删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

安太堡煤矿区不同复垦年限和复垦模式土壤氮矿化及硝化特征

本站小编 Free考研考试/2022-01-01

江山,
刘焕焕,
张菁,
王改玲,
山西农业大学资源环境学院 太谷 030801
基金项目: 山西省科技重大专项20121101007

详细信息
作者简介:江山, 主要从事土地复垦与生态重建研究。E-mail:647960016@qq.com
通讯作者:王改玲, 主要从事土地复垦与生态重建研究。E-mail:gailingwang@qq.com
中图分类号:S151.9+3

计量

文章访问数:666
HTML全文浏览量:8
PDF下载量:536
被引次数:0
出版历程

收稿日期:2018-06-13
录用日期:2018-09-26
刊出日期:2019-02-01

Responses of soil nitrogen mineralization and nitrification to reclamation years and modes of coal mine

JIANG Shan,
LIU Huanhuan,
ZHANG Jing,
WANG Gailing,
Institute of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China
Funds: the Science and Technology Major Project of Shanxi Province20121101007

More Information
Corresponding author:WANG Gailing, E-mail:gailingwang@qq.com


摘要
HTML全文
(5)(4)
参考文献(40)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为揭示煤矿复垦区土壤氮素内循环中的矿化及硝化特征,探索不同复垦模式与不同复垦年限下复垦土壤的氮素转化效率,采集山西安太堡露天煤矿中复垦3年、9年、21年苜蓿地及3年荞麦地表层(0~20 cm)土壤,并以3年自然恢复和未复垦新排土为对照,采用间歇淋洗好气培养法与恒温培养法研究各采样地土壤矿化与硝化过程,利用一级反应动力学模型与Logistic方程对有机氮素的矿化与硝化数据进行拟合。结果表明,3年苜蓿地的矿化速率最高,21年苜蓿地的矿化速率最低,且土壤氮素快速矿化主要在培养前7 d,之后逐渐平缓,并在28 d趋于稳定。经一级动力学方程拟合可知,氮矿化势(No)的变化范围为89.28~124.51 mg·kg-1,21年苜蓿地> 3年自然恢复地> 3年苜蓿地> 3年荞麦地>未复垦新排土> 9年苜蓿地;矿化速率常数(k)的变化范围为0.022 6~0.051 9,3年苜蓿地> 9年苜蓿地>未复垦新排土> 3年自然恢复地> 3年荞麦地> 21年苜蓿地。氮矿化势与土壤有机质含量显著正相关(r=0.91)。复垦区各土壤随培养时间的延长硝态氮含量大致为"S"型曲线且可分为3个阶段:前期阶段(0~5 d)-上升阶段(5~14 d)-稳定阶段(14~28 d);Logistic方程拟合结果显示:复垦年限显著影响硝化高峰出现的时间(不同复垦年限苜蓿地最大相差6.85 d),21年苜蓿地硝化过程剧烈而短促,3年自然恢复地的硝化过程缓慢而漫长;耕地较草地有更大的硝化速率与更长的硝化时间。长期的种植苜蓿复垦显著提高了土壤的氮库容量,矿化过程更为平稳。
关键词:复垦年限/
复垦模式/
氮素转化效率/
有机氮/
矿化/
硝化/
安太堡露天煤矿
Abstract:Soil nitrogen mineralization and nitrification are impacted by microbial activity and soil properties. The reclaimed coal mine soil are artificially reconstructed soil with different properties from farmland soil, such as lower organic matter content, small nitrogen sink, weak microbial activity. In order to reveal the response of nitrogen mineralization and nitrification of reclaimed soils in coal reclamation areas and to explore the soil nitrogen conversion efficiencies under different reclamation patterns and for different reclamation years, a laboratory experiment with soil sampled from the reclaimed coal mine were conducted. There were six sampling soils in Antaibao Opencast Mine, Shanxi Province, which were unreclaimed soil (CK); naturally reclaimed soil for 3 years (NRL); alfalfa pasture soils reclaimed for 3 years (AL3), 9 years (AL9), 21 years (AL21); and buckwheat soil reclaimed for 3 years (BL3). Nitrogen mineralization and nitrification of sampled soils were measured by using Stanford aerobic incubation method and constant temperature culture. And then, the first-order reaction kinetics model and Logistic equation were used to fit the process of organic nitrogen mineralization and nitrification. The results showed that the mineralization rate was highest in alfalfa field reclaimed for 3 years (AL3), and lowest in alfalfa field reclaimed for 21 years (AL21). The mineralization of nitrogen was rapid in the first 7 days and gradually became gentle, tended to be stable in 28 days of incubation. The first-order kinetic equations suggested that nitrogen mineralization potential ranged from 89.28 to 124.51 mg·kg-1 and was in the order of AL21 > NRL > AL3 > BL3 > CK > AL9. The mineralization rate constant ranged from 0.022 6 to 0.051 9, with the order of AL3 > AL9 > CK > NRL > BL3 > AL21. There was a significantly positive correlation between nitrogen mineralization potential and soil organic matter content (r=0.91). The soil nitrogen capacity was significantly increased in the long-term reclamation of grassland, and the mineralization process was more stable. The change of nitrate content in various soils of reclamation area during incubation was roughly following a "S" trend and was divided into three stages, which were the early stage (0-5 d), the rising stage (5-14 d) and the stable stage (14-28 d). Logistic equation fitting results showed that the reclamation years significantly affected the peaking time of nitrification (the max difference was 6.85 days among different reclamation years of alfalfa pasture). The drastic nitrification process in alfalfa pasture reclaimed for 21 years was intense and short, that of naturally restored soil for 3 years was slow and long. The arable land had a greater nitrification rate and longer nitrification time than grassland. In summary, under long term plantation of alfalfa in reclaimed coal mine soil, soil nitrogen sink increased, nitrogen mineralization became stable.
Key words:Reclamation year/
Reclamation mode/
Nitrogen conversion efficiencies/
Organic nitrogen/
Mineralization/
Nitrification/
Antaibao Open-pit Coal Mine

