删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

有机物料还田对冬小麦农田土壤温室气体排放影响的研究

本站小编 Free考研考试/2022-01-01

李春喜1,,,
李斯斯1,
邵云1,
马守臣2,
刘晴1,
翁正鹏1,
李晓波1
1.河南师范大学生命科学学院 新乡 453007
2.河南理工大学测绘与国土信息工程学院 焦作 454000
基金项目: 国家重点研发计划重点专项2016YFD0300203-3
国家重点研发计划重点专项2018YFD0300708-4

详细信息
作者简介:李春喜, 主要从事小麦栽培及生理研究。E-mail:496513087@qq.com
中图分类号:S512.1

计量

文章访问数:3586
HTML全文浏览量:11
PDF下载量:3071
被引次数:0
出版历程

收稿日期:2018-10-25
录用日期:2019-01-07
刊出日期:2019-06-01

Effects of organic waste application on soil greenhouse gas emissions of a winter wheat field

LI Chunxi1,,,
LI Sisi1,
SHAO Yun1,
MA Shouchen2,
LIU Qing1,
WENG Zhengpeng1,
LI Xiaobo1
1. College of Life Sciences, Henan Normal University, Xinxiang 453007, China
2. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Funds: the National Key Research and Development Project of China2016YFD0300203-3
the National Key Research and Development Project of China2018YFD0300708-4

More Information
Corresponding author:LI Chunxi, E-mail:496513087@qq.com


摘要
HTML全文
(4)(3)
参考文献(31)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:探讨有机物料还田对冬小麦田温室气体排放特性的影响,对提高经济效应和环境效应有积极意义。本研究应用静态箱-气相色谱法对秸秆还田(J)、秸秆还田+牛粪(JF)和秸秆还田+菌渣(JZ)3种有机物料还田下分别施氮肥243 kg(N)·hm-2(减氮10%,N1)、216 kg(N)·hm-2(减氮20%,N2)对冬小麦农田N2O、CO2和CH4的排放通量进行监测,探讨了不同施肥措施对麦田温室气体累积排放量、增温潜势的影响。试验期间同步记录每项农事活动机械燃油量、施肥量和灌溉量,测定产量,地上部生物量,估算农田碳截留。结果表明,冬小麦农田土壤N2O和CO2是排放源,是CH4的吸收汇,氮肥施入、灌溉以及强降水促进了土壤N2O和CO2的生成,却弱化了CH4作为大气吸收汇的特征。牛粪+秸秆(JF)处理N2O和CO2排放总量最高,分别为3.5 kg(N2O-N)·hm-2和19 689.67 kg(CO2-C)·hm-2,但CH4的吸收值最大,为5.33 kg(CH4-C)·hm-2,均显著高于菌渣+秸秆(JZ)和秸秆(J)处理(P < 0.05);各处理N2O和CO2的总量随施氮量的增加呈升高趋势,CH4的总量随施氮量的增加而呈降低趋势。JFN2、JN2和JZN2处理农田综合增温潜势(GWP)均为负值,表明有机物料还田且减氮20%条件下农田生态系统为大气的碳汇,麦季净截留碳1 038~2 024 kg·hm-2,其他处理GWP值均为正。JZN2处理小麦产量为8 061 kg·hm-2,显著高于JFN2处理(P < 0.05)。综上所述,JZN2处理不仅能够保证小麦产量,且对环境效应最有利,为本区域冬小麦较优的施肥管理模式。
关键词:秸秆还田/
菌渣/
牛粪/
减氮/
冬小麦田/
温室气体/
产量/
全球增温潜势
Abstract:Exploring the impact of returning organic materials to the soil on greenhouse gas emission characteristics of winter wheat fields can help to improve economic and environmental consequences. Based on 3 modes of organic material return (JF:straw return and cow dung; J:straw return; JZ:straw return and mushroom dregs) and 2 nitrogen levels (N1:243 kg·hm-2; N2:216 kg·hm-2), the fluxes of N2O, CO2, and CH4 in winter wheat fields were monitored using the static chamber method and gas chromatography, and the effects of the different fertilization measures on cumulative greenhouse gas emissions and warming potential of wheat fields were studied. During the experimental period, the amount of fuel consumed by farm machines and the power consumed during irrigation and fertilizer application were recorded and transformed to their carbon equivalents using a transformation coefficient. In addition, crop yield and aboveground biomasses were measured and carbon sequestration calculated. The total GWP under each of the 6 treatments were estimated based on the identified parameters of the greenhouse effect. The results indicated that wheat fields served as sources of N2O and CO2 and sinks of CH4. Nitrogen application and adequate irrigation increased CO2 and N2O in the soil, but weakened the characteristics of CH4 as an atmospheric absorption sink. The total amounts of N2O and CO2 emitted were highest in the JF treatment, at 3.5 kg (N2O-N)·hm-2 and 19 689.67 kg (CO2-C) hm-2 respectively, and the absorption value of CH4 in this treatment was 5.33 kg (CH4-C) hm-2, significantly higher than in both of the JZ and J treatments. The total amounts of N2O and CO2 in each treatment increased, and the total amount of CH4 decreased, with an increase in the nitrogen application rate. The GWP of JFN2, JN2, and JZN2 treatments were all negative, which indicated that the farmland ecosystem is an atmospheric carbon sink when organic materials were returned to the field; nitrogen was reduced by 20%, and the carbon interception by wheat was 1 038-2 024 kg·hm-2. The GWP values were positive and the JZN2 treatment-treated wheat yield was 8 061 kg·hm-2, significantly higher than that of the JFN2 treatment. In summary, JZN2 treatment could ensure wheat yield and had the most favorable environmental effects, and thus was the best fertilization management model for winter wheat in this region
Key words:Straw returning/
Mushroom dregs/
Cow dung/
Nitrogen reduction/
Winter wheat field/
Greenhouse gas/
Yield/
Global warming potential

