删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

连作植烟土壤酚酸类物质变化特征及其与主要环境因子的Mantel Test分析

本站小编 Free考研考试/2022-01-01

白羽祥1,,
杨成翠1,
史普酉1,
贾孟1,
杨焕文1,
徐照丽2,
王戈1,,
1.云南农业大学烟草学院 昆明 650201
2.云南省烟草农业科学研究院 昆明 650021
基金项目: 国家自然科学基金项目31860357
云南省应用基础研究计划项目2015FB145
云南省研究生学术新人奖A2008057
云南烟用有机肥养分资源利用研究2017YN07

详细信息
作者简介:白羽祥, 主要从事烟草生理生化研究。E-mail:cotsbyx@163.com
通讯作者:王戈, 主要从事烟草栽培生理生化研究。E-mail: wangge302@126.com
中图分类号:S572;S154.1

计量

文章访问数:738
HTML全文浏览量:17
PDF下载量:574
被引次数:0
出版历程

收稿日期:2018-07-27
录用日期:2018-10-15
刊出日期:2019-03-01

Correlation analysis of main environmental factors and phenolic acids in continuous tobacco cropping soils using Mantel Test

BAI Yuxiang1,,
YANG Chengcui1,
SHI Puyou1,
JIA Meng1,
YANG Huanwen1,
XU Zhaoli2,
WANG Ge1,,
1. College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China
2. Yunnan Academy of Tobacco Science, Kunming 650021, China
Funds: the National Natural Science Foundation of China31860357
the Applied Basic Research Project of Yunnan Province2015FB145
the Graduate Scholar Newcomer Award of Yunnan ProvinceA2008057
the Study on Utilization of Organic Fertilizer of Tobacco in Yunnan Province2017YN07

More Information
Corresponding author:WANG Ge, E-mail: wangge302@126.com


摘要
HTML全文
(4)(5)
参考文献(45)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为明确酚酸类物质在连作植烟土壤中的变化特征,探讨土壤主要环境因子对酚酸类物质的影响,以不同连作年限(4 a,6 a,8 a,14 a和16 a)植烟土壤为对象,研究了不同连作年限植烟土壤酚酸类物质、理化性状、酶活性和细菌多样性的变化特征,并利用Mantel Test分析了酚酸类物质与土壤主要环境因子的相关性。结果表明,随连作年限增加,土壤酚酸类物质和速效钾含量升高,pH、有机质含量、细菌菌群丰度和多样性降低,水解性氮和有效磷含量呈先降低后升高趋势,酶活性呈先升高后降低趋势。Mantel Test分析表明,土壤酚酸类物质含量与理化性状、酶活性和细菌丰度显著相关,且与理化性状相关性最高;不同酚酸类物质含量与土壤主要环境因子相关性存在差异,其中,对羟基苯甲酸和阔马酸与植烟土壤理化性状、酶活性以及细菌丰度的相关性最高。因此,在本试验条件下,连作植烟土壤酚酸类物质具有明显积累特征,植烟土壤环境恶化;酚酸类物质积累受理化性状、酶活性和细菌多样性影响,且理化性状影响最大;不同酚酸类物质受主要土壤环境因子的影响存在差异,其中对羟基苯甲酸和阔马酸积累所受影响最大。
关键词:烤烟/
连作/
酚酸类物质/
土壤环境/
Mantel Test
Abstract:Flue-cured tobacco is a crop sensitive to continuous cropping. Continuous cropping over the long-term has seriously affected growth and production quality of flue-cured tobacco by affecting the soil environment. Phenolic acids can cause growth disorders under continuous cropping. Although the interaction between phenolic acids and other environmental factors after entering the soil environment has not much been investigated, it is clear that phenolic acids occur in soils under continuous tobacco cropping. The action process and the role in limiting continuous cropping are critical for successful tobacco cultivation. An experiment was conducted to determine the relationship between phenolic acids and soil environmental factors in the soil by analyzing the correlation between various environmental factors and phenolic acids in soil. The purpose was to identify the environmental factors affecting the concentration of phenolic acids in soils under continuous cropping systems. Soils of four tobacco fields with different durations of continuous cropping (4 a, 6 a, 8 a, 14 a and 16 a) were sampled. The changes in phenolic acids, physical and chemical properties, enzyme activities and bacterial diversities in soils under different continuous cropping years of tobacco were investigaed. The correlation between phenolic acids and soil environmental factors was analyzed using the Mantel Test. The results showed that long-term continuous cropping of tobacco resulted in an increase in soil phenolic acids content. Higher pH of soil under tobacco continuous cropping resulted in low soil organic matter content, but increased available potassium. The activities of catalase, urease acid phosphatase, and invertase first increased and then later decreased. When continuous cropping for less than 6 years, bacterial community structure changed little. However, bacterial community structure changed significantly after 8 years of continuous cropping. In general, continuous cropping changed bacterial community structure and reduced community diversity. Mantel Test analysis showed that phenolic acid content was significantly correlated with enzymes activities and physical and chemical properties of soil. Bacterial abundance had the highest correlation with soil physical and chemical properties. There were differences in correlation between different phenolic acids and soil environmental factors. P-hydroxybenzoic acid and phoronic acid had the highest correlation with physical and chemical properties of soil, enzyme activity and bacterial abundance in soils. Therefore, phenolic acids in soils under continuous tobacco cropping obviously accumulated over time with deteriorated soil environment. The accumulation of phenolic acids was affected by soil physical, chemical and biological properties of soil. P-hydroxybenzoic acid and tartaric acid were two kind phenolic acids most affected.
Key words:Flue-cured tobacco/
Continuous cropping/
Phenolic acid/
Soil environmental factor/
Mantel Test

