王冕1,
董文旭2,
王玉恒1,,
1.河北科技大学经济管理学院 石家庄 050018
2.中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
基金项目: 国家自然科学基金面上项目C030601
中国科学院重点部署项目ZDRW-ZS-2016-5-1
河北省高等学校科学技术研究项目ZD2017029
河北省科技厅软科学研究计划项目18457631D
详细信息
作者简介:瞿英, 主要研究方向为决策理论与技术。E-mail:quying1973@126.com
通讯作者:王玉恒, 主要研究方向为数据分析和风险管理。E-mail:xinxiwyh@126.com
中图分类号:S19计量
文章访问数:822
HTML全文浏览量:6
PDF下载量:740
被引次数:0
出版历程
收稿日期:2018-11-14
录用日期:2018-12-06
刊出日期:2019-04-01
Prediction of atmospheric ammonia concentration in farmlands using BP neural network
QU Ying1,,WANG Mian1,
DONG Wenxu2,
WANG Yuheng1,,
1. School of Economics and Management, Hebei University of Science and Technology, Shijiazhuang 050018, China
2. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
Funds: the National Natural Science Foundation of ChinaC030601
the Key Deployment Project of Chinese Academy of SciencesZDRW-ZS-2016-5-1
the Colleges and Universities Science and Technology Research Project of Hebei ProvinceZD2017029
the Soft Science Project of Hebei Science and Technology Department18457631D
More Information
Corresponding author:WANG Yuheng, E-mail: xinxiwyh@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:农业源氨排放是大气氨最主要的来源,其中氮肥施用是最主要的农业氨排放源之一。预测大气氨浓度的变化,确定影响大气氨排放的因素,可为科学管理农田,减轻环境污染提供参考。本文利用BP神经网络分析农田大气氨浓度及与各气象因素的关系,以便清晰地了解农田大气氨浓度的变化规律,为研究农田大气氨提供一种新的思路与方法。首先选取2015年5—10月的农田大气氨浓度数据及气象监测数据,建立以气象因素(气压、气温、相对湿度、降水量、风速和日照时数)为输入变量,农田大气氨浓度作为输出变量的预测模型。其次采用主成分分析法筛选出对农田大气氨浓度影响较大的气象因素,分别为气温、相对湿度、降水量和风速,然后把筛选出的4个主要因素和原来的6个因素分别作为BP神经网络预测模型的输入变量,利用神经网络模型对农田大气氨浓度进行预测。结果显示,农田大气氨浓度的实际值为0.148 5 mg·m-3,4个因素的预测值为0.159 4 mg·m-3,6个因素的预测值为0.173 2 mg·m-3,预测误差分别为7.35%、16.65%,并且4个因素的预测相对误差为1.4%~27.0%,而6个因素的预测相对误差为1.1%~45.0%。预测的农田大气氨浓度在前5 d内变化较大,但随着时间的推移,农田大气氨浓度逐渐变小趋于平缓,且预测值与实际值的变化趋势基本相符。利用4个因素作为输入变量建立预测模型,预测得到的农田大气氨浓度值比6个因素作为输入变量得到的农田大气氨浓度值与实际值更吻合,相对误差值较小。可见,通过主成分分析法去除冗余因素后建立的神经网络模型更加有效,预测结果比筛选之前的预测效果更好,所建立的模型对甄选关键因素具有较好的适用性,并且神经网络预测模型对农田大气氨浓度的预测精度较高。本文构建的农田大气氨浓度预测模型可为农田大气氨浓度分析及相关研究提供方法和思路上的指导。
Abstract:The emission of ammonia from agricultural system is the main source of atmospheric ammonia and nitrogen fertilizer application is the main sources of ammonia emission in agriculture. The prediction of the changes in atmospheric ammonia concentration and the determination of the factors driving atmospheric ammonia emission will be benefit to the basis for scientific and rational farmland management and for control of environmental pollution. In this paper, BP neural network was used to analyze the concentration of ammonia in farmlands and its relationship with various meteorological factors. The aim was to better understand the changes in ammonia concentration in farmlands and provide new idea and method of study of ammonia in farmlands. First, farmland ammonia measured with Laser Analyzer and meteorological monitoring data from May to October 2015 were used to establish a model for the prediction of farmland ammonia with meteorological factors (air pressure, air temperature, relative humidity, precipitation, wind speed and sunshine hours) as input variables. Secondly, principal component analysis was used to screen meteorological factors with the strongest effect on the ammonia concentration in farmlands, including air temperature, relative humidity, precipitation and wind speed. Then four main factors and six original factors were used as input variables to predict ammonia concentration in farmlands in the region. The results showed that the actual ammonia concentration in farmlands was 0.148 5 mg·m-3, the predicted value based on four factors was 0.159 4 mg·m-3 (with predicted error of 7.35%) and the predicted value based on six factors was 0.173 2 mg·m-3 (with predicted error of 16.65%). The range of the relative error of four prediction factors was 1.4%-27.0% and that of six factors was 1.1%-45.0%. The predicted concentration of ammonia in farmlands varied greatly in the first five days, decreased gradually and apparently flattened out with time, which was basically consistent with the measured value. Eventually, four factors were used as input variables in building the prediction model. The predicted values of farmland ammonia concentration used four factors were more consistent with measured values than that used six factors. It was noted that the established neural network model after removing redundant factors by principal component analysis method was more effective, and the prediction results were better than those before screening. The model established had better applicability for selecting key factors, and the prediction accuracy was higher. The model constructed in this paper for predicting ammonia concentration in farmlands provided more accurate method and newer idea than before on the analysis of farmland ammonia concentration and the related research.