HTML全文


图1冬小麦生长期间农田生态系统气温、5 cm土层土壤温度及降水量的变化
Figure1.Air temperature, precipitation and soil temperature at 5 cm depht of a farmland ecosystem during winter wheat growing season


下载: 全尺寸图片幻灯片


图2不同有机物料还田和减氮下冬小麦土壤N2O排放特征
JF:玉米秸秆全量还田+牛粪45 m3·hm-2; JZ:玉米秸秆全量还田+60 m3·hm-2菌渣; J:玉米秸秆全量还田; N1:减氮10%, 施氮量为243 kg(N)·hm-2; N2:减氮20%, 施氮量为216 kg(N)·hm-2
Figure2.Soil N2O emission in winter wheat field under different treatments of organic materials application and nitrogen reduction
JF: maize straw and cattle manure application; JZ: maize straw and mushroom residue application; J: maize straw application; N1: 10%-reduction of nitrogen with N application rate of 243 kg(N)·hm-2; N2: 20%-reduction of nitrogen with N application rate of 216 kg(N)·hm-2.


下载: 全尺寸图片幻灯片


图3不同有机物料还田和减氮下冬小麦土壤CO2排放特征
JF:玉米秸秆全量还田+牛粪45 m3·hm-2; JZ:玉米秸秆全量还田+60 m3·hm-2菌渣; J:玉米秸秆全量还田; N1:减氮10%, 施氮量为243 kg(N)·hm-2; N2:减氮20%, 施氮量为216 kg(N)·hm-2
Figure3.Soil CO2 emission in winter wheat field under different treatments of organic materials application and nitrogen reduction
JF: maize straw and cattle manure application; JZ: maize straw and mushroom residue application; J: maize straw application; N1: 10%-reduction of nitrogen with N application rate of 243 kg(N)·hm-2; N2: 20%-reduction of nitrogen with N application rate of 216 kg(N)·hm-2.