HTML全文


图1煤矿复垦区不同复垦年限与模式下土壤氮素矿化速率变化量
Figure1.Variations of soil nitrogen mineralization rates under different reclamation years and modes in the coal mine reclamation area


下载: 全尺寸图片幻灯片


图2煤矿复垦区不同复垦年限与模式下土壤矿化氮累积量曲线
Figure2.Curves of soil mineralized nitrogen accumulation under different reclamation years and modes in the coal mine reclamation area


下载: 全尺寸图片幻灯片


图3煤矿复垦区不同复垦年限与模式下土壤硝化率变化
Figure3.Changes of soil nitrification rates under different reclamation years and modes in the coal mine reclamation area


下载: 全尺寸图片幻灯片


图4煤矿复垦区不同复垦年限与模式下土壤硝化过程硝态氮浓度拟合图
Figure4.Fitting diagrams of nitrate content in soil nitrification process under different reclamation years and modes in the coal mine reclamation area


下载: 全尺寸图片幻灯片


图5煤矿复垦区土壤理化性质与矿化、硝化指标的相关性
*表示相关性显著(P < 0.05), **表示相关性极显著(P < 0.01);图中不同颜色不同大小点表示正负相关性以及相关性的程度。TK:全钾; AVK:速效钾; TP:全磷; AVP:有效磷; SOM:有机质; STN:全氮; C/N:有机碳与全氮的比值; AVN:碱解氮; pH:酸度值; No:氮素矿化势; k:矿化速率常数; No/STN:氮素矿化势与全氮的比值; MR:矿化率; Vmax:最大硝化速率; Tmax:最大硝化速率需要的时间; NR:净硝化率。
Figure5.Correlation between soil physical and chemical properties and mineralization and nitrification indicators
* indicates a significant correlation (P < 0.05), ** indicates an extremely significant correlation (P < 0.01). Different sized and color points indicate positive and negative correlation at different relevance degrees. TK: total potassium; AVK: available potassium; TP: total phosphorus; AVP: available phosphorus; SOM: organic matter; STN: total nitrogen; C/N: organic carbon to total nitrogen ratio; AVN: available nitrogen; pH: acidity; No: nitrogen mineralization potential; k: mineralization rate constant; No/STN: nitrogen mineralization potential to total nitrogen ratio; MR: mineralization rate; Vmax: maximum nitrification rate; Tmax: maximum nitrification rate required time; NR: net nitrification rate.


