删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

生物质炭对土壤N<sub>2</sub>O消耗的影响及其微生物影响机理

本站小编 Free考研考试/2022-01-01

贺超卉1, 2, 3,,
董文旭2,
胡春胜2,,,
李佳珍2, 3
1.中国科学院大学中丹学院 北京 100049
2.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室 石家庄 050022
3.中国科学院大学 北京 100049
基金项目: 国家重点研发计划项目2017YFD0800601
中国科学院重点项目ZDRW-ZS-2016-5-1

详细信息
作者简介:贺超卉, 主要研究方向为土壤氮循环过程。E-mail:Chaohui_He@outlook.com
通讯作者:胡春胜, 主要研究方向为农田生态系统碳、氮、水循环及土壤生态过程。E-mail:cshu@sjziam.ac.cn
中图分类号:S154.1;S154.36

计量

文章访问数:863
HTML全文浏览量:7
PDF下载量:666
被引次数:0
出版历程

收稿日期:2019-03-08
录用日期:2019-04-20
刊出日期:2019-09-01

Biochar's effect on soil N2O consumption and the microbial mechanism

HE Chaohui1, 2, 3,,
DONG Wenxu2,
HU Chunsheng2,,,
LI Jiazhen2, 3
1. Sino-Danish College of University of Chinese Academy of Sciences, Beijing 100049, China
2. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Laboratory of Soil Ecology/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key Research and Development Project of China2017YFD0800601
the Key Program of Chinese Academy of SciencesZDRW-ZS-2016-5-1

More Information
Corresponding author:HU Chunsheng, E-mail: cshu@sjziam.ac.cn


摘要
HTML全文
(3)(1)
参考文献(56)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:生物质炭在温室气体减排方面具有很大的发展前景,它不仅能实现固碳,对于在大气中停留时间长且增温潜势大的N2O也能发挥积极作用。本研究采用室内厌氧培养试验,按照生物质炭与土壤质量比(0、1%和5%)加入一定量生物质炭,土壤重量含水率控制在20%。利用Robotized Incubation平台实时检测N2O和N2浓度变化,通过测定土壤中反硝化功能基因丰度(nirKnirSnosZ)分析生物质炭对N2O消耗的影响及其微生物方面的影响机理。结果表明:经过20 h厌氧培养后,0生物质炭处理的反硝化功能基因丰度(基因拷贝数·g-1)分别为6.80×107nirK)、5.59×108nirS)和1.22×108nosZ)。与0生物质炭处理相比,1%生物质炭处理的nirS基因丰度由最初的2.65×108基因拷贝数·g-1升至7.43×108基因拷贝数·g-1nosZ基因丰度则提高了一个数量级,由4.82×107基因拷贝数·g-1升至1.50×108基因拷贝数·g-1,然而nirK基因丰度并无明显变化;5%生物质炭处理的反硝化功能基因丰度并未发生显著变化。试验结束时,添加生物质炭处理的N2/(N2O+N2)比值也明显高于0生物质炭处理。相关性分析结果表明,nirS基因丰度和nosZ基因丰度均与N2O浓度在0.01水平上显著相关。试验末期nirS基因丰度和nosZ基因丰度均随着N2O浓度的降低而升高。因此在本试验中,添加1%生物质炭可显著提高nirSnosZ基因型反硝化细菌的丰度,增大N2/(N2O+N2)比值,促进N2O彻底还原成N2。生物质炭对于N2O主要影响机理是增大了可以还原氧化亚氮的细菌活性,促进完全反硝化。
关键词:生物质炭/
温室气体减排/
土壤微生物/
N2O消耗/
反硝化/
基因丰度
Abstract:Biochar is a promising material for mitigating greenhouse gas emissions. In addition to carbon sequestration, it has positive effect on the ozone-depleting gas nitrous oxide (N2O), which is with long residence time and strong warming potential. In this research effort, an anaerobic incubation experiment was conducted. Three treatments with different biochar application rates were set, taking account of biochar to soil ratio (w/w):0 (0BC), 1% (1%BC) and 5% (5%BC). Soil gravimetric water content was controlled at 20%. According to the robotized incubation platform providing real-time determination of N2O and N2 concentrations and soil denitrification functional gene abundance measurement, we analyzed the impact of biochar on N2O consumption and biological mechanisms. The main results indicated that after a 20-hour anaerobic incubation, the denitrification functional gene abundance of 0BC treatment was 6.80×107 (nirK), 5.59×108 (nirS), 1.22×108 (nosZ) gene copies per gram soil, respectively. Compared with 0BC treatment, the nirS gene abundance of 1%BC treatment increased from the initial 2.65×108 to 7.43×108 gene copies per gram soil, while, the nosZ gene abundance increased by an order of magnitude from 4.82×107to 1.50×108 gene copies per gram soil. However, there was no significant change in nirK gene abundance. And the denitrification functional gene abundance of 5%BC treatment did not show marked variations. In conclusion, the N2/(N2O+N2) ratio of treatments with biochar application was clearly higher than 0BC treatment. The results of correlation analysis showed that nirS and nosZ gene abundance was significantly correlated with the N2O concentration at 0.01 level, and the abundance of nirS and nosZ genes all increased as N2O concentration declined at the end of the experiment. Therefore, in the present trial, a 1% biochar addition significantly increased the abundance of denitrifying bacteria with nirS and nosZ genotypes and N2/(N2O+N2) ratio, and promoted the complete reduction of N2O to N2. The main mechanism of the biochar effect on N2O emission was the enhanced reduction activities and gene expression of nosZ-containing microorganisms, resulting in complete denitrification.
Key words:Biochar/
Greenhouse gases emission reduction/
Soil microbe/
N2O consumption/
Denitrification/
Gene abundance