下载: 全尺寸图片幻灯片


图4不同有机物料还田和减氮下冬小麦土壤CH4排放特征
JF:玉米秸秆全量还田+牛粪45 m3·hm-2; JZ:玉米秸秆全量还田+60 m3·hm-2菌渣; J:玉米秸秆全量还田; N1:减氮10%, 施氮量为243 kg(N)·hm-2; N2:减氮20%, 施氮量为216 kg(N)·hm-2
Figure4.Soil CH4 emission in winter wheat field under different treatments of organic materials application and nitrogen reduction
JF: maize straw and cattle manure application; JZ: maize straw and mushroom residue application; J: maize straw application; N1: 10%-reduction of nitrogen with N application rate of 243 kg(N)·hm-2; N2: 20%-reduction of nitrogen with N application rate of 216 kg(N)·hm-2.


下载: 全尺寸图片幻灯片

表1农事活动的耗能及其温室气体排放系数
Table1.Agricultural inputs, outputs and greenhouse gas emission factors
项目
Item
物资用量
Material usage
排放系数
Emission factor
N 243/2161) kg·hm-2 4.96 kg(CO2-eq)·kg-1
P2O5 120 kg·hm-2 1.14 kg(CO2-eq)·kg-1
K2O 180 kg·hm-2 0.66 kg(CO2-eq)·kg-1
机械燃油Fuel 78 kg·hm-2 3.32 kg(CO2-eq)·kg-1
电力Electric power 1 275 kWh·hm-2 0.92 kg(CO2-eq)·kWh-1
种子Seed 187.5 kg·hm-2 1.16 kg(CO2-eq)·kg-1
除草剂Herbicide 1.5 kg·hm-2 6.58 kg(CO2-eq)·kg-1
劳力Labor 15 cap·d-1·hm-2 0.86 kg(CO2-eq)·cap-1
1)减氮量10%处理取值243 kg(N)·hm-2, 减氮量20%处理取值216 kg(N)·hm-2。1) The treatments of 10%- and 20%-reduction of nitrogen are assigned 243 kg(N)·hm-2 and 216 kg(N)·hm-2, respectively.


下载: 导出CSV
表2不同有机物料还田和减氮下冬小麦土壤N2O、CO2、CH4的排放总量
Table2.Accumulated emissions of N2O, CO2 and CH4 of winter wheat field under different organic materials application and nitrogen reduction
处理
Treatment
N2O CO2 CH4
排放速率
Emission rate (mg·m-2·h-1)
排放总量
Accumulated emission [kg(N2O-N) hm-2]
排放速率
Emission rate (mg·m-2·h-1)
排放总量
Accumulated emission [kg(CO2-C)·hm-2]
排放速率
Emission rate (mg·m-2·h-1)
排放总量
Accumulated emission [kg(CH4-C)·hm-2]
JFN1 1.197a 1.91±0.01a 8 835.67a 11 823.34±353a -0.585 4c -2.46±0.14c
JFN2 1.021d 1.59±0.01c 7 054.31b 7 866.32±167b -0.656 4d -2.87±0.08d
JN1 1.176b 1.90±0.01a 6 932.66b 8 609.47±314b -0.509 6b -2.04±0.64b
JN2 0.974e 1.49±0.01e 5 881.25c 6 402.07±259c -0.533 4b -2.16±0.51b
JZN1 1.093c 1.64±0.00b 7 353.03b 8 515.27±229b -0.370 6a -1.68±0.96a
JZN2 0.961f 1.53±0.02d 6 928.11b 8 330.12±513b -0.391 1a -1.73±0.32a
JF:玉米秸秆全量还田+牛粪45 m3·hm-2; JZ:玉米秸秆全量还田+60 m3·hm-2菌渣; J:玉米秸秆全量还田; N1:减氮10%, 施氮量为243 kg(N)·hm-2; N2:减氮20%, 施氮量为216 kg(N)·hm-2。表中数据均为3次重复平均值±标准差, 同列数据后不同字母表示不同处理间差异显著(P < 0.05) (邓肯法)。JF: maize straw and cattle manure application; JZ: maize straw and mushroom residue application; J: maize straw application; N1: 10%-reduction of nitrogen with N application rate of 243 kg(N)·hm-2; N2: 20%-reduction of nitrogen with N application rate of 216 kg(N)·hm-2. Each value in the table is mean ± SE of 3 replicates. Values followed by different letters within a column are significantly different at P < 0.05 according to Duncan test.


