删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于Landsat遥感影像和1:50 000土壤数据库的福州市耕地有机碳动态变化研究

本站小编 Free考研考试/2022-01-01

李亚1, 2,,
张黎明1, 2,
陈瀚阅1, 2,,,
袁玉琦1, 2,
邢世和2
1.福建农林大学资源与环境学院 福州 350002
2.土壤生态系统健康与调控福建省高校重点实验室 福州 350002
基金项目: 福建农林大学校****科研人才计划项目xjq201508
国家自然科学基金青年项目41401399
福建农林大学科技创新专项基金项目KFA17616A

详细信息
作者简介:李亚, 研究方向为土地资源可持续利用。E-mail:liya95519@163.com
通讯作者:陈瀚阅, 研究方向为农业遥感。E-mail:chenhanyue.420@163.com
中图分类号:S15

计量

文章访问数:707
HTML全文浏览量:14
PDF下载量:506
被引次数:0
出版历程

收稿日期:2018-09-08
录用日期:2018-11-30
刊出日期:2019-04-01

Estimation of changes in soil organic carbon in farmlands in Fuzhou City using Landsat vegetation data and 1:50 000 soil database

LI Ya1, 2,,
ZHANG Liming1, 2,
CHEN Hanyue1, 2,,,
YUAN Yuqi1, 2,
XING Shihe2
1. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. University Key Lab of Soil Ecosystem Health and Regulation in Fujian, Fuzhou 350002, China
Funds: the Fund for Outstanding Youth Scholars of Fujian Agriculture and Forestry Universityxjq201508
the National Natural Science Foundation of China41401399
the Special Fund for S & T Innovation of Fujian Agriculture and Forestry UniversityKFA17616A

More Information
Corresponding author:E-mail:chenhanyue.420@163.com


摘要
HTML全文
(6)(3)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:耕地土壤碳库是全球碳库中最为活跃的部分,其变化对全球气候变化产生重要影响。目前对耕地土壤有机碳估算多采用中、小系列比例尺的土壤数据库,较少结合遥感影像与大比例尺土壤数据库进行估算。基于此,本研究采用Landsat遥感影像和1:50 000高精度土壤数据库,以福建省福州市为例,基于遥感与碳循环过程模型对1987年和2016年耕地土壤有机碳动态变化进行研究。结果表明,利用Landsat影像反演得到的耕地土壤基础呼吸与土壤有机碳相关性强,建立的1987年和2016年模型R2分别为0.637和0.752。研究期间,全市耕地土壤有机碳密度从东部沿海向西部内陆地区递增,整体发挥着“碳汇”作用,有机碳密度和储量分别增加0.20 kg·m-2和2.946×105 t。从不同土壤类型比较得出,黄壤、红壤和水稻土是“碳汇”,有机碳密度分别增加0.70 kg·m-2、0.40 kg·m-2和0.19 kg·m-2;其他土类为“碳源”,其中,水稻土碳储量最大,两期在全市总碳储量中占比均超过90%。从不同行政区比较得出,仓山区、长乐区、马尾区和连江县为“碳源区”,其他地区为“碳汇区”,其中,仓山区碳储量一直为全市最低,两期占比均不足0.5%,而福清市则一直居于全市首位,占比均高于20%。总体而言,福州市耕地土壤有机碳30年间空间动态变化显著,在不同土类和行政区间存在差异,今后应根据不同耕地土壤类型和行政区的有机碳情况有针对性进行耕地管理。
关键词:耕地/
土壤有机碳密度/
土壤有机碳储量/
遥感反演/
碳循环过程模型/
土壤基础呼吸/
福州市
Abstract:Carbon pools in farmlands are critical drivers of change in global carbon stock and a small change in these pools could have a huge influence on CO2 concentration in the atmosphere, causing global greenhouse condition. Though medium and small scale soil databases have often been used in estimating soil organic carbon (SOC) in farmlands, remote sensing image and large-scale soil database have rarely been used. In this study, we combined remote sensing and carbon cycle model to estimate SOC in farmland of Fuzhou City (in subtropical China) using Landsat TM and Landsat 8 OLI remote sensing images plus 1:50 000 high-resolution soil database. In the study area, SOC in farmlands was calculated for 1987 and 2016. The purpose of the study was to determine whether the study area was source or sink of SOC and the dynamics of SOC pool in the region. The results showed that:1) there was a strong linear relationship between soil basal respiration and soil organic carbon density (SOCD) in farmlands in Fuzhou City. The determinant coefficient R2 was 0.637 for 1987 and 0.752 for 2016. 2) For the study period, SOCD in farmlands increased from eastern coastal area to western inland area. In general, SOCD and soil organic carbon storage (SOCS) increased by 0.20 kg·m-2 in the eastern coastal area and 2.946×105 kg·m-2 in western inland area, indicating that farmlands in Fuzhou City served as a weak "carbon sink" in the past 30 years. 3) In terms of soil type, yellow earth, red earth and paddy soil contributed the largest to "carbon sink" across the soil groups, with respective SOCD increases of 0.70 kg·m-2, 0.40 kg·m-2 and 0.19 kg·m-2. Fluvo-aquic soil, latosolic red soil, aeolian soil, coastal solonchak and purplish soil were the biggest contributors to "carbon source" across the soil group. Comparison of SOCS of different soil types in 1987 with those in 2016 showed that SOCS was highest in paddy soil, accounting for over 90% of the total carbon storage in Fuzhou City. 4) In terms of administrative region, Cangshan District, Changle District, Mawei District and Lianjiang County were "carbon source" areas. Then Minhou County, Minqing County, Fuqing City, Jin'an District, Yongtai County and Luoyuan County were "carbon sink" areas. The lowest SOCS was in Cangshan District in Fuzhou City, with less than 0.5% of total SOCS. Fuqing City always ranked the highest in Fuzhou City, accounting for over 20.0% of the total SOCS. In general, the spatial dynamics of SOCD in farmlands in Fuzhou City during the 30-year period were significant. Additionally, there were differences in different soil types and administrative regions in terms of SOCD. In future, it was beneficial to conduct farmland management based on soil type in different farmlands and SOC in the administrative regions.
Key words:Farmland/
Soil organic carbon density/
Soil organic carbon storage/
Remote sensing inversion/
Carbon process-based model/
Soil basal respiration/
Fuzhou City