HTML全文


图1不同连作年限植烟土壤细菌群落的Shannon、Simpson、ACE和Chao1指数
不同小写字母代表不同连作年限在5%水平显著。
Figure1.Effect of continuous cropping years of tobacco on Shannon, Simpson, ACE and Chao1 index of soil bacterial community
Different lowercase letters represent significant differences among different continuous cropping years at 0.05 level.


下载: 全尺寸图片幻灯片


图2连作植烟土壤酚酸类物质与环境因子相关性
**表示在0.01水平显著相关。
Figure2.Correlation between phenolic acids content and soil environmental factors of continuously cropped tobacco
** indicates significant correlation at 0.01 level.


下载: 全尺寸图片幻灯片


图3基于Mantel Test的连作植烟土壤酚酸类物质与土壤环境因子相关性
**表示在0.01水平显著相关。P:间苯三酚; HA:阔马酸; PA:对羟基苯甲酸; VA:香草酸; V:香兰素; FA:阿魏酸; BA:苯甲酸; CA:肉桂酸; A:总量。
Figure3.Correlation between phenolic acids and soil environmental factors of continuously cropped tobacco based on Mantel Test
** indicates significant correlation at 0.01 level.P: phloroglucinol; HA: caramelic acid; PA: p-hydroxybenzoic acid; VA: vanillic acid; V: vanillin; FA: ferulic acid; BA: benzoic acid; CA: cinnamic acid; A: total amount.


下载: 全尺寸图片幻灯片


图4连作植烟土壤中与土壤环境因子相关性最高的前4种酚酸类物质的韦恩图
A:理化性状; B:酶活性; C:细菌门水平相对丰度。
Figure4.Venn diagram of the first four phenolic acids with the highest correlation with soil environmental factors of continuously cropped tobacco
A: soil physic-chemical properties; B: soil enzyme activity; C: relative abundances of bacterial phyla.