HTML全文


图1厌氧条件下添加生物质炭对土壤N2O(a)、N2(b)浓度及其所占比例(c)的影响[图c中, 实线为N2/(N2O+N2)的比值, 虚线为N2O/(N2O+N2)的比值]
0BC: 0生物质炭处理; 1%BC: 1%生物质炭处理; 5%BC: 5%生物质炭处理; 0BCS: 0生物质炭+高压蒸汽灭菌处理; 5%BCS: 5%生物质炭+高压蒸汽灭菌处理。
Figure1.Impact of biochar on soil concentrations of N2O (b) and N2 (b) and ratios of N2/(N2O+N2) and N2O/(N2O+N2) (c) under anaerobic condition [in figure c, the solid line shows the ratio of N2/(N2O+N2), the dashed line shows the ratio of N2O/(N2O+N2)]
0BC: 0 biochar application; 1%BC: 1% biochar application; 5%BC: 5% biochar application; 0BCS: 0 biochar application and autoclaving; 5%BCS: 5% biochar application and autoclaving.


下载: 全尺寸图片幻灯片


图2厌氧条件下添加生物质炭对土壤反硝化功能基因丰度的影响
dry soil:培养前土壤; 0BC: 0生物质炭处理; 1%BC: 1%生物质炭处理; 5%BC: 5%生物质炭处理。不同字母表示在P < 0.05水平下差异显著。
Figure2.Impact of biochar on functional gene abundance of denitrification under anaerobic condition
dry soil: soil before the experiment; 0BC: 0 biochar application; 1%BC: 1% biochar application; 5%BC: 5% biochar application. Different letters indicate significant differences at P < 0.05.


下载: 全尺寸图片幻灯片


图3厌氧条件下土壤反硝化N2O浓度和反硝化功能基因丰度关系图
空心符号表示试验前(a)的基因丰度, 实心符号表示试验后(b)的基因丰度。
Figure3.Relationship between N2O concentration and denitrification functional gene abundance of soil under anaerobic condition
Hollow symbols indicate gene abundance before the trail (a), filled symbols indicate gene abundance after the trial (b).


下载: 全尺寸图片幻灯片

表1厌氧条件下添加生物质炭对试验前和试验末土壤NH4+-N和NO3-N含量的影响
Table1.Impact of biochar on initial and final soil NH4+-N and NO3-N contents under anaerobic condition????mg·kg-1
初始浓度
Initial content
试验末浓度Ultimate content
0BC 1%BC 5%BC
NH4+-N 8.12±0.18 19.69±0.29a 18.72±0.38a 13.97±0.22b
NO3-N 6.11±0.10 0.07±0.01a 0.09±0.01a 0.10±0.01a
0BC: 0生物质炭处理; 1%BC: 1%生物质炭处理; 5%BC: 5%生物质炭处理。数据为3次重复的平均值加减标准误。同一行内不同字母表示在P< 0.05水平下差异显著。0BC: 0 biochar application; 1%BC: 1% biochar application; 5%BC: 5% biochar application. Values are means ± S.E. (n = 3). Different letters within a row indicate significant differences at P < 0.05.