HTML全文
图1施肥(10月3日)前后冬小麦农田大气氨浓度的变化
Figure1.Changes of ammonia concentration in winter wheat farmland before and after fertilization in the 3rd October
下载: 全尺寸图片幻灯片
图2农田大气氨浓度预测BP神经网络拓扑结构图
Figure2.BP neural network topology for prediction of ammonia concentration in farmland
下载: 全尺寸图片幻灯片
图3不同情况下农田大气氨浓度BP神经网络预测值与实际值的变化
Actual value:实际值; 4 factors: 4个因素预测值; 6 factors: 6个因素预测值。
Figure3.Variation of actual and BP neural network predicted ammonia concentration in farmland
"4 factors" and "6 factors" mean that the BP neural networks have 4 and 6 meteorological factors as the input neurons.
下载: 全尺寸图片幻灯片
图4不同情况下农田大气氨浓度预测值与实际值的相对误差变化
4 factors: 4个因素相对误差; 6 factors: 6个因素相对误差。
Figure4.Relative errors of predicted ammonia nitrogen concentration in farmland under different conditions
"4 factors" and "6 factors" mean that the BP neural networks have 4 and 6 meteorological factors as the input neurons.
下载: 全尺寸图片幻灯片
表1试验区农田大气氨浓度与气象因素样本数据
Table1.Sample data of atmospheric ammonia concentration and meteorological factors in farmland of the study area
测定日期(年-月-日) Measuring date (year-month-day) | 测定时刻 Measuring time | 大气氨浓度 Atmospheric ammonia concentration (mg·m-3) | 气压 Air pressure (hPa) | 气温 Air temperature (℃) | 相对湿度 Relative humidity (%) | 降水量 Precipitation (mm) | 风速 Wind speed (m·s-1) | 日照时数 Sunshine hours (h) |
2015-05-01 | 8:00 | 0.546 3 | 999 | 18.7 | 84 | 0 | 4.0 | 0.5 |
14 00 | 0.584 0 | 999 | 23.6 | 70 | 0 | 3.0 | 0 | |
20:00 | 0.341 7 | 1 000 | 16.0 | 91 | 0 | 3.5 | 0 | |
2015-05-02 | 8:00 | 0.302 3 | 1 002 | 17.2 | 78 | 9.9 | 0 | 2.0 |
14:00 | 0.370 1 | 1 002 | 22.4 | 62 | 0 | 2.5 | 2.0 | |
20:00 | 0.410 6 | 1 001 | 18.0 | 83 | 0 | 0 | 0 | |
2015-05-03 | 8:00 | 0.345 7 | 1 002 | 16.7 | 92 | 0 | 2.7 | 0 |
14:00 | 0.426 9 | 1 005 | 22.9 | 62 | 0 | 3.5 | 1.1 | |
20:00 | 0.426 5 | 1 005 | 18.1 | 72 | 0 | 2.0 | 0 |
下载: 导出CSV
表2气象因素对农田大气氨浓度影响的主成分特征值和累计贡献率
Table2.Principal component eigenvalues and accumulated contribution rates of meteorological factors to atmospheric ammonia concentration in farmland
主成分 Principal component | 特征值 Characteristic value | 贡献率 Contribution rate (%) | 累计贡献率 Accumulated contribution rate (%) |
1 | 2.229 | 37.156 | 37.156 |
2 | 1.540 | 25.674 | 62.830 |
3 | 0.927 | 15.455 | 78.285 |
4 | 0.733 | 12.211 | 90.495 |
下载: 导出CSV
表3气象因素对农田大气氨浓度影响的主成分得分系数矩阵
Table3.Principal component score coefficient matrix of meteorological factors affecting ammonia concentration in farmland
因子 Factor | 主成分F1 Principal component F1 | 主成分F2 Principal component F2 | 主成分F3 Principal component F3 | 主成分F4 Principal component F4 |
X1 | -0.334 | -0.378 | 0.246 | 0.077 |
X2 | 0.882 | 0.260 | -0.166 | -0.196 |
X3 | -0.226 | 0.558 | -0.090 | 0.155 |
X4 | 0.019 | 0.326 | 0.907 | 0.174 |
X5 | 0.264 | -0.291 | 0.401 | -0.607 |
X6 | 0.265 | -0.195 | 0.008 | 0.004 |
X1:气压; X2:气温; X3:相对湿度; X4:降水量; X5:风速; X6:日照时数。X1: air pressure; X2: air temperature; X3: relative humidity; X4: precipitation; X5: wind speed; X6: sunshine hours. |
下载: 导出CSV
参考文献