下载: 全尺寸图片幻灯片

表1煤矿复垦区不同复垦模型和复垦年限采样地概况
Table1.Basic information of sampling sites with different reclamation modes and for different reclamation years in the coal mine reclamation area
采样地
Sampling site
地理位置
Location
复垦模式
Reclamation mode
复垦年限
Reclamation year (a)
备注
Note
CK 39.541 7°N 112.286 4°E 新排土, 没有采取复垦手段
Dumped just before sampling without reclamation
NRL 39.498 9°N 112.336 9°E 2014年排土后, 无人为复垦措施
No artificial reclamation measures after soil dumped in 2014
BL3 39.507 3°N 112.338 2°E 耕地
Arable land
3 2014年复垦, 2017年采样时地上作物为荞麦
Reclamation in 2014 with buckwheat when soil sampling in 2017
AL3 39.505 3°N 112.339 0°E 草地
Grassland
3 2014年复垦, 种植紫花苜蓿
Planting alfalfa after reclamation in 2014
AL9 39.497 4°N 112.318 9°E 草地
Grassland
9 2008年复垦, 种植紫花苜蓿
Planting alfalfa after reclamation in 2008
AL21 39.504 9°N 112.311 7°E 草地
Grassland
21 1996年复垦, 种植紫花苜蓿
Planting alfalfa after reclamation in 1996


下载: 导出CSV
表2煤矿复垦区不同采样地土壤基本理化性状
Table2.Basic physical and chemical properties of the tested soil of sampling sites in the coal mine reclamation area
采样地
Sampling site
pH 有机质
Organic matter (g·kg-1)
全氮
Total nitrogen (g·kg-1)
C/N 碱解氮
Alkaline nitrogen (mg·kg-1)
全磷
Total phosphorus (g·kg-1)
有效磷
Available phosphorus (mg·kg-1)
全钾
Total potassium (g·kg-1)
速效钾
Available potassium (g·kg-1)
CK 8.39 3.06 0.28 6.33 10.89 0.11 8.69 14.39 163.00
NRL 8.64 3.45 0.31 6.39 14.71 0.50 23.74 16.16 120.63
BL3 8.59 4.03 0.41 5.73 18.96 0.54 24.13 18.37 184.97
AL3 8.52 4.65 0.40 6.73 28.46 0.85 14.82 16.58 185.63
AL9 8.49 5.51 0.42 7.69 35.54 0.96 24.25 14.69 111.46
AL21 8.10 15.33 0.51 17.59 91.21 0.84 12.53 15.50 198.66


下载: 导出CSV
表3煤矿复垦区不同复垦年限与模式下矿区土壤氮素矿化参数
Table3.Soil nitrogen mineralization parameters under different reclamation years and modes in the coal mine reclamation area
采样地
Sampling site
氮素矿化势(No)
Nitrogen mineralization potential (mg·kg-1)
矿化速率常数(k)
Mineralization rate constant
R2 No/STN(%) 氮素矿化率
Nitrogen mineralization rate (%)
CK 89.43±19.45Eef 0.042 3±0.014 56Bbc 0.977 1 31.9 22.17
NRL 100.50±15.63Bb 0.041 5±0.010 14Bbc 0.988 8 32.4 22.22
BL3 94.78±19.83Dd 0.034 1±0.010 39Bd 0.987 8 23.1 14.17
AL3 98.81±13.40Cc 0.051 9±0.012 22Aa 0.984 6 24.7 18.96
AL9 89.28±9.64Ef 0.043 7±0.007 59Bb 0.993 7 21.3 15.07
AL21 124.51±15.93Aa 0.022 6±0.010 78Ce 0.986 2 24.4 14.41
No/STN表示矿化势与全氮的比值; 同列不同大、小写字母表示处理间在P < 0.01和P < 0.05差异显著。No/STN is the ratio of mineralization potential to total nitrogen. Different capital and lowercase letters in the same column indicate significant differences at 0.01 and 0.05 levels.