下载: 导出CSV

参考文献(56)
[1]IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva, Switzerland: IPCC, 2007: 104
[2]赵自超, 韩笑, 石岳峰, 等.硝化和脲酶抑制剂对华北冬小麦-夏玉米轮作固碳减排效果评价[J].农业工程学报, 2016, 32(6): 254-262 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201606035
ZHAO Z C, HAN X, SHI Y F, et al. Effect of nitrification and urease inhibitor on carbon sequestration and greenhouses gas emissions in winter wheat and summer maize rotation system in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 254-262 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201606035
[3]SMITH P, MARTINO D, CAI Z C, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1492): 789-813 doi: 10.1098/rstb.2007.2184
[4]兰宇, 孟军, 杨旭, 等.秸秆不同还田方式对棕壤N2O排放和土壤理化性质的影响[J].生态学杂志, 2015, 34(3): 790-796 http://d.old.wanfangdata.com.cn/Periodical/stxzz201503027
LAN Y, MENG J, YANG X, et al. Effects of different straw incorporation ways on N2O emission and soil physicochemical properties of brown soil[J]. Chinese Journal of Ecology, 2015, 34(3): 790-796 http://d.old.wanfangdata.com.cn/Periodical/stxzz201503027
[5]VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Influence of biochars on flux of N2O and CO2 from ferrosol[J]. Australian Journal of Soil Research, 2010, 48(7): 555-568 doi: 10.1071/SR10004
[6]USSIRI D, LAL R. Soil Emission of Nitrous Oxide and Its Mitigation[M]. Dordrecht: Springer Press, 2013
[7]RUBASINGHEGE G, SPAK S N, STANIER C O, et al. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate[J]. Environmental Science & Technology, 2011, 45(7): 2691-2697 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f5f102cbbe5a814f8689f451cd2ee257
[8]SAMARKIN V A, MADIGAN M T, BOWLES M W, et al. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica[J]. Nature Geoscience, 2010, 3(5): 341-344 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0626bbb85e28665db96991af27eecd67
[9]BAGGS E M. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction[J]. Current Opinion in Environmental Sustainability, 2011, 3(5): 321-327 doi: 10.1016/j.cosust.2011.08.011
[10]THOMSON A J, GIANNOPOULOS G, PRETTY J, et al. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1593): 1157-1168 doi: 10.1098/rstb.2011.0415
[11]VENTEREA R T, HALVORSON A D, KITCHEN N, et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems[J]. Frontiers in Ecology & the Environment, 2012, 10(10): 562-570 http://cn.bing.com/academic/profile?id=01f102ec611d0f19914b5646bbba6b87&encoded=0&v=paper_preview&mkt=zh-cn
[12]TENENBAUM D J. Biochar: Carbon mitigation from the ground up[J]. Environmental Health Perspectives, 2009, 117(2): A70-A73 http://d.old.wanfangdata.com.cn/Periodical/zghjkx201610032
[13]HARDER B. Smoldered-Earth policy: Created by ancient amazonian natives, fertile, dark soils retain abundant carbon[J]. Science News, 2006, 169(9): 133 http://cn.bing.com/academic/profile?id=d0e5299fb7470c0f3cbcff01278985dd&encoded=0&v=paper_preview&mkt=zh-cn
[14]MARRIS E. Putting the carbon back: Black is the new green[J]. Nature, 2006, 442(7103): 624-626 doi: 10.1038/442624a
[15]王欣, 尹带霞, 张凤, 等.生物炭对土壤肥力与环境质量的影响机制与风险解析[J].农业工程学报, 2015, 31(4): 248-257 doi: 10.3969/j.issn.1002-6819.2015.04.035
WANG X, YIN D X, ZHANG F, et al. Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 248-257 doi: 10.3969/j.issn.1002-6819.2015.04.035
[16]KARHU K, MATTILA T, BERGSTR?M I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity — Results from a short-term pilot field study[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 309-313 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99f352efd88c025875028d78e642814f
[17]RONDON M, RAMIREZ J, LEHMANN J. Greenhouse gas emissions decrease with charcoal additions to tropical soils[C]//Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration. Baltimore, USA: University of Delaware, 2005
[18]YANAI Y, TOYOTA K, OKAZAKI M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J]. Soil Science and Plant Nutrition, 2007, 53(2): 181-188 doi: 10.1111/j.1747-0765.2007.00123.x
[19]HALLIN S, LINDGREN P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria[J]. Applied and Environmental Microbiology, 1999, 65(4): 1652-1657 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_91233