[1] | 苏航, 闫东杰, 黄学敏, 等.西安市人为源大气氨排放清单及特征[J].环境科学, 2016, 37(11):4117-4123 http://d.old.wanfangdata.com.cn/Periodical/hjkx201611007 SU H, YAN D J, HUANG X M, et al. Inventory and characteristics of anthropogenic ammonia emission in Xi'an[J]. Environmental Science, 2016, 37(11):4117-4123 http://d.old.wanfangdata.com.cn/Periodical/hjkx201611007 |
[2] | 尤翔宇, 刘湛, 张青梅, 等.长株潭地区人为源氨排放清单及分布特征[J].环境科学, 2016, 37(1):94-101 doi: 10.3969/j.issn.1673-1212.2016.01.027 YOU X Y, LIU Z, ZHANG Q M, et al. Anthropogenic ammonia emission inventory and its spatial distribution in Chang-Zhu-Tan region[J]. Environmental Science, 2016, 37(1):94-101 doi: 10.3969/j.issn.1673-1212.2016.01.027 |
[3] | 张灿, 周志恩, 翟崇治, 等.重庆市主城区NH3排放估算及分布特征分析[J].环境污染与防治, 2013, 35(10):65-70 doi: 10.3969/j.issn.1001-3865.2013.10.014 ZHANG C, ZHOU Z E, ZHAI C Z, et al. Estimate and distribution analyze of NH3 emission in Chongqing urban city[J]. Environmental Pollution and Control, 2013, 35(10):65-70 doi: 10.3969/j.issn.1001-3865.2013.10.014 |
[4] | 房效凤, 沈根祥, 徐昶, 等.上海市农业源氨排放清单及分布特征[J].浙江农业学报, 2015, 27(12):2177-2185 doi: 10.3969/j.issn.1004-1524.2015.12.21 FANG X F, SHEN G X, XU C, et al. Agricultural ammonia emission inventory and its distribution characteristics in Shanghai[J]. Acta Agriculturae Zhejiangensis, 2015, 27(12):2177-2185 doi: 10.3969/j.issn.1004-1524.2015.12.21 |
[5] | 宋勇生, 范晓晖, 林德喜, 等.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报, 2004, 41(2):265-269 doi: 10.3321/j.issn:0564-3929.2004.02.016 SONG Y S, FAN X H, LIN D X, et al. Ammonia volatilization from paddy fields in the Taihu Lake region and its influencing factors[J]. Acta Pedologica Sinica, 2004, 41(2):265-269 doi: 10.3321/j.issn:0564-3929.2004.02.016 |
[6] | 陈园, 房效凤, 沈根祥, 等.太湖流域典型稻田大气氨排放特征及其影响因子[J].浙江农业学报, 2017, 29(1):119-128 doi: 10.3969/j.issn.1004-1524.2017.01.17 CHEN Y, FANG X F, SHEN G X, et al. Research on ammonia emission characteristics and its influencing factors from paddy fields in Taihu Lake region[J]. Acta Agriculturae Zhejiangensis, 2017, 29(1):119-128 doi: 10.3969/j.issn.1004-1524.2017.01.17 |
[7] | 张翀, 韩晓阳, 李雪倩, 等.川中丘陵区紫色土冬小麦/夏玉米轮作氨挥发研究[J].中国生态农业学报, 2015, 23(11):1359-1366 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151102&flag=1 ZHANG C, HAN X Y, LI X Q, et al. Ammonia volatilization in winter wheat/summer maize rotation system of purple soil in hilly area of Central Sichuan Basin[J]. Chinese Journal of Eco-Agriculture, 2015, 23(11):1359-1366 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151102&flag=1 |
[8] | 魏璐, 朱伟军, 陈海山.郑州市空气质量统计预报方法探讨[J].南京气象学院学报, 2009, 32(2):314-320 doi: 10.3969/j.issn.1674-7097.2009.02.019 WEI L, ZHU W J, CHEN H S. Statistical forecasting method of air quality in Zhengzhou City[J]. Journal of Nanjing Institute of Meteorology, 2009, 32(2):314-320 doi: 10.3969/j.issn.1674-7097.2009.02.019 |
[9] | GHAZALI N A, RAMLI N A, YAHAYA A S, et al. Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques[J]. Environmental Monitoring and Assessment, 2010, 165(1/4):475-489 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bee669c6878a1a3649e1d002185c4ce0 |
