删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

外源碳输入对华北平原农田和湿地土壤有机碳矿化及其温度敏感性的影响

本站小编 Free考研考试/2022-01-01

魏圆云1, 2,,
崔丽娟1,
张曼胤1, 2,,,
刘魏魏1, 2,
王大安1, 2,
杨思1, 2,
肖红叶1, 2
1.中国林业科学研究院湿地研究所/湿地生态功能与恢复北京市重点实验室 北京 100091
2.河北衡水湖湿地生态系统国家定位观测研究站 衡水 053000
基金项目: 中央级公益性科研院所基本科研业务费专项CAFBB2017QA041

详细信息
作者简介:魏圆云, 主要研究方向为土壤碳循环。E-mail:weiyy40@126.com
通讯作者:张曼胤, 主要研究方向为湿地生态学。E-mail:cneco@126.com
中图分类号:S154.1

计量

文章访问数:639
HTML全文浏览量:11
PDF下载量:518
被引次数:0
出版历程

收稿日期:2019-03-22
录用日期:2019-06-21
刊出日期:2019-10-01

Effects of exogenous carbon input on soil organic carbon mineralization and temperature sensitivity of cropland and wetland in the North China Plain

WEI Yuanyun1, 2,,
CUI Lijuan1,
ZHANG Manyin1, 2,,,
LIU Weiwei1, 2,
WANG Da'an1, 2,
YANG Si1, 2,
XIAO Hongye1, 2
1. Institute of Wetland Research, Chinese Academy of Forestry/Beijing Key Laboratory of Wetland Services and Restoration, Beijing 100091, China
2. National Ecosystem Research Station of Hengshui Wetland, Hengshui 053000, China
Funds: the Central Public-Interest Scientific Institution Basal Research Fund of ChinaCAFBB2017QA041

More Information
Corresponding author:ZHANG Manyin, E-mail:cneco@126.com


摘要
HTML全文
(5)(4)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:研究外源碳输入和气候变暖对土壤有机碳矿化的影响,对于深入理解土壤有机碳的稳定和积累机制以及其对全球变化的响应具有重要意义。通过为期35 d的室内培养试验,利用13C稳定同位素标记技术,研究了华北平原典型农田和湿地土壤在15℃和25℃下的土壤有机碳矿化及激发效应。结果表明,土地利用类型(农田/湿地)、温度(15℃/25℃)和葡萄糖添加[0.4 mg(C)?g-1]对土壤有机碳矿化均具有显著影响。在相同培养温度下,未添加葡萄糖的农田和湿地土壤有机碳矿化无显著差异,而添加葡萄糖处理下农田土壤有机碳矿化显著高于湿地土壤。除湿地土壤在15℃下培养外,添加葡萄糖显著促进了农田和湿地土壤有机碳矿化,农田土壤有机碳矿化的激发效应显著高于湿地土壤。温度升高显著促进了农田和湿地土壤有机碳矿化,培养过程中土壤有机碳矿化温度敏感性Q10为1.2~1.6,土地利用类型和葡萄糖添加对土壤有机碳矿化温度敏感性的影响都不显著。在温度升高和外源碳输入的共同作用下,农田土壤有机碳矿化显著高于湿地土壤。
Abstract:The influences of exogenous carbon input and climate warming are two key factors of soil organic carbon mineralization. Based on a 13C stable isotope labelling technique, we conducted a laboratory incubation experiment to investigate the priming effect and temperature sensitivity of soil organic carbon mineralization of cropland and wetland in the North China Plain to understand and forecast soil carbon dynamics under global climatic change. Topsoil collected from cropland and wetland of Hengshui region were with or without 13C-labeled glucose[0.4 mg(C)?g-1] at two temperature (15℃ and 25℃) for 35 days. Soil CO2 emission and its 13C isotopic composition was measured at days 1, 3, 5, 7, 10, 14, 21, 28 and 35. Our results suggested that the soil organic carbon mineralization was significantly influenced by land use type, temperature, and glucose addition. The soil organic carbon mineralization of the cropland was approximately equal to that of the wetland without glucose addition but it was significantly higher than that of wetland with glucose addition at the same temperature. Except the wetland soil cultured at 15℃, glucose addition exerted a significantly positive priming effect on soil organic carbon mineralization in wetland and cropland soil. However, the priming effect of the cropland was significantly higher than that of wetland. Soil organic carbon mineralization was also accelerated by increased temperature, and the Q10 value of its temperature sensitivity fluctuated between 1.2 and 1.6 during incubation. The temperature sensitivities of soil organic carbon mineralization were not significantly changed by different land use types and glucose addition. In conclusion, the soil organic carbon mineralization of the cropland was significantly higher than that of wetland under warming conditions and exogenous carbon input.