[20]THROB?CK I N, ENWALL K, JARVIS ?, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1016/j.femsec.2004.04.011
[21]MICHOTEY V, M JEAN V, BONIN P. Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in environmental marine samples[J]. Applied and Environmental Microbiology, 2000, 66(4): 1564-1571 doi: 10.1128/AEM.66.4.1564-1571.2000
[22]KLOOS K, MERGEL A, R?SCH C, et al. Denitrification within the genus Azospirillum and other associative bacteria[J]. Australian Journal of Plant Physiology, 2001, 28(9): 991-998 http://cn.bing.com/academic/profile?id=61a44e76a6dc1c5196b27e61a7a83b2b&encoded=0&v=paper_preview&mkt=zh-cn
[23]CASCIOTTI K L, WARD B B. Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2001, 67(5): 2213-2221 doi: 10.1128/AEM.67.5.2213-2221.2001
[24]HASEGAWA N, ARAI H, IGARASHI Y. Two c-type cytochromes, NirM and NirC, encoded in the nir gene cluster of Pseudomonas aeruginosa act as electron donors for nitrite reductase[J]. Biochemical and Biophysical Research Communications, 2001, 288(5): 1223-1230 doi: 10.1006/bbrc.2001.5919
[25]BRAKER G, ZHOU J Z, WU L Y, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities[J]. Applied and Environmental Microbiology, 2000, 66(5): 2096-2104 doi: 10.1128/AEM.66.5.2096-2104.2000
[26]LIU B B, FROSTEG RD , BAKKEN L R. Impaired reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ[J]. mBio, 2014, 5(3): e0138314 doi: 10.1128/mBio.01383-14
[27]VAN ZWIETEN L, SINGH B P, JOSEPH S D, et al. Biochar and emission of non-CO2 greenhouse gases from soil[M]//LEHMANN J, JOSEPH S. Biochar for Environmental Management Science and Technology. UK: Earthscan Press, 2009: 227-249
[28]MCKENNEY D J, DRURY C F, FINDLAY W I, et al. Kinetics of denitrification by Pseudomonas fluorescens: Oxygen effects[J]. Soil Biology and Biochemistry, 1994, 26(7): 901-908 doi: 10.1016/0038-0717(94)90306-9
[29]GRUTZMACHER P, PUGA A P, BIBAR M P S, et al. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar[J]. Science of the Total Environment, 2018, 625: 1459-1466 doi: 10.1016/j.scitotenv.2017.12.196
[30]CHANG J, CLAY D E, CLAY S A, et al. Biochar reduced nitrous oxide and carbon dioxide emissions from soil with different water and temperature cycles[J]. Agronomy Journal, 2016, 108(6): 2214-2221 doi: 10.2134/agronj2016.02.0100
[31]ROGOVSKA N, LAIRD D, CRUSE R, et al. Impact of biochar on manure carbon stabilization and greenhouse gas emissions[J]. Soil Science Society of America Journal, 2011, 75(3): 871-879 doi: 10.2136/sssaj2010.0270
[32]SCHEER C, GRACE P R, ROWLINGS D W, et al. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia[J]. Plant and Soil, 2011, 345(1/2): 47-58 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab9dfe72297f67be85a152e082c2a470
[33]ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5/6): 309-320 http://cn.bing.com/academic/profile?id=d82d146d6e0a9dd858341ca997b40090&encoded=0&v=paper_preview&mkt=zh-cn
[34]CHEN J H, LIU X Y, LI L Q, et al. Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China[J]. Applied Soil Ecology, 2015, 91: 68-79 doi: 10.1016/j.apsoil.2015.02.012
[35]DICKE C, ANDERT J, AMMON C, et al. Effects of different biochars and digestate on N2O fluxes under field conditions[J]. Science of the Total Environment 2015, 524/525: 310-318 doi: 10.1016/j.scitotenv.2015.04.005
[36]ANDERSON C R, HAMONTS K, CLOUGH T J, et al. Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria[J]. Agriculture, Ecosystems & Environment, 2014, 191: 63-72 http://cn.bing.com/academic/profile?id=609bb81e973fa05fd4e23ea13c2a14f4&encoded=0&v=paper_preview&mkt=zh-cn
[37]WANG C, LU H H, DONG D, et al. Insight into the effects of biochar on manure composting: Evidence supporting the relationship between N2O emission and denitrifying community[J]. Environmental Science & Technology, 2013, 47(13): 7341-7349 https://www.ncbi.nlm.nih.gov/pubmed/23745957
[38]VAN ZWIETEN L, SINGH B P, KIMBER S W L, et al. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application[J]. Agriculture, Ecosystems & Environment, 2014, 191: 53-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8311f2a77a3acd5e18ff157698a95194