下载: 导出CSV
表3不同有机物料还田和减氮对冬小麦土壤温室气体的增温潜势(GWP)的影响
Table3.Global warming potential (GWP) of winter wheat filed under different organic materials application and nitrogen reduction
kg·hm-2
处理
Treatment
产量
Yield
GWPNPP GWPsoil export GWPindirect GWP
$\mathrm{GWP}_{\mathrm{N}_{2} \mathrm{O}}$ $\mathrm{GWP}_{\mathrm{CO}_{2}}$ $\mathrm{GWP}_{\mathrm{CH}_{4}}$
JFN1 7 401±70c 11 403±131ab 244±3.08a 11 823±353.91a -22±0.68c 2 091.08 2 732
JFN2 7 504±67c 12 025±553ab 204±1.83c 7 866±167.71c -26±0.59d 1 957.16 -2 024
JN1 7 225±88c 10 625±628bc 243±1.27a 8 609±314.67b -18±0.50b 2 091.08 299
JN2 7 899±67b 9 568±595c 191±0.74e 6 402±259.34d -19±0.85b 1 957.16 -1 038
JZN1 10 502±412a 10 711±205bc 210±1.29b 8 515±229.41b -15±0.75a 2 091.08 90
JZN2 8 061±236b 12 448±1486a 196±0.83d 8 330±513.97bc -15±0.39a 1 957.16 -1 980
JF:玉米秸秆全量还田+牛粪45 m3·hm-2; JZ:玉米秸秆全量还田+60 m3·hm-2菌渣; J:玉米秸秆全量还田; N1:减氮10%, 施氮量为243 kg(N)·hm-2; N2:减氮20%, 施氮量为216 kg(N)·hm-2。表中数据均为3次重复平均值±标准差, 同列数据后不同字母表示不同处理间差异显著(P < 0.05) (邓肯法)。JF: maize straw and cattle manure application; JZ: maize straw and mushroom residue application; J: maize straw application; N1: 10%-reduction of nitrogen with N application rate of 243 kg(N)·hm-2; N2: 20%-reduction of nitrogen with N application rate of 216 kg(N)·hm-2. Each value in the table is mean ± SE of 3 replicates. Values followed by different letters within a column are significantly different at P < 0.05 according to Duncan test.