[10] | 付倩娆.基于多元线性回归的雾霾预测方法研究[J].计算机科学, 2016, 43(S1):526-528 http://d.old.wanfangdata.com.cn/Periodical/jsjkx2016z1125 FU Q R. Research on haze prediction based on multivariate linear regression[J]. Computer Science, 2016, 43(S1):526-528 http://d.old.wanfangdata.com.cn/Periodical/jsjkx2016z1125 |
[11] | 常莉.灰色预测模型及应用[J].吉林化工学院学报, 2002, 19(4):93-94 doi: 10.3969/j.issn.1007-2853.2002.04.031 CHANG L. The gray prediction model and its application[J]. Journal of Jilin Institute of Chemical Technology, 2002, 19(4):93-94 doi: 10.3969/j.issn.1007-2853.2002.04.031 |
[12] | 刘学欣, 薛安. 2008年北京市大气质量的灰色预测[J].环境工程, 2006, 24(2):69-71 doi: 10.3969/j.issn.1000-8942.2006.02.024 LIU X X, XUE A. Grey prediction of air quality in the year of 2008 in Beijing[J]. Environmental Engineering, 2006, 24(2):69-71 doi: 10.3969/j.issn.1000-8942.2006.02.024 |
[13] | ZHANG S R, WANG B T, LI X E, et al. Research and application of improved gas concentration prediction model based on grey theory and BP neural network in digital mine[J]. Procedia CIRP, 2016, 56:471-475 doi: 10.1016/j.procir.2016.10.092 |
[14] | SU REZ S NCHEZ A, GARC A NIETO P J, IGLESIAS-RODR GUEZ F J, et al. Nonlinear air quality modeling using support vector machines in Gijón Urban Area (Northern Spain) at local scale[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14(5):291-305 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/ijnsns-2012-0119 |
[15] | 秦喜文, 刘媛媛, 王新民, 等.基于整体经验模态分解和支持向量回归的北京市PM2.5预测[J].吉林大学学报:地球科学版, 2016, 46(2):563-568 http://www.cqvip.com/QK/91256X/201602/668289980.html QIN X W, LIU Y Y, WANG X M, et al. PM2.5 prediction of Beijing City based on ensemble empirical mode decomposition and support vector regression[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(2):563-568 http://www.cqvip.com/QK/91256X/201602/668289980.html |
[16] | 石灵芝, 邓启红, 路婵, 等.基于BP人工神经网络的大气颗粒物PM10质量浓度预测[J].中南大学学报:自然科学版, 2012, 43(5):1969-1974 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201205055 SHI L Z, DENG Q H, LU C, et al. Prediction of PM10 mass concentrations based on BP artificial neural network[J]. Journal of Central South University:Science and Technology, 2012, 43(5):1969-1974 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201205055 |
[17] | 张冉, 孙宝盛, 王永亮, 等.黄河入海口水质评价与预测[J].环境工程学报, 2013, 7(8):3089-3093 http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201308049 ZHANG R, SUN B S, WANG Y L, et al. Water quality evaluation and forecast of Yellow River estuary[J]. Chinese Journal of Environmental Engineering, 2013, 7(8):3089-3093 http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201308049 |
[18] | 张华, 曾杰.基于支持向量机的风速预测模型研究[J].太阳能学报, 2010, 31(7):928-932 http://d.old.wanfangdata.com.cn/Periodical/tynxb201007026 ZHANG H, ZENG J. Wind speed forecasting model study based on support vector machine[J]. Acta Energiae Solaris Sinica, 2010, 31(7):928-932 http://d.old.wanfangdata.com.cn/Periodical/tynxb201007026 |