下载: 全尺寸图片幻灯片

表1不同连作年限烤烟土壤样品细菌基因测序数据预处理统计及质控
Table1.Data pre-processing statistics and quality control of bacterial gene sequencing of soil samples of tobacco continuously planted for different years
连作年限
Continuous cropping years (a)
原始下机序列
Raw reads
Clean reads中碱基数目
Base number of clean reads
Clean reads平均长度
Average length of clean reads (nt)
Clean reads中质量值大于20的碱基占比 Q20 Clean reads中 GC碱基含量
GC proportion of clean reads (%)
Clean reads的序列占比
Effective of clean reads (%)
4 50 798 12 276 030 253 99 55 96
6 56 998 13 741 732 253 99 55 95
8 65 290 15 845 683 253 99 56 96
14 52 905 12 438 514 260 99 57 90
16 59 980 14 595 832 253 99 53 96


下载: 导出CSV
表2不同连作年限植烟土壤酚酸类物质种类和含量
Table2.Species and contents of phenolic acids in soil of tobacco continuously cropped for different years
mg·kg-1
酚酸类物质种类
Species of phenolic acid
连作年限 Continuous cropping years (a)
4 6 8 14 16
间苯三酚 Phloroglucinol 1.213±0.021e 1.320±0.098d 1.447±0.061c 1.583±0.156b 1.987±0.055a
阔马酸 Caramelic acid 0.050±0.010c 0.049±0.007c 0.058±0.010b 0.063±0.013b 0.134±0.015a
对羟基苯甲酸 P-hydroxybenzoic acid 0.127±0.005d 0.187±0.020c 0.122±0.010d 0.279±0.021b 0.467±0.020a
香草酸 Vanillic acid 0.073±0.011d 0.123±0.006c 0.089±0.010d 0.145±0.024b 0.278±0.0123a
香兰素 Vanillin 0.090±0.017d 0.148±0.030b 0.128±0.019c 0.166±0.015b 0.291±0.010a
阿魏酸 Ferulic acid 0.032±0.011c 0.044±0.023c 0.122±0.025b 0.132±0.007b 0.318±0.020a
苯甲酸 Benzoic acid 0.046±0.008d 0.079±0.005b 0.111±0.004a 0.065±0.002c 0.071±0.003bc
肉桂酸 Cinnamic acid 0.024±0.005b 0.025±0.002b 0.039±0.001a 0.010±0.002c 0.008±0.001d
总量 Total amount 1.684±0.054d 1.954±0.056c 2.105±0.060c 2.412±0.067b 3.535±0.150a
不同小写字母代表不同连作年限在5%水平显著。Different lowercase letters represent significant differences among different continuous cropping years at 0.05 level.


下载: 导出CSV
表3不同连作年限植烟土壤理化性状的影响
Table3.Effect of continuous cropping years of tobacco on soil physico-chemical properties
性质 Property 连作年限 Continuous cropping years (a)
4 6 8 14 16
pH 7.63±0.15a 7.40±0.13b 7.30±0.18b 6.61±0.12c 6.40±0.14d
有机质含量 Organic matter content (g·kg-1) 55.02±2.22a 51.92±2.71b 36.61±1.33c 34.88±3.17c 34.95±2.56c
水解性氮含量 Hydrolyzed nitrogen content (mg·kg-1) 201.5±10.3b 173.3±15.2b 120.1±15.0c 118.2±20.2c 330.5±10.8a
有效磷含量 Available phosphorus content (mg·kg-1) 51.04±3.59a 35.46±3.11b 19.86±0.80c 18.16±1.04c 22.26±2.05c
速效钾含量 Available potassium content (mg·kg-1) 466.7±25.1b 468.4±40.1b 463.4±20.8b 1 273.7±105a 1 260.4±110a
不同小写字母代表不同连作年限在5%水平显著。Different lowercase letters represent significant differences among different continuous cropping years at 0.05 level.