[39]陈晨, 许欣, 毕智超, 等.生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响[J].环境科学学报, 2017, 37(5): 1912-1920 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201705036
CHEN C, XU X, BI Z C, et al. Effects of biochar and organic manure on N2O emissions and the functional gene abundance of nitrification and denitrification microbes under intensive vegetable production[J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1912-1920 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201705036
[40]CASTALDI S, RIONDINO M, BARONTI S, et al. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes[J]. Chemosphere, 2011, 85(9): 1464-1471 doi: 10.1016/j.chemosphere.2011.08.031
[41]XU H J, WANG X H, LI H, et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape[J]. Environmental Science & Technology, 2014, 48(16): 9391-9399 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b9deeada223efba2b3eea6cba5d66f04
[42]CAYUELA M L, S NCHEZ-MONEDERO M A, ROIG A, et al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions?[J]. Scientific Reports, 2013, 3: 1732 doi: 10.1038/srep01732
[43]WANG Z Y, ZHENG H, LUO Y, et al. Characterization and influence of biochars on nitrous oxide emission from agricultural soil[J]. Environmental Pollution, 2013, 174: 289-296 doi: 10.1016/j.envpol.2012.12.003
[44]SPOKAS K A, BAKER J M, REICOSKY D C. Ethylene: Potential key for biochar amendment impacts[J]. Plant and Soil, 2010, 333(1/2): 443-452 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225682812/
[45]ALBURQUERQUE J A, S NCHEZ-MONEDERO M A, ROIG A, et al. High concentrations of polycyclic aromatic hydrocarbons (naphthalene, phenanthrene and pyrene) failed to explain biochar's capacity to reduce soil nitrous oxide emissions[J]. Environmental Pollution, 2015, 196: 72-77 doi: 10.1016/j.envpol.2014.09.014
[46]KAMMANN C I, LINSEL S, G??LING J W, et al. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations[J]. Plant and Soil, 2011, 345(1/2): 195-210 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3054f324ca0e6914cb64d89d80e83306
[47]HARTER J, KRAUSE H M, SCHUETTLER S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J]. The ISME Journal, 2014, 8(3): 660-674 doi: 10.1038/ismej.2013.160
[48]CASE S D C, MCNAMARA N P, REAY D S, et al. Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil[J]. Soil Biology and Biochemistry, 2015, 81: 178-185 doi: 10.1016/j.soilbio.2014.11.012
[49]KHAN S, CHAO C, WAQAS M, et al. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science & Technology, 2013, 47(15): 8624-8632 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230565174/
[50]H PPI R, FELBER R, NEFTEL A, et al. Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system[J]. Soil, 2015, 1(2): 707-717 doi: 10.5194/soil-1-707-2015
[51]XIAO K C, XU J M, TANG C X, et al. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments[J]. Soil Biology and Biochemistry, 2013, 67: 70-84 doi: 10.1016/j.soilbio.2013.08.012
[52]SHAN J, ZHAO X, MA S T, et al. Wheat straw biochar reduces N2O emission by increasing denitrification in alkaline and acidic submerged paddy soils[C]//Proceedings of the 2016 International Nitrogen Initiative Conference on Solutions to Improve Nitrogen Use Efficiency for the World. Australia, Melbourne: 2016
[53]DAI Z M, LI Y, ZHANG X J, et al. Easily mineralizable carbon in manure-based biochar added to a soil influences N2O emissions and microbial-N cycling genes[J]. Land Degradation & Development, 2019, 30(4): 406-416 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c2451d71007125c0407d8292a8d47373
[54]HUANG R, WANG Y Y, LIU J, et al. Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils[J]. Applied Soil Ecology, 2019, 137: 57-68 doi: 10.1016/j.apsoil.2019.01.010
[55]GRABER E R, HAREL Y M, KOLTON M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant and Soil, 2010, 337(1/2): 481-496 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=720949ee9d45aad78abf54c85df6bb1e
[56]LIU L, SHEN G Q, SUN M X, et al. Effect of biochar on nitrous oxide emission and its potential mechanisms[J]. Journal of the Air & Waste Management Association, 2014, 64(8): 894-902 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10962247.2014.899937

相关话题/生物 基因 土壤 微生物 图片