下载: 导出CSV
表4煤矿复垦区不同复垦年限与模式下土壤硝态氮净积累量拟合方程及特征值
Table4.Fitting equations and eigenvalues of net accumulation of soil nitrate nitrogen under different reclamation years and modes in the coal mine reclamation area
采样地
Sampling site
拟合方程
Fitting equation
R2 最大硝化速率出现时间
Occurrence time of maximum nitrification rate (d)
最大硝化速率
Maximum nitrification rate (mg·kg-1·d-1)
CK 174.6/(1+e1.30-0.24t) 0.980 3 5.42Ee 10.48Dd
NRL 128.3/(1+e3.05-0.26t) 0.907 2 11.73Aa 8.34Ee
BL3 149.2/(1+e4.81-0.66t) 0.995 3 7.29Cc 24.62Aa
AL3 161.5/(1+e1.68-0.29t) 0.994 5 5.79Dd 11.71Cc
AL9 148.2/(1+e2.19-0.22t) 0.983 9 9.95Bb 8.15Ff
AL21 167.2/(1+e0.96-0.31t) 0.989 3 3.10Ff 12.96Bb
同列不同大、小写字母表示处理间在P < 0.01和P < 0.05差异显著。Different capital and lowercase letters in the same column indicate significant differences at 0.01 and 0.05 levels.