HTML全文


图1外源碳添加和培养温度对农田和湿地土壤累积碳矿化量动态的影响
25℃-CK: 25 ℃下培养未添加葡萄糖; 25℃-G+: 25 ℃下培养添加葡萄糖; 15℃-CK: 15 ℃下培养未添加葡萄糖; 15℃-G+: 15 ℃下培养添加葡萄糖。
Figure1.Dynamics of accumulated soil organic carbon mineralization of cropland and wetland soils with exogenous carbon addition at different incubation temperatures
25℃-CK: incubation at 25 ℃ without glucose addition; 25℃-G+: incubation at 25 ℃ with glucose addition; 15℃-CK: incubation at 15 ℃ without glucose addition; 15℃-G+, incubation at 15 ℃ with glucose addition.


下载: 全尺寸图片幻灯片


图2外源碳添加和不同培养温度处理下农田和湿地土壤累积CO2释放量中源于土壤有机碳和葡萄糖的组分
不同大写字母表示不同土地利用型的不同处理间土壤有机碳累积CO2释放量差异显著(P < 0.05), 不同小写字母表示不同土地利用型的不同处理间葡萄糖累积CO2释放量差异显著(P < 0.05)。W-25℃-CK:湿地土壤25 ℃下培养未添加葡萄糖; W-25-G+:湿地土壤25 ℃下培养添加葡萄糖; W-15℃-CK:湿地土壤15 ℃下培养未添加葡萄糖; W-15℃-G+:湿地土壤15 ℃下培养添加葡萄糖; C-25℃-CK:农田土壤25 ℃下培养未添加葡萄糖; C-25℃-G+:农田土壤25 ℃下培养添加葡萄糖; C-15℃-CK:农田土壤15 ℃下培养未添加葡萄糖; C-15℃-G+:农田土壤15 ℃下培养添加葡萄糖。
Figure2.Amounts of accumulated CO2 emission from soil organic carbon and glucose of cropland and wetland soils with exogenous carbon addition at different incubation temperatures
Different capital letters mean significant differences in CO2 emissions from soil organic carbon at 0.05 level. Different lowercase letters mean significant differences in CO2 emissions from glucose at 0.05 level. W-25℃-CK: wetland soil at 25 ℃ without glucose addition; W-25℃-G+: wetland soil at 25 ℃ with glucose addition; W-15℃-CK: wetland soil at 15 ℃ without glucose addition; W-15℃-G+: wetland soil at 15 ℃ with glucose addition; C-25℃-CK: cropland soil at 25 ℃ without glucose addition; C-25℃-G+: cropland soil at 25 ℃ with glucose addition; C-15℃-CK: cropland soil at 15 ℃ without glucose addition; C-15℃-G+: cropland soil at 15 ℃ with glucose addition.


下载: 全尺寸图片幻灯片


图3不同培养温度下农田和湿地累积土壤有机碳矿化激发效应动态
W-25℃:湿地土壤25 ℃下培养; W-15 ℃:湿地土壤15 ℃下培养; C-25℃:农田土壤25 ℃下培养; C-15℃:农田土壤15 ℃下培养。
Figure3.Dynamics of priming effect of soil organic carbon mineralization of cropland and wetland under at different incubation temperatures
W-25℃: wetland soil at 25 ℃; W-15℃: wetland soil at 15 ℃; C-25℃: cropland soil at 25 ℃; C-15℃: cropland soil at 15 ℃.


下载: 全尺寸图片幻灯片


图4培养35 d后不同培养温度下农田和湿地的累积土壤有机碳矿化相对激发效应
W-25℃:湿地土壤25 ℃下培养; W-15 ℃:湿地土壤15 ℃下培养; C-25℃:农田土壤25 ℃下培养; C-15℃:农田土壤15 ℃下培养。
Figure4.Relative priming effects of soil organic carbon mineralization of cropland and wetland under different incubation temperatures for 35 days at different temperatures
W-25℃: wetland soil at 25 ℃; W-15℃: wetland soil at 15 ℃; C-25℃: cropland soil at 25 ℃; C-15℃: cropland soil at 15 ℃.


