, HAN F P, ZHANG X C. Effect of biochar on soil aggregates in the Loess Plateau:results from incubation experiments[J]. International Journal of Agriculture and Biology, 2012, 14(6):975-979 http://cn.bing.com/academic/profile?id=2382d5e12059026055c69fa1bed100d8&encoded=0&v=paper_preview&mkt=zh-cn |
[31] | SMETANOVA A, DOTTERWEICH M, DIEHL D, et al. Influence of biochar and terra preta substrates on wettability and erodibility of soils[J]. Zeitschrift Für Geomorphologie Supplementary Issues, 2013, 57(1):111-134 doi: 10.1127/0372-8854/2012/S-00117 |
[32] | 田媛, 李凤民, 刘效兰.半干旱区不同垄沟集雨种植马铃薯模式对土壤蒸发的影响[J].应用生态学报, 2007, 18(4):795-800 doi: 10.3321/j.issn:1001-9332.2007.04.015 TIAN Y, LI F M, LIU X L. Effects of different ridge-furrow planting patterns of potato on soil evaporation in semiarid area[J]. Chinese Journal of Applied Ecology, 2007, 18(4):795-800 doi: 10.3321/j.issn:1001-9332.2007.04.015 |
[33] | 田冬, 高明, 黄容, 等.油菜/玉米轮作农田土壤呼吸和异养呼吸对秸秆与生物炭还田的响应[J].环境科学, 2017, 38(7):2988-2999 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201707043 TIAN D, GAO M, HUANG R, et al. Response of soil respiration and heterotrophic respiration to returning of straw and biochar in rape-maize rotation systems[J]. Environmental Science, 2017, 38(7):2988-2999 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201707043 |
[34] | ZHOU L M, LI F M, JIN S L, et al. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China[J]. Field Crops Research, 2009, 113(1):41-47 doi: 10.1016/j.fcr.2009.04.005 |
[35] | ZHANG Q Z, WANG Y D, WU Y F, et al. Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature[J]. Soil Science Society of America Journal, 2013, 77(5):1478 doi: 10.2136/sssaj2012.0180 |
[36] | LIU T N, CHEN J Z, WANG Z Y, et al. Ridge and furrow planting pattern optimizes canopy structure of summer maize and obtains higher grain yield[J]. Field Crops Research, 2018, 219:242-249 doi: 10.1016/j.fcr.2018.02.012 |
[37] | PETTER F A, MADARI B E. Biochar:agronomic and environmental potential in Brazilian Savannah soils[J]. Revista Brasileira De Engenharia Agrícola e Ambiental, 2012, 16(7):761-768 doi: 10.1590/S1415-43662012000700009 |
[38] | 程思贤, 刘卫玲, 靳英杰, 等.深松深度对砂姜黑土耕层特性、作物产量和水分利用效率的影响[J].中国生态农业学报(中英文), 2018, 26(9):1355-1365 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0910&flag=1 CHENG S X, LIU W L, JIN Y J, et al. Effects of subsoiling depth on topsoil properties, crop yield and water use efficiency in Lime Concretion Black soil[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9):1355-1365 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0910&flag=1 |
[39] | AKHTAR S S, LI G T, ANDERSEN M N, et al. Biochar enhances yield and quality of tomato under reduced irrigation[J]. Agricultural Water Management, 2014, 138:37-44 doi: 10.1016/j.agwat.2014.02.016 |
[40] | ZHANG A, CUI L Q, PAN G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China[J]. Agriculture, Ecosystems & Environment, 2010, 139(4):469-475 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6974cb61454bad179b35f97ba3ef9b96 |