HTML全文


图1福建省1987年(21个, 左)和2016年(28个, 右)标准气象站点分布
Figure1.Distribution of standard meteorological stations of Fujian Province in 1987 (21 stations, left) and 2016 (28 stations, right)


下载: 全尺寸图片幻灯片


图2福州市土壤类型(a)、耕地利用类型及采样点分布(b)图
Figure2.Distribution of soil types (a), farmland use types and sampling points (b) in Fuzhou City


下载: 全尺寸图片幻灯片


图31987年(a)和2016年(b)福州市耕地土壤有机碳密度与土壤基础呼吸的关系模型
Figure3.Relationship between soil organic carbon density and soil basal respiration in farmland in 1987 (a) and 2016 (b) of Fuzhou City


下载: 全尺寸图片幻灯片


图41987年(a)和2016年(b)福州市耕地土壤有机碳密度模拟值与观测值的比较
Figure4.Comparison of modeled and measured soil organic carbon densities in farmland in 1987 (a) and 2016 (b) of Fuzhou City


下载: 全尺寸图片幻灯片


图51987年(a)和2016年(b)福州市土壤有机碳密度(SOCD)空间分布
Figure5.Spatial distribution of soil organic carbon density (SOCD) in farmland in 1987 (a) and 2016 (b) of Fuzhou City


下载: 全尺寸图片幻灯片


图61987年(a)和2016年(b)福州市不同行政区年降水量和年均温
1:福清市; 2:长乐区; 3:仓山区; 4:马尾区; 5:晋安区; 6:连江县; 7:永泰县; 8:闽侯县; 9:闽清县; 10:罗源县。
Figure6.Annual precipitation and mean temperature in different administration areas in Fuzhou City in 1987 (a) and 2016 (b)
1: Fuqing City; 2: Changle District; 3: Cangshan District; 4: Mawei District; 5: Jin'an District; 6: Lianjiang County; 7: Yongtai County; 8: Minhou County; 9: Minqing County; 10: Luoyuan County.