下载: 全尺寸图片幻灯片


图5外源碳添加对农田和湿地土壤有机碳矿化温度敏感性(Q10)动态变化的影响
W-CK:湿地土壤未添加葡萄糖; W-G+:湿地土壤添加葡萄糖; C-CK:农田土壤未添加葡萄糖; C-G+:农田土壤添加葡萄糖。
Figure5.Dynamics of temperature sensitivity (Q10) of soil organic carbon mineralization of cropland and wetland under addition of glucose
W-CK: wetland soil incubation without glucose addition; W-G+: wetland soil incubation with glucose addition; C-CK: cropland soil incubation without glucose addition; C-G+: cropland soil incubation with glucose addition.


下载: 全尺寸图片幻灯片

表1供试农田和湿地土壤基本理化性质
Table1.General physical and chemical characters of the tested cropland and wetland soils
土地利用类型
Land use type
土壤有机碳
Soil organic carbon (mg?g-1)
总氮
Total nitrogen (mg?g-1)
总磷
Total phosphorus (mg?g-1)
δ13C (‰) C/N 持水能力
Water holding capacity (%)
农田Cropland 21.15±0.22a 1.31±0.05a 0.46±0.04a 20.66±0.34b 16.22±0.44b 37.81±1.73b
湿地Wetland 24.71±2.95a 1.28±0.13a 0.27±0.05b 25.94±0.17a 19.32±0.44a 46.88±3.14a
不同小写字母表示不同土地利用方式间差异显著(P < 0.05)。Different lowercase letters mean significant differences between two land use types at 0.05 level.


下载: 导出CSV
表2土地利用类型、培养温度、葡萄糖添加对累积土壤碳矿化量的影响及交互作用
Table2.Effects of land use type, temperature, glucose addition and their interactions on the accumulated soil organic carbon mineralization
差异来源Source df F P
土地利用类型Land use type (L) 1, 24 35.32 < 0.001
温度Temperature (T) 1, 24 102.04 < 0.001
葡萄糖添加Glucose addition (G) 1, 24 64.97 < 0.001
L × T 1, 24 1.04 0.317
L × G 1, 24 13.09 0.002
T × G 1, 24 0.41 0.527
L × T × G 1, 24 0.07 0.796


下载: 导出CSV
表3土地利用类型、葡萄糖添加和培养时间对土壤碳矿化温度敏感性的影响及交互作用
Table3.Effects of land use type, glucose addition, incubation time and their interactions on soil organic carbon mineralization temperature sensitivity
差异来源Source df F P adj. Pr > F (G-G)
土地利用类型
Land use type (L)
1, 12 0.00 0.951
葡萄糖添加
Glucose addition (G)
1, 12 3.76 0.076
培养时间
Incubation time (T)
8, 96 5.28 < 0.001 0.002
L × G 1, 12 0.41 0.534
L × T 8, 96 2.79 0.008 0.039
G × T 8, 96 1.36 0.224 0.264
L × G × T 8, 96 0.24 0.981 0.903


下载: 导出CSV
表4土壤碳矿化温度敏感性时间变化趋势的正交多项式
Table4.Orthogonal polynomials of the temporal dynamics of soil organic carbon mineralization temperature sensitivity
阶次
Order (r)
差异来源
Source
df F P
1 平均值Average (A) 1, 12 13.07 0.004
土地利用类型
Land use type (L)
1, 12 5.20 0.041
葡萄糖添加
Glucose addition (G)
1, 12 2.04 0.178
2 A 1, 12 31.81 < 0.001
L 1, 12 14.88 0.002
G 1, 12 4.51 0.055
3 A 1, 12 0.00 0.996
L 1, 12 0.17 0.684
G 1, 12 1.27 0.282
4 A 1, 12 0.71 0.417
L 1, 12 0.78 0.394
G 1, 12 0.00 0.986
5 A 1, 12 0.91 0.359
L 1, 12 0.42 0.528
G 1, 12 0.03 0.869