[19] | 徐黎明, 王清, 陈剑平, 等.基于BP神经网络的泥石流平均流速预测[J].吉林大学学报:地球科学版, 2013, 43(1):186-191 http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201301023.htm XU L M, WANG Q, CHEN J P, et al. Forecast for average velocity of debris flow based on BP neural network[J]. Journal of Jilin University:Earth Science Edition, 2013, 43(1):186-191 http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201301023.htm |
[20] | 应玉萍.基于BP神经网络方法的城市物流需求预测研究[J].青海师范大学学报:自然科学版, 2017, 33(4):43-50 http://d.old.wanfangdata.com.cn/Periodical/qhsfdxxb-zrkx201704009 YING Y P. Research on urban logistics demand forecasting based on the BP neural network method[J]. Journal of Qinghai Normal University:Natural Science Edition, 2017, 33(4):43-50 http://d.old.wanfangdata.com.cn/Periodical/qhsfdxxb-zrkx201704009 |
[21] | HOU H, YAO Z L, ZHANG Y Z, et al. On-board measurements of emissions from diesel trucks in five cities in China[J]. Atmospheric Environment, 2012, 54:159-167 doi: 10.1016/j.atmosenv.2012.01.068 |
[22] | 王敏, 邹滨, 郭宇, 等.基于BP人工神经网络的城市PM2.5浓度空间预测[J].环境污染与防治, 2013, 35(9):63-66 doi: 10.3969/j.issn.1001-3865.2013.09.013 WANG M, ZOU B, GUO Y, et al. BP artificial neural network-based analysis of spatial variability of urban PM2.5 concentration[J]. Environmental Pollution and Control, 2013, 35(9):63-66 doi: 10.3969/j.issn.1001-3865.2013.09.013 |
[23] | 丁琳, 吴昊, 臧淼.基于BP神经网络的大气中CO浓度的预测[J].轻工科技, 2014, 30(6):86-87 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxqgy201406042 DING L, WU H, ZANG M. Prediction of CO concentration in the atmosphere based on BP neural network[J]. Light Industry Science and Technology, 2014, 30(6):86-87 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxqgy201406042 |
[24] | 艾洪福, 石莹.基于BP人工神经网络的雾霾天气预测研究[J].计算机仿真, 2015, 32(1):402-405 doi: 10.3969/j.issn.1006-9348.2015.01.085 AI H F, SHI Y. Study on prediction of haze based on BP neural network[J]. Computer Simulation, 2015, 32(1):402-405 doi: 10.3969/j.issn.1006-9348.2015.01.085 |
[25] | 孙宝磊, 孙暠, 张朝能, 等.基于BP神经网络的大气污染物浓度预测[J].环境科学学报, 2017, 37(5):1864-1871 http://d.old.wanfangdata.com.cn/Periodical/zghjjc201503019 SUN B L, SUN H, ZHANG C N, et al. Forecast of air pollutant concentrations by BP neural network[J]. Acta Scientiae Circumstantiae, 2017, 37(5):1864-1871 http://d.old.wanfangdata.com.cn/Periodical/zghjjc201503019 |
[26] | 刘振华, 范宏运, 朱宇泽, 等.基于BP神经网络的溶洞规模预测及应用[J].中国岩溶, 2018, 37(1):139-145 http://d.old.wanfangdata.com.cn/Periodical/zgyr201801017 LIU Z H, FAN H Y, ZHU Y Z, et al. Prediction model for the scale of karst cave based on back propagation artificial neural network and its application[J]. Carsologica Sinica, 2018, 37(1):139-145 http://d.old.wanfangdata.com.cn/Periodical/zgyr201801017 |
[27] | 王淳, 周卫, 李祖章, 等.不同施氮量下双季稻连作体系土壤氨挥发损失研究[J].植物营养与肥料学报, 2012, 18(2):349-358 http://cdmd.cnki.com.cn/Article/CDMD-82101-1012415805.htm WANG C, ZHOU W, LI Z Z, et al. Effects of different nitrogen application rates on ammonia volatilization from paddy fields under double-harvest rice system[J]. Journal of Plant Nutrition and Fertilizer, 2012, 18(2):349-358 http://cdmd.cnki.com.cn/Article/CDMD-82101-1012415805.htm |
