张世熔1, 2,,,
蒲玉琳3,
徐小逊1, 2,
李云3
1.四川农业大学环境学院 成都 611130
2.四川省土壤环境保护重点实验室 成都 611130
3.四川农业大学资源学院 成都 611130
基金项目: 四川省重点研发项目19ZDYF2427
四川省环境保护科技项目计划2018HB30
详细信息
作者简介:吴晓玲, 主要从事土壤生态方面的研究。E-mail:wuxiaoling1222@163.com
通讯作者:张世熔, 主要从事土壤生态与修复方面的研究。E-mail:Srzhang01@aliyun.com
中图分类号:S154.1计量
文章访问数:602
HTML全文浏览量:13
PDF下载量:419
被引次数:0
出版历程
收稿日期:2019-04-29
录用日期:2019-07-22
刊出日期:2019-10-01
Distribution characteristics and impact factors of soil microbial biomass car-bon, nitrogen and phosphorus in western Sichuan plain
WU Xiaoling1, 2,,ZHANG Shirong1, 2,,,
PU Yulin3,
XU Xiaoxun1, 2,
LI Yun3
1. College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
2. Sichuan Provincial Key Laboratory of Soil Environmental Protection, Chengdu 611130, China
3. College of Resources, Sichuan Agricultural University, Chengdu 611130, China
Funds: The study was supported by the Key Research and Development Program of Sichuan Province19ZDYF2427
the Science and Technology Project for Sichuan Environmental Protection2018HB30
More Information
Corresponding author:ZHANG Sshirong, E-mail: Srzhang01@aliyun.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:本文通过区域调查采样和统计分析,探讨了川西平原土壤微生物生物量碳(MBC)、土壤微生物生物量氮(MBN)和土壤微生物生物量磷(MBP)含量特征及其对气候、海拔、母质和土地利用等因素的响应,揭示了其关键影响因素,以期为川西平原地区土壤质量管理提供参考。结果表明,不同土壤类型的MBC、MBN和MBP含量表现为冲积土显著高于水稻土、潮土和黄壤(P < 0.05),潮土MBC/MBN显著高于水稻土。气候和海拔的影响为:MBC、MBN和MBP含量随着≥ 0℃积温、≥ 10℃积温、年均温和年均降水量的增加呈指数减少,而随干燥度和海拔增加呈线性增加。不同成土母质中,MBC、MBN和MBP含量均为灰色冲积物显著高于老冲积物。不同土地利用方式下,三者含量为草地显著高于水田和旱地,水田、旱地和林地差异不显著。皮尔森相关分析和冗余分析表明,MBC和MBN均与≥ 0℃积温、年均温呈极显著负相关(P < 0.01),与海拔呈极显著正相关关系,MBP与母质呈现极显著负相关关系。逐步回归分析表明,MBC主要受年均温、干燥度、年均降水量和母质的影响;MBN主要受海拔、干燥度和年均降水量的综合影响;MBP主要受母质、年均温、≥ 10℃积温和年均降水量的调控。因此,川西平原土壤MBC、MBN、MBP能灵敏地反映不同采样点气候的变化,可为该区气候变化下土壤碳、氮、磷的响应预测提供参考。
Abstract:The characteristics of soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and soil microbial biomass phosphorus (MBP) contents, and their responses to climate, altitude, parent material and land use in the western Sichuan plain were investigated by regional survey and statistical analysis. The key influencing factors were subsequently revealed, which provided theoretical guidance for soil quality management in western Sichuan plain. Results showed that MBC, MBN and MBP were significantly higher in alluvial soil than in paddy soil, fluvo-aquic soil, and yellow earth (P < 0.05); moreover, MBC/MBN of fluvo-aquic soil was significantly higher than that of paddy soil. With respect to the influence of climate and elevation, MBC, MBN, and MBP exponentially declined with increasing accumulated temperature above 0℃, accumulated temperature above 10℃, mean annual temperature (MAT) and mean annual precipitation (MAP). However, they were augmented with increasing aridity and altitude. For different parent soil materials, the soil that developed from gray alluvial soil had higher MBC, MBN and MBP contents than those developed from glacial till. Meanwhile, they were significantly higher in the grassland than in paddy field and dry land. However, there were no significant differences between paddy field, dry land, and forest land. Pearson correlation and redundancy analyses revealed that the MBC and MBN had highly significant negative relationships with accumulated temperature above 0℃ and MAT, while, they had highly significant positive relationships with altitude (P < 0.01). In addition, MBP had a highly significant negative relationship with parent material. Furthermore, stepwise regression analysis showed that the main impact factors for MBC were MAT, MAP, and parent material, and aridity; MBN was affected by altitude, aridity, and MAP; MBP was primarily controlled by parent material, accumulated temperature above 10℃, and MAP. Therefore, soil MBC, MBN and MBP can sensitively reflect the climate change in different sampling points in western Sichuan plain, providing an essential basis for predicting the response of soil carbon, nitrogen, and phosphorus to climatic changes.