下载: 导出CSV
表4不同连作年限植烟土壤酶活性的变化
Table4.Effect of continuous cropping years of tobacco on soil enzymes activities
mg·g-1·(24h)-1
酶 Enzyme 连作年限 Continuously cropping years (a)
4 6 8 14 16
过氧化氢酶 Catalase 3.81±0.13c 4.35±0.09b 4.92±0.10a 2.63±0.14d 2.03±0.16d
脲酶 Urease 0.61±0.03b 0.68±0.09a 0.63±0.04b 0.58±0.06c 0.45±0.02d
酸性磷酸酶 Acid phosphatase 1.50±0.08d 2.37±0.08b 2.64±0.10a 1.93±0.07c 1.32±0.17d
蔗糖酶 Invertase 13.80±0.27b 16.70±0.33a 16.30±0.84a 13.90±0.31b 12.30±0.29c
不同小写字母代表不同连作年限在5%水平显著。Different lowercase letters represent significant differences among different continuous cropping years at 0.05 level.


下载: 导出CSV
表5不同连作年限植烟土壤中门水平细菌的相对丰度
Table5.Relative abundances of bacterial phyla in soil of tobacco continuously cropped for different years
%
门 Phyla 连作年限 Continuously cropping years (a)
4 6 8 14 16
变形菌门 Proteobacteria 59.6±2.5a 57.7±2.6a 48.0±1.8ab 37.3±1.7b 47.0±8.0ab
拟杆菌门 Bacteroidetes 11.0±0.6b 12.8±2.4b 6.5±0.7c 4.8±1.3c 35.2±3.1a
芽单胞菌门 Gemmatimonadetes 3.2±0.7b 2.5±0.2b 3.1±0.5b 13.3±1.0a 0.8±0.3b
放线菌门 Actinobacteria 11.3±2.4b 12.4±2.0b 20.7±1.6a 12.7±2.1b 6.5±2.4c
酸杆菌门 Acidobacteria 5.5±0.8bc 6.9±2.1b 9.5±0.3ab 13.2±4.4a 2.1±0.8c
硬壁菌门 Firmicutes 2.5±0.4b 1.3±0.2b 0.8±0.2b 2.1±0.9b 6.1±1.4a
绿弯菌门 Chloroflexi 1.4±0.1c 1.1±0.2c 3.5±0.3b 5.3±1.6a 0.4±0.1c
疣微菌门 Verrucomicrobia 1.4±0.3b 1.6±0.5b 3.3±0.8a 3.6±0.4a 0.6±0.2c
浮霉状菌门 Planctomycetes 0.7±0.2ab 1.0±0.4ab 1.5±0.6ab 1.7±1.2a 0.3±0.1b
硝化螺旋菌门 Nitrospirae 1.3±0.1a 0.9±0.2b 0.7±0.1b 1.3±0.3a 0.4±0.1a
其他 Others 2.2±0.2b 1.9±0.2b 2.5±0.3b 4.8±0.5a 0.8±0.3c
不同小写字母代表不同连作年限在5%水平显著。Different lowercase letters represent significant differences among different continuous cropping years at 0.05 level.