[28] | 杨杉, 吴胜军, 王雨, 等.三峡库区农田氨挥发及其消减措施研究进展[J].土壤, 2014, 46(5):773-779 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201405001 YANG S, WU S J, WANG Y, et al. Ammonia volatilization and its reducing countermeasures in the agro-ecosystem of the three gorges area:A review[J]. Soil, 2014, 46(5):773-779 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201405001 |
[29] | 蒋朝晖, 曾清如, 方至, 等.不同温度下施入尿素后土壤短期内pH的变化和氨气释放特性[J].土壤通报, 2004, 35(3):299-302 doi: 10.3321/j.issn:0564-3945.2004.03.014 JIANG C H, ZENG Q R, FANG Z, et al. Short-term changes of pH and volatilization of ammonia from urea fertilizer in soil under different temperatures[J]. Chinese Journal of Soil Science, 2004, 35(3):299-302 doi: 10.3321/j.issn:0564-3945.2004.03.014 |
[30] | 邹长明, 颜晓元, 八木一行.淹水条件下的氨挥发研究[J].中国农学通报, 2005, 21(2):167-170 doi: 10.3969/j.issn.1000-6850.2005.02.053 ZOU C M, YAN X Y, BAMU Y X. Measurements of ammonia volatilization from paddy soils[J]. Chinese Agricultural Science Bulletin, 2005, 21(2):167-170 doi: 10.3969/j.issn.1000-6850.2005.02.053 |
[31] | 吴萍萍, 刘金剑, 杨秀霞, 等.不同施肥制度对红壤地区双季稻田氨挥发的影响[J].中国水稻科学, 2009, 23(1):85-93 doi: 10.3969/j.issn.1001-7216.2009.01.013 U P P, LIU J J, YANG X X, et al. Effects of different fertilization systems on ammonia volatilization from double-rice cropping field in red soil region[J]. Chinese Journal of Rice Science, 2009, 23(1):85-93 doi: 10.3969/j.issn.1001-7216.2009.01.013 |
[32] | FAN X H, SONG Y S, LIN D X, et al. Ammonia volatilization losses from urea applied to wheat on a paddy soil in Taihu Region, China[J]. Pedosphere, 2005, 15(1):59-65 http://www.cqvip.com/QK/71135X/201107/15219372.html |
[33] | BOUWMEESTER R J B, VELK P L G. Wind-tunnel simulation and assessment of ammonia volatilization from ponded water[J]. Agronomy Journal, 1981, 73(3):546-552 doi: 10.2134/agronj1981.00021962007300030033x |
[34] | 邰淑彩, 孙韫玉, 何娟娟.应用数理统计[M].武汉:武汉大学出版社, 2005:248-256 TAI S C, SUN Y Y, HE J J. Applied Mathematical Statistics[M]. Wuhan:Wuhan University Press, 2005:248-256 |
[35] | 薛薇. SPSS统计分析方法及应用[M].第3版.北京:电子工业出版社, 2013:262-279 XUE W. SPSS Statistical Analysis Method and Application[M]. 3rd ed. Beijing:Publishing House of Electronics Industry, 2013:262-279 |
[36] | 胡大伟, 卞新民, 李思米, 等.基于神经网络的农田土壤重金属空间分布分析[J].农业环境科学学报, 2007, 26(1):216-223 doi: 10.3321/j.issn:1672-2043.2007.01.043 HU D W, BIAN X M, LI S M, et al. Analysis of spatial distribution of soil heavy metals in farmland based on artificial neural networks[J]. Journal of Agro-Environment Science, 2007, 26(1):216-223 doi: 10.3321/j.issn:1672-2043.2007.01.043 |
[37] | 欧阳钧, 王爱枝.基于Matlab的BP神经网络在大气污染物浓度预测中的应用[J].环境科学与管理, 2009, 34(11):176-180 doi: 10.3969/j.issn.1673-1212.2009.11.047 OUYANG J, WANG A Z. The application of concentration forecasting of air pollutant based on BP neural network in Matlab[J]. Environmental Science and Management, 2009, 34(11):176-180 doi: 10.3969/j.issn.1673-1212.2009.11.047 |