HTML全文
图1川西平原土壤微生物生物量碳氮磷含量与年均温、≥0 ℃积温和≥10 ℃积温的关系
MBC:土壤微生物生物量碳; MBN:土壤微生物生物量氮; MBP:土壤微生物生物量磷。
Figure1.Relationship between soil microbial biomass C, N and P contents and mean annual temperature, accumulated temperature above 0 ℃, accumulated temperature above 10 ℃
MBC: soil microbial biomass C; MBN: soil microbial biomass N; MBP: soil microbial biomass P.
下载: 全尺寸图片幻灯片
图2川西平原土壤微生物生物量碳氮磷含量与年均降水量、干燥度和海拔的关系
MBC:土壤微生物生物量碳; MBN:土壤微生物生物量氮; MBP:土壤微生物生物量磷。
Figure2.Relationship between soil microbial biomass C, N and P contents and mean annual precipitation, aridity, altitude
MBC: soil microbial biomass C; MBN: soil microbial biomass N; MBP: soil microbial biomass P.
下载: 全尺寸图片幻灯片
图3环境因素与土壤微生物生物量碳氮磷含量的冗余分析二维排序图
MAT:年均温; AT0: ≥0 ℃积温; AT10: ≥10 ℃积温; MAP:年均降水量; AD:干燥度; PM:母质; ELE:海拔; LU:土地利用方式; MBC:土壤微生物生物量碳; MBN:土壤微生物生物量氮; MBP:土壤微生物生物量磷。
Figure3.Two-dimensional sequence diagram of redundancy analysis between environmental factors and soil microbial biomass C, N and P contents
MAT: mean annual temperature; AT0: accumulated temperature above 0 ℃; AT10: accumulated temperature above 10 ℃; MAP: mean annual precipitation; AD: aridity; PM: parent material; ELE: altitude; LU: land use; MBC: soil microbial biomass C; MBN: soil microbial biomass N; MBP: soil microbial biomass P.
下载: 全尺寸图片幻灯片
表1不同土壤类型的土壤微生物生物量碳氮磷含量及土壤性质
Table1.Contents of soil microbial biomass carbon, nitrogen and phosphorus and soil properties of different soil types
测试指标Variable | 土壤类型Soil type | |||
冲积土Alluvial soil (n=5) | 潮土Fluvo-aquic soil (n=15) | 水稻土Paddy soil (n=13) | 黄壤Yellow earth (n=5) | |
pH | 7.36~7.78 | 4.59~7.68 | 4.52~7.89 | 4.45~5.49 |
土壤有机碳Soil organic carbon (g?kg–1) | 22.93±5.56a | 19.43±5.90ab | 18.53±4.56ab | 14.87±5.01b |
全氮Total nitrogen (g?kg–1) | 1.31±0.22a | 1.06±0.24b | 0.87±0.17c | 0.94±0.19bc |
全磷Total phosphorus (g?kg–1) | 0.89±0.25a | 0.75±0.23a | 0.80±0.27a | 0.77±0.21a |
MBC (mg?kg–1) | 702.88±73.70a | 536.49±90.59b | 482.77±182.72bc | 358.42±211.64c |
MBN (mg?kg–1) | 66.24±14.52a | 46.73±11.06b | 47.28±14.45b | 28.55±11.05c |
MBP (mg?kg–1) | 9.88±3.30a | 6.72±2.76b | 5.41±2.09bc | 3.81±1.33c |
MBC/MBN | 11.00±2.43ab | 11.89±2.52a | 10.23±1.63b | 11.36±2.11ab |
MBC/MBP | 80.67±36.15a | 94.30±45.07a | 94.84±29.83a | 91.36±24.41a |
MBN/MBP | 7.58±3.63a | 7.75±2.75a | 9.70±3.30a | 8.04±1.93a |
MBC:土壤微生物生物量碳; MBN:土壤微生物生物量氮; MBP:土壤微生物生物量磷; n:样品个数。同行不同小写字母表示土壤类型间差异显著(P < 0.05)。MBC: soil microbial biomass C; MBN: soil microbial biomass N; MBP: soil microbial biomass P; n: samples number. Different lowercase letters in the same line mean significant differences at 0.05 level among different soil types. |
下载: 导出CSV
表2不同成土母质和土地利用方式下土壤微生物生物量碳氮磷含量特征
Table2.Contents of soil microbial biomass C, N and P under different soil parent materials and land use
MBC (mg?kg–1) | MBN (mg?kg–1) | MBP (mg?kg–1) | ||
母质 | 灰色冲积物Gray alluvium (n=11) | 604.65±103.56a | 57.56±14.43a | 9.69±2.39a |
Parent material | 紫色冲积物Purple alluvium (n=13) | 495.15±173.79ab | 42.09±14.79b | 4.45±1.37b |