下载: 导出CSV

参考文献(45)
[1]张继光, 姚忠达, 张忠锋, 等.皖南地区不同烤烟种植模式的土壤环境及经济效益分析[J].土壤, 2016, 48(3):553-558 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA201603021.htm
ZHANG J G, YAO Z D, ZHANG Z F, et al. Effects of different tobacco planting patterns on soil environment and economic benefits in South Anhui Province[J]. Soil, 2016, 48(3):553-558 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA201603021.htm
[2]张继光, 申国明, 张久权, 等.烟草连作障碍研究进展[J].中国烟草科学, 2011, 32(3):95-99 doi: 10.3969/j.issn.1007-5119.2011.03.020
ZHANG J G, SHEN G M, ZHANG J Q, et al. Advance in continuous cropping problems of tobacco[J]. Chinese Tobacco Science, 2011, 32(3):95-99 doi: 10.3969/j.issn.1007-5119.2011.03.020
[3]康亚龙, 景峰, 孙文庆, 等.加工番茄连作对土壤理化性状及微生物量的影响[J].土壤学报, 2016, 53(2):533-542 http://d.old.wanfangdata.com.cn/Periodical/trxb201602025
KANG Y L, JING F, SUN W Q, et al. Effects of continuous cropping of processing tomato on physical-chemical properties of and microbial biomass in the soil[J]. Acta Pedologica Sinica, 2016, 53(2):533-542 http://d.old.wanfangdata.com.cn/Periodical/trxb201602025
[4]妙佳源, 李夏, 周达, 等.连作对谷子土壤酶活性及养分的影响[J].干旱地区农业研究, 2016, 34(3):123-126 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201603019
MIAO J Y, LI X, ZHOU D, et al. Effects of foxtail millet continuous cropping on soil enzyme activities and nutrients[J]. Agricultural Research in the Arid Areas, 2016, 34(3):123-126 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201603019
[5]宋旭红, 谭均, 潘媛, 等.连作对玄参产量和根际土壤肥力及酶活性的影响[J].中药材, 2017, 40(6):1243-1248 http://d.old.wanfangdata.com.cn/Periodical/zyc201706001
SONG X H, TAN J, PAN Y, et al. Effect of continuous monoculture of Scrophularia ningpoensis on yield, rhizophere soil fertility and enzyme activities[J]. Journal of Chinese Medicinal Materials, 2017, 40(6):1243-1248 http://d.old.wanfangdata.com.cn/Periodical/zyc201706001
[6]TAN Y, CUI Y S, LI H Y, et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices[J]. Journal of Basic Microbiology, 2017, 57(4):337-344 doi: 10.1002/jobm.201600464/pdf
[7]王娟英, 许佳慧, 吴林坤, 等.不同连作年限怀牛膝根际土壤理化性质及微生物多样性[J].生态学报, 2017, 37(17):5621-5629 http://d.old.wanfangdata.com.cn/Periodical/stxb201717006
WANG J Y, XU J H, WU L K, et al. Analysis of physicochemical properties and microbial diversity in rhizosphere soil of Achyranthes bidentata under different cropping years[J]. Acta Ecologica Sinica, 2017, 37(17):5621-5629 http://d.old.wanfangdata.com.cn/Periodical/stxb201717006
[8]BHAT R G, SCHMIDT L S, BROWNE G T. Quantification of Cylindrocarpon sp. in roots of almond and peach trees from orchards affected by Prunus replant disease[J]. Phytopathology, 2011, 101:S15
[9]CHEN S L, ZHOU B L, LIN S S, et al. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle[J]. African Journal of Biotechnology, 2011, 10(14):2659-2665 doi: 10.5897/AJB
[10]XIAO C L, ZHENG J H, ZOU L Y, et al. Autotoxic effects of root exudates of soybean[J]. Allelopathy Journal, 2006, 18(1):121-127
[11]VáZQUEZ G, FONTENLA E, SANTOS J, et al. Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts[J]. Industrial Crops and Products, 2008, 28(3):279-285 doi: 10.1016/j.indcrop.2008.03.003
[12]YU J Q, MATSUI Y. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings[J]. Journal of Chemical Ecology, 1997, 23(3):817-827 doi: 10.1023/B:JOEC.0000006413.98507.55
[13]YE S F, YU J Q, PENG Y H, et al. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates[J]. Plant and Soil, 2004, 263(1):143-150 doi: 10.1023/B%3APLSO.0000047721.78555.dc
[14]SCHUTTER M, SANDENO J, DICK R. Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems[J]. Biology and Fertility of Soils, 2001, 34(6):397-410 doi: 10.1007/s00374-001-0423-7