下载: 全尺寸图片幻灯片

表11987年和2016年福州市耕地土壤有机碳密度统计
Table1.Statistics of soil organic carbon density in farmland in 1987 and 2016 of Fuzhou City
年份
Year
最小值
Min
(kg·m-2)
最大值
Max
(kg·m-2)
平均值
Mean
(kg·m-2)
标准差
SD
变异系数
CV (%)
1987 0.97 4.92 3.12 0.48 15.25
2016 0.44 6.16 3.31 0.92 27.80


下载: 导出CSV
表21987年和2016年福州市不同土类耕地土壤有机碳密度和储量
Table2.Organic carbon densities and carbon storages in farmland of different soil groups in 1987 and 2016 of Fuzhou City
土类
Soil group
面积
Area
(hm2)
1987 2016 两期比较Comparison between two years
密度
Density (kg·m-2)
储量
Storage (103t)
密度
Density (kg·m-2)
储量
Storage (103t)
密度
Density (kg·m-2)
储量
Storage (103t)
滨海盐土Coastal solonchaks 592 3.01 18.0 2.94 17.0 -0.07 -0.39
潮土Fluvo-aquic soil 330 2.87 9.5 2.55 8.4 -0.32 -1.06
赤红壤Latosolic red soil 46 2.97 1.4 2.66 1.2 -0.31 -0.14
风砂土Aeolian soil 431 2.74 12.0 2.62 11.0 -0.12 -0.53
红壤Red earth 8 399 3.00 252.0 3.39 285.0 0.40 33.00
黄壤Yellow earth 30 2.88 0.9 3.58 1.1 0.70 0.21
水稻土Paddy soil 139 469 3.13 4 359.0 3.31 4 622.0 0.19 263.00
紫色土Purplish soil 12 3.28 0.4 3.01 0.4 -0.27 -0.03
总计Total 149 309 3.12 4 652.0 3.31 4 947.0 0.20 295.00


下载: 导出CSV
表31987年和2016年福州市不同行政区耕地土壤有机碳密度和储量
Table3.Organic carbon density and carbon storage in farmland soils of different administration areas in 1987 and 2016 of Fuzhou City
行政区
Administrative area
面积
Area (hm2)
1987 2016 两期比较Comparison between two years
密度
Density (kg·m-2)
储量
Storage (103 t)
密度
Density (kg·m-2)
储量
Storage (103 t)
密度
Density (kg·m-2)
储量
Storage (103 t)
仓山区Cangshan District 544 2.79 15 1.95 11 -0.84 -4.5
福清市Fuqing City 35 105 3.11 1 093 3.45 1 212 0.34 119.0
晋安区Jin’an District 3 261 3.00 98 3.33 109 0.33 11.0
连江县Lianjiang County 15 545 3.07 477 3.05 474 -0.02 -3.1
罗源县Luoyuan County 12 548 3.11 391 3.22 404 0.10 13.0
马尾区Mawei District 1 885 3.14 59 3.00 57 -0.14 -2.7
闽侯县Minhou County 26 919 3.16 851 3.59 967 0.43 116.0
闽清县Minqing County 17 741 3.23 574 3.63 644 0.40 71.0
永泰县Yongtai County 20 418 3.23 660 3.35 684 0.12 24.0
长乐区Changle District 15 343 2.83 435 2.51 385 -0.32 -49.0
总计Total 149 309 3.12 4 652 3.31 4 947 0.20 295.0