老冲积物Glacial till (n=14) | 467.27±184.14b | 45.27±15.59b | 5.27±2.06b | |
土地利用方式 | 水田Paddy field (n=13) | 482.77±182.72b | 47.93±15.14b | 5.31±2.09b |
Land use type | 旱地Dry land (n=12) | 467.85±137.32b | 42.13±16.85b | 6.73±3.23b |
林地Forest land (n=8) | 528.15±163.92ab | 44.27±8.69b | 4.89±1.45b | |
草地Grassland (n=5) | 702.88±73.70a | 66.24±14.52a | 9.88±3.30a | |
MBC:土壤微生物生物量碳; MBN:土壤微生物生物量氮; MBP:土壤微生物生物量磷; n:样品个数。同列不同小写字母表示不同母质/同土地利用方式间差异显著(P < 0.05)。MBC: soil microbial biomass C; MBN: soil microbial biomass N; MBP: soil microbial biomass P. n: samples number. Different lowercase letters in the same column mean significant differences at 0.05 level among parent materials or land use types. |
下载: 导出CSV
表3环境因素与土壤微生物生物量碳氮磷及其冗余分析排序轴的相关性
Table3.Correlation between environmental factors and soil microbial biomass C, N and P contents and their RDA sequencing axis from redundancy analysis
分析方法 Analysis method | 指标 Variable | AT0 | AT10 | MAT | AD | MAP | ELE | PM | LU |
皮尔森相关分析 Pearson correlation analysis | MBC (mg?kg–1) | -0.480** | -0.402* | -0.483** | 0.465** | -0.405* | 0.459** | -0.328* | 0.371* |
MBN (mg?kg–1) | -0.522** | -0.459** | -0.527** | 0.358* | NS | 0.540** | NS | NS | |
MBP (mg?kg–1) | -0.362* | NS | -0.370* | 0.372* | -0.349* | 0.377* | -0.579** | 0.331* | |
冗余分析 Redundancy analysis | 第1轴1staxis | 0.525** | 0.432** | 0.531** | -0.460** | 0.406** | -0.528** | 0.456** | -0.366* |
第2轴2ndaxis | NS | NS | NS | NS | NS | NS | -0.329* | NS | |
AT0: ≥0 ℃积温; AT10: ≥10 ℃积温; MAT:年均温; AD:干燥度; MAP:年均降水量; ELE:海拔; PM:母质; LU:土地利用方式; MBC:土壤微生物生物量碳; MBN:土壤微生物生物量氮; MBP:土壤微生物生物量磷。NS:相关性不显著; *: P < 0.05水平显著相关; **: P < 0.01水平显著相关, n=38. AT0: accumulated temperature above 0 ℃; AT10: accumulated temperature above 10 ℃; MAT: mean annual temperature; AD: aridity; MAP: mean annual precipitation; ELE: altitude; PM: parent material; LU: land use; MBC: soil microbial biomass C; MBN: soil microbial biomass N; MBP: soil microbial biomass P. NS: no significant correlation; *: significant correlation at P < 0.05; **: significant correlation at P < 0.01; n = 38. |
下载: 导出CSV
表4土壤微生物生物量碳氮磷多环境因素综合影响的逐步回归分析模型
Table4.Stepwise regression analysis models of environment factors and soil microbial biomass C, N and P contents
指标Variable | 模型Model | R2 | P |
MBC (mg?kg–1) | MBC=?10 636.1?0.73MAT+6 823.01AD+5.243MAP | 0.521 | 0.000 |
MBC=?10 655.8+6 860.9AD+5.32MAP?52.2PM | 0.584 | 0.000 | |
MBN (mg?kg–1) | MBN=?701.5+0.04ELE+444.2AD+0.34MAP | 0.453 | 0.000 |
MBP (mg?kg–1) | MBP=51.5?1.3PM?10.9MAT+0.023AT10+0.01MAP | 0.620 | 0.000 |
MAT:年均温; AT10: ≥10 ℃积温; MAP:年均降水量; AD:干燥度; PM:母质; ELE:海拔; MBC:土壤微生物生物量碳; MBN:土壤微生物生物量氮; MBP:土壤微生物生物量磷。MAT: mean annual temperature; AT10: accumulated temperature above 10 ℃; MAP: mean annual precipitation; AD: aridity; PM: parent material; ELE: altitude; MBC: soil microbial biomass C; MBN: soil microbial biomass N; MBP: soil microbial biomass P. |
下载: 导出CSV
参考文献