[15]ZHANG S S, JIN Y L, ZHU W J, et al. Baicalin released from Scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens[J]. Journal of Chemical Ecology, 2010, 36(3):329-338 doi: 10.1007/s10886-010-9760-z
[16]ZHOU X G, WU F Z. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen[J]. PLoS One, 2012, 7(10):e48288 doi: 10.1371/journal.pone.0048288
[17]ZHOU X G, JIA H T, GE X, et al. Effects of vanillin on the community structures and abundances of Fusarium and Trichoderma spp. in cucumber seedling rhizosphere[J]. Journal of Plant Interactions, 2018, 13(1):45-50 doi: 10.1080/17429145.2017.1414322
[18]LIU P, LIU Z H, WANG C B, et al. Effects of three long-chain fatty acids present in peanut (Arachis hypogaea L.) root exudates on its own growth and the soil enzymes activities[J]. Allelopathy Journal, 2012, 29(1):13-24
[19]LIU P, WAN S B, JIANG L H, et al. Autotoxic potential of root exudates of peanut (Arachis hypogaea L.)[J]. Allelopathy Journal, 2010, 26(2):197-206 http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ0217348380.aspx
[20]QU X H, WANG J G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity[J]. Applied Soil Ecology, 2008, 39(2):172-179 doi: 10.1016/j.apsoil.2007.12.007
[21]柯文辉.烟草连作障碍的根际微生态研究[D].福州: 福建农林大学, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10389-2009170226.htm
KE W H. Studies on rhizospheric microecology of continuous tobacco cropping obstacle[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10389-2009170226.htm
[22]符建国, 易建华, 贾志红, 等.轮作与连作烟田根际土壤酸性有机组分的初步分离与鉴定[J].中国烟草科学, 2011, 32(6):67-71 doi: 10.3969/j.issn.1007-5119.2011.06.015
FU J G, YI J H, JIA Z H, et al. Initial isolation and identification of acidic component of organic compounds in rhizospheric soils of flue-cured tobacco with rotation and mono-cropping[J]. Chinese Tobacco Science, 2011, 32(6):67-71 doi: 10.3969/j.issn.1007-5119.2011.06.015
[23]石秋环, 焦枫, 耿伟, 等.烤烟连作土壤环境中的障碍因子研究综述[J].中国烟草学报, 2009, 15(6):81-84 doi: 10.3969/j.issn.1004-5708.2009.06.017
SHI Q H, JIAO F, GENG W, et al. An overview on research into factors hindering continuous cropping in flue-cured tobacco[J]. Acta Tabacaria Sinica, 2009, 15(6):81-84 doi: 10.3969/j.issn.1004-5708.2009.06.017
[24]YU J Q, SHOU S Y, QIAN Y R, et al. Autotoxic potential of cucurbit crops[J]. Plant and Soil, 2000, 223(1/2):149-153 doi: 10.1023/A:1004829512147
[25]宋慧.小豆连作障碍中自毒机理研究[D].杨凌: 西北农林科技大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10712-1013347297.htm
SONG H. Autointoxication in adzuki bean replant disease[D]. Yangling: Northwest A & F University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10712-1013347297.htm
[26]邵财.人参连作障碍化感作用研究[D].长春: 中国农业科学院, 2009 http://cdmd.cnki.com.cn/article/cdmd-82101-2009152728.htm
SHAO C. Study on allelopathy in continuous cropping obstacle of Panax ginseng[D]. Changchun: Chinese Academy of Agricultural Sciences, 2009 http://cdmd.cnki.com.cn/article/cdmd-82101-2009152728.htm
[27]MANTEL N. The detection of disease clustering and a generalized regression approach[J]. Cancer Research, 1967, 27(2):209-220 http://aob.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=canres&resid=27/2_Part_1/209
[28]覃光莲, 谭劲英. Mantel方法在生态学中的应用[J].生物数学学报, 2014, (3):507-512 http://www.cnki.com.cn/Article/CJFDTOTAL-SWSX201403015.htm
QIN G L, TAN J Y. Mantel test and its applications in ecology[J]. Journal of Biomathematics, 2014, (3):507-512 http://www.cnki.com.cn/Article/CJFDTOTAL-SWSX201403015.htm