下载: 导出CSV

参考文献(32)
[1]LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677):1623-1627 doi: 10.1126/science.1097396
[2]张旭博, 孙楠, 徐明岗, 等.全球气候变化下中国农田土壤碳库未来变化[J].中国农业科学, 2014, 47(23):4648-4657 doi: 10.3864/j.issn.0578-1752.2014.23.010
ZHANG X B, SUN N, XU M G, et al. Soil organic carbon in agricultural soils in China under global climate change[J]. Scientia Agricultura Sinica, 2014, 47(23):4648-4657 doi: 10.3864/j.issn.0578-1752.2014.23.010
[3]姜蓝齐, 臧淑英, 张丽娟, 等.松嫩平原农田土壤有机碳变化及固碳潜力估算[J].生态学报, 2017, 37(21):7068-7081 http://d.old.wanfangdata.com.cn/Periodical/stxb201721006
JIANG L Q, ZANG S Y, ZHANG L J, et al. Temporal and spatial variations of organic carbon and evaluation of carbon sequestration potential in the agricultural topsoil of Songnen Plain[J]. Acta Ecological Sinica, 2017, 37(21):7068-7081 http://d.old.wanfangdata.com.cn/Periodical/stxb201721006
[4]BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2):151-163 doi: 10.1111/ejs.1996.47.issue-2
[5]BATJES N H. Carbon and nitrogen stocks in the soils of Central and Eastern Europe[J]. Soil Use and Management, 2002, 18(4):324-329 doi: 10.1079/SUM2002138
[6]ROSS C W, GRUNWALD S, MYERS D B, et al. Land use, land use change and soil carbon sequestration in the St. Johns River Basin, Florida, USA[J]. Geoderma Regional, 2016, 7(1):19-28 doi: 10.1016/j.geodrs.2015.12.001
[7]解宪丽, 孙波, 周慧珍, 等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报, 2004, 41(1):35-43 doi: 10.3321/j.issn:0564-3929.2004.01.006
XIE X L, SUN B, ZHOU H Z, et al. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica, 2004, 41(1):35-43 doi: 10.3321/j.issn:0564-3929.2004.01.006
[8]周金霖, 黄阳, 陈佳婧, 等.重庆市农田土壤有机碳时空变化与固碳潜力分析[J].环境科学学报, 2015, 35(11):3647-3654 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201511029
ZHOU J L, HUANG Y, CHEN J J, et al. Analysis on temporal and spatial variations of organic carbon and carbon sequestration potential in farmland soil in Chongqing[J]. Acta Scientiae Circumstantiae, 2015, 35(11):3647-3654 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201511029
[9]周涛, 史培军, 罗巾英, 等.基于遥感与碳循环过程模型估算土壤有机碳储量[J].遥感学报, 2007, 11(1):127-136 http://d.old.wanfangdata.com.cn/Periodical/ygxb200701017
ZHOU T, SHI P J, LUO J Y, et al. Estimation of soil organic carbon based on remote sensing and process model[J]. Journal of Remote Sensing, 2007, 11(1):127-136 http://d.old.wanfangdata.com.cn/Periodical/ygxb200701017
[10]ZHOU T, SHI P J, JIA G S, et al. Nonsteady state carbon sequestration in forest ecosystems of China estimated by data assimilation[J]. Journal of Geophysical Research-Biogeosciences, 2013, 118(4):1369-1384 doi: 10.1002/jgrg.20114
[11]李婷, 李晶, 杨欢.基于遥感和碳循环过程模型的土壤固碳价值估算——以关中-天水经济区为例[J].干旱区地理, 2016, 39(2):451-459
LI T, LI J, YANG H. Estimate value of soil organic carbon based on remote sensing and process model in Guanzhong-Tianshui Economic Region[J]. Arid Land Geography, 2016, 39(2):451-459
[12]陈中星, 张楠, 张黎明, 等.福建省土壤有机碳储量估算的尺度效应研究[J].土壤学报, 2018, 55(3):606-619 http://d.old.wanfangdata.com.cn/Periodical/trxb201803007
CHEN Z X, ZHANG N, ZHANG L M, et al. Scale effects of estimation of soil organic carbon storage in Fujian Province, China[J]. Acta Pedologica Sinica, 2018, 55(3):606-619 http://d.old.wanfangdata.com.cn/Periodical/trxb201803007
[13]吴艳艳.城市化过程广州土地覆盖变化对净初级生产力格局的影响[D].广州: 中山大学, 2016
WU Y Y. The effects of land cover change on patterns of net primary productivity in the process of urbanization of Guangzhou[D]. Guangzhou: Sun Yat-Sen University, 2016
[14]朱文泉, 潘耀忠, 张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报, 2007, 31(3):413-424 doi: 10.3321/j.issn:1005-264X.2007.03.010
ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 31(3):413-424 doi: 10.3321/j.issn:1005-264X.2007.03.010
[15]侯光良, 李继由, 张谊光.中国农业气候资源[M].北京:中国人民大学出版社, 1993
HOU G L, LI J Y, ZHANG Y G. China Agricultural Climate Resources[M]. Beijing:China Renmin University Press, 1993
[16]周伟, 牟凤云, 刚成诚, 等. 1982—2010年中国草地净初级生产力时空动态及其与气候因子的关系[J].生态学报, 2017, 37(13):4335-4345
ZHOU W, MU F Y, GANG C C, et al. Spatio-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China[J]. Acta Ecological Sinica, 2017, 37(13):4335-4345