下载: 导出CSV

参考文献(31)
[1]REAY D S, DAVIDSON E A, SMITH K A, et al. Global agriculture and nitrous oxide emissions[J]. Nature Climate Change, 2012, 2(6):410-416 doi: 10.1038/nclimate1458
[2]张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4):966-975 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20110441&journal_id=zgstny
ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4):966-975 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20110441&journal_id=zgstny
[3]苏伟.中华人民共和国气候变化第二次国家信息通报[M].北京:中国经济出版社, 2013
SU W. The People's Republic of China Second National Communication on Climate Change[M]. Beijing:China Economic Publishing House, 2013
[4]刘彦随, 刘玉, 郭丽英.气候变化对中国农业生产的影响及应对策略[J].中国生态农业学报, 2010, 18(4):905-910 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20104905&journal_id=zgstny
LIU Y S, LIU Y, GUO L Y. Impact of climatic change on agricultural production and response strategies in China[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4):905-910 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20104905&journal_id=zgstny
[5]李子涵.我国粮食生产中的化肥过量施用研究[J].安徽农业科学, 2016, 44(16):245-247 doi: 10.3969/j.issn.0517-6611.2016.16.081
LI Z H. Analysis of fertilizer overuse during crop production in China[J]. Journal of Anhui Agricultural Sciences, 2016, 44(16):245-247 doi: 10.3969/j.issn.0517-6611.2016.16.081
[6]房丽萍, 孟军.化肥施用对中国粮食产量的贡献率分析——基于主成分回归C-D生产函数模型的实证研究[J].中国农学通报, 2013, 29(17):156-160 doi: 10.11924/j.issn.1000-6850.2012-3807
FANG L P, MENG J. Application of chemical fertilizer on grain yield in China analysis of contribution rate:Based on principal component regression C-D production function model and its empirical study[J]. Chinese Agricultural Science Bulletin, 2013, 29(17):156-160 doi: 10.11924/j.issn.1000-6850.2012-3807
[7]秦晓波, 李玉娥, 万云帆, 等.耕作方式和稻草还田对双季稻田CH4和N2O排放的影响[J].农业工程学报, 2014, 30(11):216-224 doi: 10.3969/j.issn.1002-6819.2014.11.027
QIN X B, LI Y E, WAN Y F, et al. Effect of tillage and rice residue return on CH4 and N2O emission from double rice field[J]. Transactions of the CSAE, 2014, 30(11):216-224 doi: 10.3969/j.issn.1002-6819.2014.11.027
[8]王玉英, 胡春胜.施氮水平对太行山前平原冬小麦-夏玉米轮作体系土壤温室气体通量的影响[J].中国生态农业学报, 2011, 19(5):1122-1128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20110522&journal_id=zgstny
WANG Y Y, HU C S. Soil greenhouse gas emission in winter wheat/summer maize rotation ecosystem as affected by nitrogen fertilization in the Piedmont Plain of Mount Taihang, China[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1122-1128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20110522&journal_id=zgstny
[9]姜继韶.施氮和轮作对黄土高原旱塬区土壤温室气体排放的影响[D].北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2015 http://cdmd.cnki.com.cn/Article/CDMD-80129-1015996177.htm
JIANG J S. Effect of nitrogen fertilization and rotation on greenhouse gases emissions on arid-highland of the Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education), 2015 http://cdmd.cnki.com.cn/Article/CDMD-80129-1015996177.htm
[10]郝耀旭, 刘继璇, 袁梦轩, 等.长期定位有机物料还田对关中平原冬小麦-玉米轮作土壤N2O排放的影响[J].环境科学, 2017, 38(6):2586-2593 http://d.old.wanfangdata.com.cn/Periodical/hjkx201706049
HAO Y X, LIU J X, YUAN M X, et al. Effects of long-term organic amendments on soil N2O emissions from winter wheat-maize cropping systems in the Guanzhong Plain[J]. Environmental Science, 2017, 38(6):2586-2593 http://d.old.wanfangdata.com.cn/Periodical/hjkx201706049
[11]全孝飞, 颜晓元, 王书伟, 等.长期施用有机物料对稻田生态系统服务功能的影响[J].农业环境科学学报, 2017, 36(7):1406-1415 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707024