[29]王强, 戴九兰, 付合才, 等.空间分析方法在微生物生态学研究中的应用[J].生态学报, 2010, 30(2):439-446 http://d.old.wanfangdata.com.cn/Periodical/stxb201002020
WANG Q, DAI J L, FU H C, et al. The application of spatial analysis methods to microbial ecology[J]. Acta Ecologica Sinica, 2010, 30(2):439-446 http://d.old.wanfangdata.com.cn/Periodical/stxb201002020
[30]SCHAPPE T, ALBORNOZ F E, TURNER B L, et al. The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests[J]. Journal of Ecology, 2017, 105(3):569-579 doi: 10.1111/1365-2745.12752
[31]XIONG W, LI Z G, LIU H J, et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing[J]. PLoS One, 2015, 10(8):e0136946 doi: 10.1371/journal.pone.0136946
[32]梅守荣.土壤酶活性及其测定[J].上海农业科技, 1985, (1):17-18 http://cdmd.cnki.com.cn/Article/CDMD-10712-2009031405.htm
MEI S R. Soil enzyme activity and its determination[J]. Shanghai Agricultural Science and Technology, 1985, (1):17-18 http://cdmd.cnki.com.cn/Article/CDMD-10712-2009031405.htm
[33]MAGO? T, SALZBERG S L. FLASH:Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963 doi: 10.1093/bioinformatics/btr507
[34]BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1):57-59 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228377423/
[35]CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336 http://nar.oxfordjournals.org/external-ref?access_num=20383131&link_type=MED
[36]EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200 doi: 10.1093/bioinformatics/btr381
[37]HAAS B J, GEVERS D, EARL A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3):494-504 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3044863
[38]EDGAR R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998 doi: 10.1038/nmeth.2604
[39]ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 215(3):403-410 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231404456/
[40]K?LJALG U, NILSSON R H, ABARENKOV K, et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molecular Ecology, 2013, 22(21):5271-5277 doi: 10.1111/mec.12481
[41]孙海兵, 毛志泉, 朱树华.环渤海湾地区连作苹果园土壤中酚酸类物质变化[J].生态学报, 2011, 31(1):90-97 doi: 10.3969/j.issn.1673-1182.2011.01.022
SUN H B, MAO Z Q, ZHU S H. Changes of phenolic acids in the soil of replanted apple orchards surrounding Bohai Gulf[J]. Acta Ecologica Sinica, 2011, 31(1):90-97 doi: 10.3969/j.issn.1673-1182.2011.01.022
[42]李贺勤, 刘奇志, 张林林, 等.草莓连作土壤酚酸类物质积累对土壤线虫的影响[J].生态学杂志, 2014, 33(1):169-175 http://d.old.wanfangdata.com.cn/Periodical/stxzz201401025
LI H Q, LIU Q Z, ZHANG L L, et al. Accumulation of phenolic acids in the monocultured strawberry soils and their effect on soil nematodes[J]. Chinese Journal of Ecology, 2014, 33(1):169-175 http://d.old.wanfangdata.com.cn/Periodical/stxzz201401025
[43]李亮亮, 李天来, 张恩平, 等.四种酚酸物质在土壤中降解的研究[J].土壤通报, 2010, 41(6):1460-1465 http://d.old.wanfangdata.com.cn/Periodical/trtb201006033
LI L L, LI T L, ZHANG E P, et al. Experimental study on degradation of four phenolic acids in soil[J]. Chinese Journal of Soil Science, 2010, 41(6):1460-1465 http://d.old.wanfangdata.com.cn/Periodical/trtb201006033
[44]巩庆利, 翟丙年, 郑伟, 等.渭北旱地苹果园生草覆盖下不同肥料配施对土壤养分和酶活性的影响[J].应用生态学报, 2018, 29(1):205-212 http://d.old.wanfangdata.com.cn/Periodical/yystxb201801024
GONG Q L, ZHAI B N, ZHENG W, et al. Effects of grass cover combined with different fertilization regimes on soil nutrients and enzyme activities in apple orchard in Weibei dryland, China[J]. Chinese Journal of Applied Ecology, 2018, 29(1):205-212 http://d.old.wanfangdata.com.cn/Periodical/yystxb201801024
[45]LI X G, DING C F, HUA K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 2014, 78:149-159 doi: 10.1016/j.soilbio.2014.07.019

相关话题/土壤 物质 环境 理化 烟草