下载: 导出CSV

参考文献(37)
[1]LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677):1623-1627 doi: 10.1126/science.1097396
[2]BRADFORD M A, WIEDER W R, BONAN G B, et al. Managing uncertainty in soil carbon feedbacks to climate change[J]. Nature Climate Change, 2016, 6(8):751-758 doi: 10.1038/nclimate3071
[3]ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010, 3(5):336-340 doi: 10.1038/ngeo846
[4]郑聚锋, 程琨, 潘根兴, 等.关于中国土壤碳库及固碳潜力研究的若干问题[J].科学通报, 2011, 56(26):2162-2173 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201126003
ZHENG J F, CHENG K, PAN G X, et al. Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China[J]. Chinese Science Bulletin, 2011, 56(28):2162-2173 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201126003
[5]黄锦学, 熊德成, 刘小飞, 等.增温对土壤有机碳矿化的影响研究综述[J].生态学报, 2017, 37(1):12-24 http://d.old.wanfangdata.com.cn/Periodical/stxb201701002
HUANG J X, XIONG D C, LIU X F, et al. Effects of warming on soil organic carbon mineralization:A review[J]. Acta Ecologica Sinica, 2017, 37(1):12-24 http://d.old.wanfangdata.com.cn/Periodical/stxb201701002
[6]王清奎.碳输入方式对森林土壤碳库和碳循环的影响研究进展[J].应用生态学报, 2011, 22(4):1075-1081 http://d.old.wanfangdata.com.cn/Periodical/yystxb201104036
WANG Q K. Responses of forest soil carbon pool and carbon cycle to the changes of carbon input[J]. Chinese Journal of Applied Ecology, 2011, 22(4):1075-1081 http://d.old.wanfangdata.com.cn/Periodical/yystxb201104036
[7]FONTAINE S, BARDOUX G, ABBADIE L, et al. Carbon input to soil may decrease soil carbon content[J]. Ecology Letters, 2004, 7(4):314-320 doi: 10.1111/j.1461-0248.2004.00579.x
[8]KUZYAKOV Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9):1363-1371 doi: 10.1016/j.soilbio.2010.04.003
[9]牛振国, 张海英, 王显威, 等. 1978~2008年中国湿地类型变化[J].科学通报, 2012, 57(16):1400-1411 http://www.cnki.com.cn/Article/CJFDTotal-KXTB201216004.htm
NIU Z G, ZHANG H Y, WANG X W, et al. Mapping wetland changes in China between 1978 and 2008[J]. Chinese Science Bulletin, 2012, 57(16):1400-1411 http://www.cnki.com.cn/Article/CJFDTotal-KXTB201216004.htm
[10]崔丽娟, 马琼芳, 宋洪涛, 等.湿地生态系统碳储量估算方法综述[J].生态学杂志, 2012, 31(10):2673-2680 http://d.old.wanfangdata.com.cn/Periodical/stxzz201210036
CUI L J, MA Q F, SONG H T, et al. Estimation methods of wetland ecosystem carbon storage:A review[J]. Chinese Journal of Ecology, 2012, 31(10):2673-2680 http://d.old.wanfangdata.com.cn/Periodical/stxzz201210036
[11]段晓男, 王效科, 逯非, 等.中国湿地生态系统固碳现状和潜力[J].生态学报, 2006, 28(2):463-469 doi: 10.3321/j.issn:1000-0933.2008.02.002
DUAN X N, WANG X K, LU F, et al. Carbon sequestration and its potential by wetland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2):463-469 doi: 10.3321/j.issn:1000-0933.2008.02.002
[12]胡胜杰, 牛振国, 张海英, 等.中国潜在湿地分布的模拟[J].科学通报, 2015, 60(33):3251-3262 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201533012
HU S J, NIU Z G, ZHANG H Y, et al. Simulation of spatial distribution of China potential wetland[J]. Chinese Science Bulletin, 2015, 60(33):3251-3262 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201533012
[13]李银坤, 陈敏鹏, 梅旭荣, 等.土壤水分和氮添加对华北平原高产农田有机碳矿化的影响[J].生态学报, 2014, 34(14):4037-4046 http://d.old.wanfangdata.com.cn/Periodical/stxb201414028
LI Y K, CHEN M P, MEI X R, et al. Effects of soil moisture and nitrogen addition on organic carbon mineralization in a high-yield cropland soil of the North China Plain[J]. Acta Ecologica Sinica, 2014, 34(14):4037-4046 http://d.old.wanfangdata.com.cn/Periodical/stxb201414028
[14]倪玉雪, 孙卓玲, 尹兴, 等.外加可溶性碳源对华北典型农田土壤N2O、CO2排放的影响[J].水土保持学报, 2013, 27(4):222-227 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201304044
NI Y X, SUN Z L, YIN X, et al. Influence of soluble carbon on N2O and CO2 emissions from soil of typical farmland in North China[J]. Journal of Soil and Water Conservation, 2013, 27(4):222-227 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201304044