QUAN X F, YAN X Y, WANG S W, et al. Effects of long-term application of organic materials on the ecosystem services of paddy fields[J]. Journal of Agro-Environment Science, 2017, 36(7):1406-1415 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707024
[12]张贺, 郭李萍, 谢立勇, 等.不同管理措施对华北平原冬小麦田土壤CO2和N2O排放的影响研究[J].土壤通报, 2013, 44(3):653-659 http://d.old.wanfangdata.com.cn/Periodical/trtb201303024
ZHANG H, GUO L P, XIE L Y, et al. The effect of management practices on the emission of CO2 and N2O from the winter wheat field in north China Plain[J]. Chinese Journal of Soil Science, 2013, 44(3):653-659 http://d.old.wanfangdata.com.cn/Periodical/trtb201303024
[13]马义虎, 顾道健, 刘立军, 等.玉米秸秆源有机肥对水稻产量与温室气体排放的影响[J].中国水稻科学, 2013, 27(5):520-528 doi: 10.3969/j.issn.1001-7216.2013.05.009
MA Y H, GU D J, LIU L J, et al. Effects of the organic fertilizers made from maize straw on grain yield of rice and emission of greenhouse gases from paddy fields[J]. Chinese Journal of Rice, 2013, 27(5):520-528 doi: 10.3969/j.issn.1001-7216.2013.05.009
[14]KUMAR P, MARTINO D, SMITH P, et al. Agriculture (Chapter 8) in IPCC, 2007: Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group Ⅲ to the Fourth assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: IPCC, 2007
[15]刘巽浩, 徐文修, 李增嘉, 等.农田生态系统碳足迹法:误区、改进与应用——兼析中国集约农作碳效率[J].中国农业资源与区划, 2013, 34(6):1-11 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205028
LIU X H, XU W X, LI Z J, et al. The missteps, Improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China's intensive farming[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(6):1-11 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205028
[16]闫翠萍, 张玉铭, 胡春胜, 等.不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势[J].中国生态农业学报, 2016, 24(6):704-715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016602&journal_id=zgstny
YAN C P, ZHANG Y M, HU C S, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6):704-715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016602&journal_id=zgstny
[17]宋利娜, 张玉铭, 胡春胜, 等.华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应[J].中国生态农业学报, 2013, 21(3):297-307 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2013305&journal_id=zgstny
SONG L N, ZHANG Y M, HU C S, et al. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3):297-307 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2013305&journal_id=zgstny
[18]侯苗苗, 吕凤莲, 张弘弢, 等.有机氮替代比例对冬小麦/夏玉米轮作体系作物产量及N2O排放的影响[J].环境科学, 2018, 39(1):321-330 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201801040
HOU M M, LYU F L, ZHANG H T, et al. Effect of organic manure substitution of synthetic nitrogen on crop yield and N2O emission in the winter wheat-summer maize rotation system[J]. Environmental Science, 2018, 39(1):321-330 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201801040
[19]叶欣, 李俊, 王迎红, 等.华北平原典型农田土壤氧化亚氮的排放特征[J].农业环境科学学报, 2005, 24(6):1186-1191 doi: 10.3321/j.issn:1672-2043.2005.06.029
YE X, LI J, WANG Y H, et al. Characterization of emissions of nitrous oxide from soils of typical crop fields in North China Plain[J]. Journal of Agro-Environment Science, 2005, 24(6):1186-1191 doi: 10.3321/j.issn:1672-2043.2005.06.029
[20]董玉红, 欧阳竹, 李运生, 等.不同施肥方式对农田土壤CO2和N2O排放的影响[J].中国土壤与肥料, 2007, (4):34-39 doi: 10.3969/j.issn.1673-6257.2007.04.008
DONG Y H, OUYANG Z, LI Y S, et al. Influence of different fertilization on CO2 and N2O fluxes from agricultural soil[J]. Soil and Fertilizer Sciences in China, 2007, (4):34-39 doi: 10.3969/j.issn.1673-6257.2007.04.008