[1] | POWLSON D S, PROOKES P C, CHRISTENSEN B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology and Biochemistry, 1987, 19(2):159-164 doi: 10.1016/0038-0717(87)90076-9 |
[2] | HE Z L, YANG X E, BALIGAR V C, et al. Microbiological and biochemical indexing systems for assessing quality of acid soils[J]. Advances in Agronomy, 2003, 78:89-138 doi: 10.1016/S0065-2113(02)78003-6 |
[3] | 郭振, 王小利, 徐虎, 等.长期施用有机肥增加黄壤稻田土壤微生物量碳氮[J].植物营养与肥料学报, 2017, 23(5):1168-1174 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201705005 GUO Z, WANG X L, XU H, et al. A large number of long-term application of organic fertilizer can effectively increase microbial biomass carbon and nitrogen in yellow paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(5):1168-1174 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201705005 |
[4] | LI P, YANG Y H, HAN W X, et al. Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems[J]. Global Ecology and Biogeography, 2015, 23(9):979-987 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/geb.12190 |
[5] | MUKHERJEE S, TRIPATHI S, MUKHERJEE A K, et al. Persistence of the herbicides florasulam and halauxifen-methyl in alluvial and saline alluvial soils, and their effects on microbial indicators of soil quality[J]. European Journal of Soil Biology, 2016, 73:93-99 doi: 10.1016/j.ejsobi.2016.01.009 |
[6] | JU C, XU J, WU X H, et al. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations[J]. Environmental Pollution, 2016, 208:811-820 doi: 10.1016/j.envpol.2015.11.003 |
[7] | 刘定辉, 舒丽, 陈强, 等.秸秆还田少免耕对冲积土微生物多样性及微生物碳氮的影响[J].应用与环境生物学报, 2011, 17(2):158-161 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201102003 LIU D H, SHU L, CHEN Q, et al. Effects of straw mulching and little-or zero-tillage on microbial diversity and biomass C and N of alluvial soil in Chengdu Plain, China[J]. Chinese Journal of Applied & Environmental Biology, 2011, 17(2):158-161 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201102003 |
[8] | YAN W D, CHEN X Y, PENG Y Y, et al. Response of soil respiration to nitrogen addition in two subtropical forest types[J]. Pedosphere, 2017, doi:10.1016/S1002-0160(17) 60471-5 |
[9] | 刘秉儒.贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J].生态环境学报, 2010, 19(4):883-888 doi: 10.3969/j.issn.1674-5906.2010.04.025 LIU B R. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitudinal gradient in east side of Helan Mountain[J]. Ecology and Environmental Sciences, 2010, 19(4):883-888 doi: 10.3969/j.issn.1674-5906.2010.04.025 |
[10] | ZHANG L H, XIE Z K, ZHAO R F, et al. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland[J]. Applied Soil Ecology, 2018, 127:87-95 doi: 10.1016/j.apsoil.2018.02.005 |
[11] | LI G L, KIM S, HAN S H, et al. Precipitation affects soil microbial and extracellular enzymatic responses to warming[J]. Soil Biology and Biochemistry, 2018, 12:212-221 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edd0e69fe83145b38dafae27c1da368c |