下载: 导出CSV

参考文献(40)
[1]白军红, 邓伟, 朱颜明, 等.湿地土壤有机质和全氮含量分布特征对比研究——以向海与科尔沁自然保护区为例[J].地理科学, 2002, 22(2):232-237 doi: 10.3969/j.issn.1000-0690.2002.02.018
BAI J H, DENG W, ZHU Y M, et al. Comparative study on the distribution characteristics of soil organic matter and total nitrogen in wetlands:A case study of Xianghai and Horqin Nature Reserve[J]. Geographical Sciences, 2002, 22(2):232-237 doi: 10.3969/j.issn.1000-0690.2002.02.018
[2]白军红, 欧阳华, 邓伟, 等.湿地氮素传输过程研究进展[J].生态学报, 2005, 25(2):326-333 doi: 10.3321/j.issn:1000-0933.2005.02.022
BAI J H, OUYANG H, DENG W, et al. A review on nitrogen transmission processes in natural wetlands[J]. Acta Ecologica Sinica, 2005, 25(2):326-333 doi: 10.3321/j.issn:1000-0933.2005.02.022
[3]SHAHZAD T, CHENU C, REPIN?AY C, et al. Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species[J]. Soil Biology and Biochemistry, 2012, 51:73-80 doi: 10.1016/j.soilbio.2012.04.014
[4]RASMUSSEN P E, DOUGLAS JR C L, COLLINS H P, et al. Long-term cropping system effects on mineralizable nitrogen in soil[J]. Soil Biology and Biochemistry, 1998, 30(13):1829-1837 doi: 10.1016/S0038-0717(98)00057-1
[5]李菊梅, 王朝辉, 李生秀.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报, 2003, 40(2):232-238 doi: 10.3321/j.issn:0564-3929.2003.02.011
LI J M, WANG Z H, LI S X. Significance of soil organic matter, total N and mineralizable nitrogen in reflecting soil N supplying capacity[J]. Acta Pedologica Sinica, 2003, 40(2):232-238 doi: 10.3321/j.issn:0564-3929.2003.02.011
[6]刘晓宏, 田梅霞, 郝明德.黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与积累[J].土壤肥料, 2001, (1):9-12 http://d.old.wanfangdata.com.cn/Periodical/trfl200101003
LIU X H, TIAN M X, HAO M D. Distribution and accumulation of nitrate-N profile after long-term fertilization and rotation on Arid Loess Plateau[J]. Soils and Fertilizers, 2001, (1):9-12 http://d.old.wanfangdata.com.cn/Periodical/trfl200101003
[7]吕珊兰, 杨熙仁, 张耀东, 等.山西土壤氮矿化势与供氮量的预测[J].中国农业科学, 1996, 29(1):21-26 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK199601003.htm
LYU S L, YANG X R, ZHANG Y D, et al. Nitrogen mineralization potential and the forecast of the content of nitrogen supplied in the soils of Shanxi Province[J]. Scientia Agricultura Sinica, 1996, 29(1):21-26 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK199601003.htm
[8]SCHINNER F, ?HLINGER R, KANDELER E, et al. Methods in Soil Biology[M]. Berlin, Heidelberg:Springer, 1996:139-141
[9]付会芳, 李生秀.土壤氮素矿化与土壤供氮能力——Ⅰ.旱地土壤氮素矿化两种培养方法之比较[J].西北农业大学学报, 1992, 20(S1):48-52
FU H F, LI S X. Oil nitrogen mineralization and soil N-supplying capacities Ⅰ. Comparison of two incubation methods for measuring dryland soil nitrogen mineralizations[J]. Acta University Agriculture Boreali-occidentalis, 1992, 20(S1):48-52
[10]邓婵娟.长期施肥对稻田土壤氮素转化特征及酶活性的影响[D].武汉: 华中农业大学, 2008
DENG C J. Effect of long-term different fertilizations on nitrogen transformation and activity of enzymes in paddy soil[D]. Wuhan: Huazhong Agricultural University, 2008
[11]周吉利.不同利用方式红壤氮素矿化、硝化和反硝化特征及参数估算[D].长沙: 中南林业科技大学, 2015
ZHOU J L. The characteristic and parametric estimation of soil nitrogen mineralization, nitrification and denitrification kinetic for various land uses subtropical central China[D]. Changsha: Central South University of Forestry and Technology, 2015
[12]STEVENSON F J. Cycles of Soil Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients[M]. New York:Wiley, 1986:173-178
[13]王媛, 周建斌, 杨学云.长期不同培肥处理对土壤有机氮组分及氮素矿化特性的影响[J].中国农业科学, 2010, 43(6):1173-1180 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201006009
WANG Y, ZHOU J B, YANG X Y. Effects of different long-term fertilization on the fractions of organic nitrogen and nitrogen mineralization in soils[J]. Scientia Agricultura Sinica, 2010, 43(6):1173-1180 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201006009
[14]王萍萍, 段英华, 徐明岗, 等.不同肥力潮土硝化潜势及其影响因素[J/OL].土壤学报.[2018-10-01].http://kns.cnki.net/kcms/detail/32.1119.P.20180911.1257.008.html.
WANG P P, DUAN Y H, XU M G, et al. Nitrification potential in Fluvo-aquic soils different in fertility and its influencing factors[J/OL]. Acta Pedologica Sinica.[2018-10-01]. http://kns.cnki.net/kcms/detail/32.1119.P.20180911.1257.008.html
[15]RASIAH V. Comparison of pedotransfer functions to predict nitrogen-mineralization parameters of one-and two-pool models[J]. Communications in Soil Science and Plant Analysis, 1995, 26(11/12):1873-1884
[16]鲍俊丹, 石美, 张妹婷, 等.中国典型土壤硝化作用与土壤性质的关系[J].中国农业科学, 2011, 44(7):1390-1398 doi: 10.3864/j.issn.0578-1752.2011.07.011
BAO J D, SHI M, ZHANG M T, et al. Nitrification of main soils in China and its relationship with soil properties[J]. Scientia Agricultura Sinica, 2011, 44(7):1390-1398 doi: 10.3864/j.issn.0578-1752.2011.07.011
[17]彭银燕, 黄运湘, 尹力初, 等.湖南省稻田土壤氮素肥力及氮矿化特征[J].中国农学通报, 2013, 29(12):109-114 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201312018