[15]王乃姗, 张曼胤, 崔丽娟, 等.河北衡水湖湿地汞污染现状及生态风险评价[J].环境科学, 2016, 37(5):1754-1762 http://d.old.wanfangdata.com.cn/Periodical/hjkx201605020
WANG N S, ZHANG M Y, CUI L J, et al. Contamination and ecological risk assessment of mercury in Hengshuihu Wetland, Hebei Province[J]. Environmental Science, 2016, 37(5):1754-1762 http://d.old.wanfangdata.com.cn/Periodical/hjkx201605020
[16]胡春胜, 陈素英, 董文旭.华北平原缺水区保护性耕作技术[J].中国生态农业学报, 2018, 26(10):1537-1545 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201810013
HU C S, CHEN S Y, DONG W X. Conservation tillage technology for water-deficit areas in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1537-1545 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201810013
[17]邱曦, 吕茂奎, 黄锦学, 等.不同培养温度下严重侵蚀红壤的有机碳矿化特征[J].植物生态学报, 2016, 40(3):236-245 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201603005
QIU X, LYU M K, HUANG J X, et al. Characteristics of soil organic carbon mineralization at different temperatures in severely eroded red soil[J]. Chinese Journal of Plant Ecology, 2016, 40(3):236-245 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201603005
[18]WANG H, BOUTTON T W, XU W H, et al. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes[J]. Scientific Reports, 2015, 5:10102 doi: 10.1038/srep10102
[19]HAMDI S, MOYANO F, SALL S, et al. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions[J]. Soil Biology and Biochemistry, 2013, 58:115-126 doi: 10.1016/j.soilbio.2012.11.012
[20]苏艳华, 黄耀.湿地垦殖对土壤有机碳影响的模拟研究[J].农业环境科学学报, 2008, 27(4):1643-1648 doi: 10.3321/j.issn:1672-2043.2008.04.064
SU Y H, HUANG Y. Modeling the effect of marshland conversion to cropland on soil organic carbon[J]. Journal of Agro-Environment Science, 2008, 27(4):1643-1648 doi: 10.3321/j.issn:1672-2043.2008.04.064
[21]杨继松, 刘景双, 孙丽娜.温度、水分对湿地土壤有机碳矿化的影响[J].生态学杂志, 2008, 27(1):38-42 http://d.old.wanfangdata.com.cn/Periodical/stxzz200801007
YANG J S, LIU J S, SUN L N. Effects of temperature and soil moisture on wetland soil organic carbon mineralization[J]. Chinese Journal of Ecology, 2008, 27(1):38-42 http://d.old.wanfangdata.com.cn/Periodical/stxzz200801007
[22]王国成, 许晶晶, 李婷婷, 等. 1980~2010年华北平原农田土壤有机碳的时空变化[J].气候与环境研究, 2015, 20(5):491-499 http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj201505001
WANG G C, XU J J, LI T T, et al. Spatiotemporal changes in agricultural soil organic carbon across the North China Plain during 1980-2010[J]. Climatic and Environmental Research, 2015, 20(5):491-499 http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj201505001
[23]李英, 韩红艳, 王文娟, 等.黄淮海平原不同土地利用方式对土壤有机碳及微生物呼吸的影响[J].生态环境学报, 2017, 26(1):62-66 http://d.old.wanfangdata.com.cn/Periodical/tryhj201701010
LI Y, HAN H Y, WANG W J, et al. Effects of different land use types on soil organic carbon and microbial respiration in Huang-Huai-Hai Plain[J]. Ecology and Environmental Sciences, 2017, 26(1):62-66 http://d.old.wanfangdata.com.cn/Periodical/tryhj201701010
[24]GUENET B, JUAREZ S, BARDOUX G, et al. Evidence that stable C is as vulnerable to priming effect as is more labile C in soil[J]. Soil Biology and Biochemistry, 2012, 52:43-48 doi: 10.1016/j.soilbio.2012.04.001
[25]孙星照, 沈建国, 王忠, 等.外源磷输入对农区湿地土壤碳库有效性及周转特性的影响[J].中国生态农业学报, 2017, 25(10):1433-1443 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201710004
SUN X Z, SHEN J G, WANG Z, et al. Effect of exogenous phosphorus input on the availability and turnover characteristics of soil carbon pool in agro-riparian wetlands[J]. Chinese Journal of Eco-Agriculture, 2017, 25(10):1433-1443 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201710004
[26]袁淑芬, 汪思龙, 张伟东.外源有机碳和温度对土壤有机碳分解的影响[J].土壤通报, 2015, 46(4):916-922 http://d.old.wanfangdata.com.cn/Periodical/trtb201504024