[12] | 曹瑞, 吴福忠, 杨万勤, 等.海拔对高山峡谷区土壤微生物生物量和酶活性的影响[J].应用生态学报, 2016, 27(4):1257-1264 http://d.old.wanfangdata.com.cn/Periodical/yystxb201604031 CAO R, WU F Z, YANG W Q, et al. Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions[J]. Chinese Journal of Applied Ecology, 2016, 27(4):1257-1264 http://d.old.wanfangdata.com.cn/Periodical/yystxb201604031 |
[13] | DENG H, YU Y J, SUN J E, et al. Parent materials have stronger effects than land use types on microbial biomass, activity and diversity in red soil in subtropical China[J]. Pedobiologia, 2015, 58(2/3):73-79 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bcbf7e6087ab0a3f66b066e8524578e |
[14] | LIU D, HUANG Y M, AN S S, et al. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients[J]. Catena, 2018, 162:345-353 doi: 10.1016/j.catena.2017.10.028 |
[15] | 周正虎, 王传宽.帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征[J].生态学报, 2017, 37(7):2428-2436 http://d.old.wanfangdata.com.cn/Periodical/stxb201707030 ZHOU Z H, WANG C K. Soil-microbe-mineralization carbon and nitrogen stoichiometry under different land-uses in the Maoershan region[J]. Acta Ecologica Sinica, 2017, 37(7):2428-2436 http://d.old.wanfangdata.com.cn/Periodical/stxb201707030 |
[16] | 吴金水, 林启美, 黄巧云, 等.土壤微生物生物量测定方法及其应用[M].北京:中国气象出版社, 2006:54-84 WU J S, LIN Q M, HUANG Q Y, et al. Measurement Method and Application of Soil Microbial Biomass[M]. Beijing:China Meteorological Press, 2006:54-84 |
[17] | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000:25-97 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agricultural Press, 2000:25-97 |
[18] | 王传杰, 肖婧, 蔡岸冬, 等.不同气候与施肥条件下农田土壤微生物生物量特征与容量分析[J].中国农业科学, 2017, 50(6):1067-1075 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201706008 WANG C J, XIAO J, CAI A D, et al. Capacity and characteristics of soil microbial biomass under various climate and fertilization conditions across China croplands[J]. Scientia Agricultura Sinica, 2017, 50(6):1067-1075 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201706008 |
[19] | TOMIOLO S, VAN DER PUTTEN W H, TIELB?RGER K. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change[J]. Ecology, 2015, 96(5):1298-1308 doi: 10.1890/14-1445.1 |
[20] | FIERER N, MCCAIN C M, MEIR P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4):797-804 doi: 10.1890/10-1170.1 |
[21] | GASTON K J. Global patterns in biodiversity[J]. Nature, 2000, 405(6783):220-227 doi: 10.1038/35012228 |
[22] | TRETTIN C C, JOHNSON D W, TODD D E. Forest nutrient and carbon pools at walker branch watershed changes during a 21-year period[J]. Soil Science Society of America Journal, 1999, 63(5):1436-1448 doi: 10.2136/sssaj1999.6351436x |
[23] | SHENG R, QIN H L, O'DONNELL A G, et al. Bacterial succession in paddy soils derived from different parent materials[J]. Journal of Soils and Sediments, 2015, 15(4):982-992 doi: 10.1007/s11368-014-1058-2 |
[24] | KODE?OVá R, JIRKU V, KODE? V, et al. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland[J]. Soil and Tillage Research, 2011, 111(2):154-161 doi: 10.1016/j.still.2010.09.007 |