[21]邹建文.稻麦轮作生态系统温室气体(CO2、N2O和CH4)排放研究[D].南京: 南京农业大学, 2005 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y748754
ZOU J W. A study on greenhouse gases (CO2, CH4 and N2O) emissions from rice-winter wheat rotations in southeast China[D]. Nanjing: Nanjing Agricultural University, 2005 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y748754
[22]黄小林.菌渣还田对农田温室气体排放的影响研究[D].雅安: 四川农业大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10626-1013157649.htm
HUANG X L. Effects of mushroom residues on GHS emissions from soils under rice-wheat rotation[D]. Ya'an: Sichuan Agricultural University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10626-1013157649.htm
[23]FERNáNDEZ-LUQUE?O F, REYES-VARELA V, MARTíNEZ-SUáREZ C, et al. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources[J]. Science of the Total Environment, 2009, 407(14):4289-4296 doi: 10.1016/j.scitotenv.2009.04.016
[24]王建林, 赵风华, 欧阳竹.灌溉量对灌浆期麦田土壤呼吸的影响[J].华北农学报, 2010, 25(3):186-189 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201003039
WANG J L, ZHAO F H, OUYANG Z. Effects of the irrigation quantity on soil respiration in wheat field in filling stage[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(3):186-189 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201003039
[25]PENG Q, DONG Y S, QI Y C, et al. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia, China[J]. Environmental Earth Sciences, 2011, 62(6):1163-1171 doi: 10.1007/s12665-010-0605-4
[26]陈义, 吴春艳, 水建国, 等.长期施用有机肥对水稻土CO2释放与固定的影响[J].中国农业科学, 2005, 38(12):2468-2473 doi: 10.3321/j.issn:0578-1752.2005.12.015
CHEN Y, WU C Y, SHUI J G, et al. Emission and Fixation of CO2 from soil system as influenced by long-term application of organic manure in paddy soils[J]. Scientia Agricultura Sinica, 2005, 38(12):2468-2473 doi: 10.3321/j.issn:0578-1752.2005.12.015
[27]田慎重, 宁堂原, 李增嘉, 等.不同耕作措施对华北地区麦田CH4吸收通量的影响[J].生态学报, 2010, 30(2):541-548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201002033
TIAN S Z, NING T Y, LI Z J, et al. Effect of CH4 uptake flux under different tillage systems in wheat field in the North China Plain[J]. Acta Ecologica Sinica, 2010, 30(2):541-548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201002033
[28]石生伟, 李玉娥, 李明德, 等.不同施肥处理下双季稻田CH4和N2O排放的全年观测研究[J].大气科学, 2011, 35(4):707-720 doi: 10.3878/j.issn.1006-9895.2011.04.10
SHI S W, LI Y E, LI M D, et al. Annual CH4 and N2O emissions from double rice cropping systems under various fertilizer regimes in Hunan Province, China[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(4):707-720 doi: 10.3878/j.issn.1006-9895.2011.04.10
[29]祁乐, 高明, 周鹏, 等.菌渣还田量对紫色水稻土净温室气体排放的影响[J].环境科学, 2018, 39(6):2827-2836 http://d.old.wanfangdata.com.cn/Periodical/hjkx201806039
QI L, GAO M, ZHOU P, et al. Effects of mushroom residue application rates on net greenhouse gas emissions in the purple paddy soil[J]. Environmental Science, 2018, 39(6):2827-2836 http://d.old.wanfangdata.com.cn/Periodical/hjkx201806039
[30]万运帆, 李玉娥, 高清竹, 等.田间管理对华北平原冬小麦产量土壤碳及温室气体排放的影响[J].农业环境科学学报, 2009, 28(12):2495-2500 doi: 10.3321/j.issn:1672-2043.2009.12.009
WAN Y F, LI Y E, GAO Q Z, et al. Field managements affect yield, soil carbon, and greenhouse gases emission of winter wheat in North China Plain[J]. Journal of Agro-Environment Science, 2009, 28(12):2495-2500 doi: 10.3321/j.issn:1672-2043.2009.12.009
[31]XIA L L, WANG S W, YAN X Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China[J]. Agriculture, Ecosystems & Environment, 2014, 197:118-127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af34e6f8ee7fea06786fd5c3b8d5b6c8

相关话题/土壤 农田 环境科学 图片 数据