YUAN S F, WANG S L, ZHANG W D. Effect of external organic carbon and temperature on SOC decomposition[J]. Chinese Journal of Soil Science, 2015, 46(4):916-922 http://d.old.wanfangdata.com.cn/Periodical/trtb201504024
[27]GHEE C, NEILSON R, HALLETT P D, et al. Priming of soil organic matter mineralisation is intrinsically insensitive to temperature[J]. Soil Biology and Biochemistry, 2013, 66:20-28 doi: 10.1016/j.soilbio.2013.06.020
[28]THIESSEN S, GLEIXNER G, WUTZLER T, et al. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass-An incubation study[J]. Soil Biology and Biochemistry, 2013, 57:739-748 doi: 10.1016/j.soilbio.2012.10.029
[29]ZHANG W D, WANG X F, WANG S L. Addition of external organic carbon and native soil organic carbon decomposition:A meta-analysis[J]. PLoS One, 2013, 8(2):e54779 doi: 10.1371/journal.pone.0054779
[30]徐汝民, 李忠佩, 车玉萍, 等.土地利用方式转变后灰色森林土有机碳矿化的温度响应特征[J].应用生态学报, 2009, 20(5):1020-1025 http://d.old.wanfangdata.com.cn/Periodical/yystxb200905003
XU R M, LI Z P, CHE Y P, et al. Temperature sensitivity of organic C mineralization in gray forest soils after land use conversion[J]. Chinese Journal of Applied Ecology, 2009, 20(5):1020-1025 http://d.old.wanfangdata.com.cn/Periodical/yystxb200905003
[31]邬建红, 潘剑君, 葛序娟, 等.不同土地利用方式下土壤有机碳矿化及其温度敏感性[J].水土保持学报, 2015, 29(3):130-135 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201503025
WU J H, PAN J J, GE X J, et al. Variations of soil organic carbon mineralization and temperature sensitivity under different land use types[J]. Journal of Soil and Water Conservation, 2015, 29(3):130-135 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201503025
[32]黎聪, 李晓文, 郑钰, 等.衡水湖国家级自然保护区湿地景观格局演变分析[J].资源科学, 2008, 30(10):1571-1578 doi: 10.3321/j.issn:1007-7588.2008.10.019
LI C, LI X W, ZHENG Y, et al. Evolution of wetland landscape pattern in Hengshui national nature reserve[J]. Resources Science, 2008, 30(10):1571-1578 doi: 10.3321/j.issn:1007-7588.2008.10.019
[33]夏海勇, 王凯荣, 赵庆雷, 等.秸秆添加对土壤有机碳库分解转化和组成的影响[J].中国生态农业学报, 2014, 22(4):386-393 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201404002
XIA H Y, WANG K R, ZHAO Q L, et al. Effects of straw addition on decomposition, transformation and composition of soil organic carbon pool[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4):386-393 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201404002
[34]栾军伟, 刘世荣.土壤呼吸的温度敏感性——全球变暖正负反馈的不确定因素[J].生态学报, 2012, 32(15):4902-4913 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201215031
LUAN J W, LIU S R. Temperature sensitivity of soil respiration:Uncertainties of global warming positive or negative feedback[J]. Acta Ecologica Sinica, 2012, 32(15):4902-4913 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201215031
[35]代景忠, 卫智军, 何念鹏, 等.封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响[J].植物生态学报, 2012, 36(12):1226-1236 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201212002
DAI J Z, WEI Z J, HE N P, et al. Effect of grazing enclosure on the priming effect and temperature sensitivity of soil C mineralization in Leymus chinensis grasslands, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2012, 36(12):1226-1236 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201212002
[36]薛晶月, 张洪轩, 全权, 等.土地利用方式对中亚热带红壤碳矿化及其激发效应的影响[J].应用与环境生物学报, 2014, 20(3):516-522 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201403028
XUE J Y, ZHANG H X, QUAN Q, et al. Effect of land-use type on soil carbon mineralization and its priming effect on red soils in the mid-subtropics of China[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(3):516-522 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201403028
[37]CREAMER C A, DE MENEZES A B, KRULL E S, et al. Microbial community structure mediates response of soil C decomposition to litter addition and warming[J]. Soil Biology and Biochemistry, 2015, 80:175-188 doi: 10.1016/j.soilbio.2014.10.008

相关话题/土壤 培养 农田 生态 图片