[17]朱文泉, 潘耀忠, 何浩, 等.中国典型植被最大光利用率模拟[J].科学通报, 2006, 51(6):700-706 doi: 10.3321/j.issn:0023-074X.2006.06.014
ZHU W Q, PAN Y Z, HE H, et al. Simulation of maximum light use efficiency for some typical vegetation types in China[J]. Chinese Science Bulletin, 2006, 51(6):700-706 doi: 10.3321/j.issn:0023-074X.2006.06.014
[18]RAICH J W, POTTER C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9(1):23-36 doi: 10.1029/94GB02723
[19]PAN G X, LI L Q, ZHANG Q, et al. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration[J]. Journal of Environmental Sciences, 2005, 17(1):1-7
[20]袁芳, 赵小敏, 乐丽红, 等.江西省表层土壤有机碳库储量估算与空间分布特征[J].生态环境, 2008, 17(1):268-272 doi: 10.3969/j.issn.1674-5906.2008.01.052
YUAN F, ZHAO X M, LE L H, et al. Organic carbon reserves of topsoil and spatial distribution in Jiangxi Province[J]. Ecology and Environment, 2008, 17(1):268-272 doi: 10.3969/j.issn.1674-5906.2008.01.052
[21]SONG G H, PAN G X, ZHANG Q. Topsoil organic carbon storage of China and its loss by cultivation[J]. Biogeochemistry, 2005, 74(1):47-62 doi: 10.1007/s10533-004-2222-3
[22]WANG S Q, TIAN H Q, LIU J Y, et al. Pattern and change of soil organic carbon storage in China:1960s-1980s[J]. Tellus B:Chemical and Physical Meteorology, 2003, 55(2):416-427
[23]龙军, 张黎明, 毛艳玲, 等.福建省不同耕地土壤和土地利用类型对"碳源/汇"的贡献差异研究[J].土壤学报, 2013, 50(4):664-674 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201304006.htm
LONG J, ZHANG L M, MAO Y L, et al. Study on the difference of contributions made by various cropland soil and land use types to carbon source/sink in Fujian Province, China[J]. Acta Pedologica Sinica, 2013, 50(4):664-674 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201304006.htm
[24]刘书田.中国农田土壤有机碳时空分布规律及影响因素研究[D].长春: 吉林农业大学, 2016
LIU S T. The rule of temporal and spatial distribution of soil organic carbon of cropland and its influencing factors in China[D]. Changchun: Jilin Agricultural University, 2016
[25]张楠.基于高精度数据库和3D模型的福建省土壤有机碳储量估算研究[D].福州: 福建农林大学, 2017
ZHANG N. Study on high precision database and 3D model of soil organic carbon stocks estimation of Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017
[26]高岩红.普定县农田土壤有机碳库演变特征及影响因素研究[D].重庆: 西南大学, 2014
GAO Y H. Study on evolution characteristic and affecting factors of soil organic carbon in cropland in Puding County[D]. Chongqing: Southwest University, 2014
[27]钟聪, 杨忠芳, 夏学齐, 等.青海省土壤有机碳储量估算及其源汇因素分析[J].现代地质, 2012, 26(5):896-909 doi: 10.3969/j.issn.1000-8527.2012.05.008
ZHONG C, YANG Z F, XIA X Q, et al. Estimation of soil organic carbon storage and analysis of soil carbon source/sink factors in Qinghai Province[J]. Geoscience, 2012, 26(5):896-909 doi: 10.3969/j.issn.1000-8527.2012.05.008
[28]陈曦.广西土壤有机碳储量估算及与全国部分省区的比较研究[J].地理科学, 2014, 34(10):1247-1253 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201410013.htm
CHEN X. Estimation of soil organic carbon reserves in Guangxi and comparison study with some provinces in China[J]. Scientia Geographica Sinica, 2014, 34(10):1247-1253 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201410013.htm
[29]支俊俊, 荆长伟, 张操, 等.利用1:5万土壤数据库估算浙江省土壤有机碳密度及储量[J].应用生态学报, 2013, 24(3):683-689 http://d.old.wanfangdata.com.cn/Periodical/bjjn201106007
ZHI J J, JING C W, ZHANG C, et al. Estimation of soil organic carbon density and storage in Zhejiang Province of East China by using 1:50000 soil database[J]. Chinese Journal of Applied Ecology, 2013, 24(3):683-689 http://d.old.wanfangdata.com.cn/Periodical/bjjn201106007
[30]福建省土壤普查办公室.福建土壤[M].福州: 福建科学技术出版社, 1991
Soil Survey Office in Fujian Province. Soils of Fujian[M]. Fuzhou: Fujian Science and Technology Publishing House, 1991
[31]GEVAERT C M, GARC A-HARO F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015, 156:34-44 doi: 10.1016/j.rse.2014.09.012
[32]赵芬.基于CASA模型的锡林郭勒盟草地净初级生产力遥感估算与验证[D].北京: 中国农业科学院, 2015
ZHAO F. Remote sensing estimation and validation of net primary production in the Xilingol grassland based on CASA model[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015

相关话题/土壤 遥感 过程 图片 数据库