[25] | 李渝, 刘彦伶, 白怡婧, 等.黄壤稻田土壤微生物生物量碳磷对长期不同施肥的响应[J].应用生态学报, 2019, 30(4):1327-1334 http://d.old.wanfangdata.com.cn/Periodical/yystxb201904029 LI Y, LIU Y L, BAI Y J, et al. Responses of soil microbial biomass C and P to different long-term fertilization treatments in the yellow paddy soil[J]. Chinese Journal of Applied Ecology, 2019, 30(4):1327-1334 http://d.old.wanfangdata.com.cn/Periodical/yystxb201904029 |
[26] | 臧逸飞, 郝明德, 张丽琼, 等. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响[J].生态学报, 2015, 35(5):1445-1451 http://d.old.wanfangdata.com.cn/Periodical/stxb201505015 ZANG Y F, HAO M D, ZHANG L Q, et al. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years[J]. Acta Ecologica Sinica, 2015, 35(5):1445-1451 http://d.old.wanfangdata.com.cn/Periodical/stxb201505015 |
[27] | 刘骁蒨, 涂仕华, 孙锡发, 等.秸秆还田与施肥对稻田土壤微生物生物量及固氮菌群落结构的影响[J].生态学报, 2013, 33(17):5210-5218 http://d.old.wanfangdata.com.cn/Periodical/stxb201317010 LIU X Q, TU S H, SUN X F, et al. Effect of different fertilizer combinations and straw return on microbial biomass and nitrogen-fixing bacteria community in a paddy soil[J]. Acta Ecologica Sinica, 2013, 33(17):5210-5218 http://d.old.wanfangdata.com.cn/Periodical/stxb201317010 |
[28] | XU X F, THORNTON P E, POST W M. A Global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6):737-749 doi: 10.1111/geb.12029 |
[29] | 张洋, 倪九派, 周川, 等.三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响[J].中国生态农业学报, 2014, 22(7):766-773 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201407003 ZHANG Y, NI J P, ZHOU C, et al. Effects of configuration mode of crop-mulberry system in purple arid hillside field on SMBC and SMBN in the three gorges reservoir[J]. Chinese Journal of Eco-Agriculture, 2014, 22(7):766-773 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201407003 |
[30] | 曲成闯, 陈效民, 韩召强, 等.生物有机肥对潮土物理性状及微生物量碳、氮的影响[J].水土保持通报, 2018, 38(5):70-76 http://d.old.wanfangdata.com.cn/Periodical/stbctb201805012 QU C C, CHEN X M, HAN Z Q, et al. Effects of bioorganic fertilizer application on soil physical properties and microbial biomass carbon and nitrogen in fluvoaquic soil[J]. Bulletin of Soil and Water Conservation, 2018, 38(5):70-76 http://d.old.wanfangdata.com.cn/Periodical/stbctb201805012 |
[31] | HODGE A, ROBINSON D, FITTER A. Are microorganisms more effective than plants at competing for nitrogen?[J]. Trends in Plant Science, 2000, 5(7):304-308 doi: 10.1016/S1360-1385(00)01656-3 |
[32] | 张明乾, 韩证仿, 陈金, 等.夜间增温对冬小麦土壤微生物量碳氮及其活性的影响[J].中国生态农业学报, 2012, 20(11):1464-1470 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201211008 ZHANG M Q, HAN Z F, CHEN J, et al. Impact of nighttime warming on soil microbial biomass carbon/nitrogen and activity in main winter wheat cropping areas in China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(11):1464-1470 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201211008 |