PENG Y Y, HUANG Y X, YIN L C, et al. Status of soil nitrogen and nitrogen mineralization characteristic in paddy soil of Hunan Province[J]. Chinese Agricultural Science Bulletin, 2013, 29(12):109-114 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201312018
[18]樊文华, 白中科, 李慧峰, 等.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报, 2011, 27(1):348-354 doi: 10.3969/j.issn.1002-6819.2011.01.056
FAN W H, BAI Z K, LI H F, et al. Potential ecological risk assessment of heavy metals in reclaimed soils[J]. Transactions of the CSAE, 2011, 27(1):348-354 doi: 10.3969/j.issn.1002-6819.2011.01.056
[19]刘娇, 付晓莉, 李学章, 等.黄土高原北部生长季土壤氮素矿化对植被和地形的响应[J].中国生态农业学报, 2018, 26(2):231-241 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0209&flag=1
LIU J, FU X L, LI X Z, et al. Responses of soil nitrogen mineralization during growing season to vegetation and slope position on the northern Loess Plateau of China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2):231-241 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0209&flag=1
[20]STANFORD G, SMITH S J. Nitrogen mineralization potentials of soils[J]. Soil Science Society of America Journal, 1972, 36(3):465-472 doi: 10.2136/sssaj1972.03615995003600030029x
[21]佟德利, 徐仁扣.三种氮肥对红壤硝化作用及酸化过程影响的研究[J].植物营养与肥料学报, 2012, 18(4):853-859 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201204011.htm
TONG D L, XU R K. Effects of urea, (NH4)2SO4 and NH4HCO3 on nitrification and acidification of a red soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4):853-859 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201204011.htm
[22]林江辉, 李辉信, 胡锋, 等.干土效应对土壤生物组成及矿化与硝化作用的影响[J].土壤学报, 2004, 41(6):924-930 doi: 10.3321/j.issn:0564-3929.2004.06.013
LIN J H, LI H X, HU F, et al. Effects of rewetting on soil biota structure and nitrogen mineralization, nitrification in air-dried red soil[J]. Acta Pedologica Sinica, 2004, 41(6):924-930 doi: 10.3321/j.issn:0564-3929.2004.06.013
[23]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000
[24]赵伟, 梁斌, 周建斌.长期不同施肥处理对土壤氮素矿化特性的影响[J].西北农林科技大学学报:自然科学版, 2017, 45(2):177-181 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201702024
ZHAO W, LIANG B, ZHOU J B. Effect of different long-term fertilization treatments on nitrogen mineralization characteristics in soil[J]. Journal of Northwest A&F University:Natural Science Edition, 2017, 45(2):177-181 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201702024
[25]朱继荣, 韦绪好, 祝鹏飞, 等.施用生物炭抑制塌陷区复垦土壤硝化作用[J].农业工程学报, 2015, 31(7):264-271 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201507037
ZHU J R, WEI X H, ZHU P F, et al. Biochar addition inhibiting nitrification of reclaimed soils in coal-mining subsidence area[J]. Transactions of the CSAE, 2015, 31(7):264-271 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201507037
[26]张恒, 王晶君, 孟琳, 等.贵州省典型植烟土壤氮素矿化研究[J].中国烟草科学, 2013, 34(3):1-5 doi: 10.3969/j.issn.1007-5119.2013.03.001
ZHANG H, WANG J J, MENG L, et al. Nitrogen mineralization of typical tobacco-growing soils in Guizhou Province[J]. Chinese Tobacco Science, 2013, 34(3):1-5 doi: 10.3969/j.issn.1007-5119.2013.03.001
[27]秦子娴, 张宇亭, 周志峰, 等.长期施肥对中性紫色水稻土氮素矿化和硝化作用的影响[J].中国农业科学, 2013, 46(16):3392-3400 doi: 10.3864/j.issn.0578-1752.2013.16.010
QIN Z X, ZHANG Y T, ZHOU Z F, et al. Characteristics of mineralization and nitrification in neutral purple paddy soil from a long-term fertilization experiment[J]. Scientia Agricultura Sinica, 2013, 46(16):3392-3400 doi: 10.3864/j.issn.0578-1752.2013.16.010
[28]王敬.土壤氮转化过程对氮去向的调控作用[D].南京: 南京师范大学, 2017
WANG J. Mechanistic insights into the role of soil nitrogen transformation processes in regulating soil nitrogen fate[D]. Nanjing: Nanjing Normal University, 2017
[29]邵兴芳, 徐明岗, 张文菊, 等.长期有机培肥模式下黑土碳与氮变化及氮素矿化特征[J].植物营养与肥料学报, 2014, 20(2):326-335 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201402008
SHAO X F, XU M G, ZHANG W J, et al. Changes of soil carbon and nitrogen and characteristics of nitrogen mineralization under long-term manure fertilization practices in black soil[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2):326-335 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201402008
[30]张树兰, 杨学云, 吕殿青, 等.几种土壤剖面的硝化作用及其动力学特征[J].土壤学报, 2000, 37(3):372-379 doi: 10.3321/j.issn:0564-3929.2000.03.011
ZHANG S L, YANG X Y, LYU D Q, et al. Nitrification and dynamics in profiles of differently managed soil types[J]. Acta Pedologica Sinica, 2000, 37(3):372-379 doi: 10.3321/j.issn:0564-3929.2000.03.011
[31]张国桢, 李世清.三种氨态氮肥在石灰性土壤中硝化作用的模拟研究[J].干旱地区农业研究, 2007, 25(6):177-182 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200706035
ZHANG G Z, LI S Q. Three kinds of ammonium nitrogen fertilizer on nitrification and model analysis[J]. Agricultural Research in the Arid Areas, 2007, 25(6):177-182 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200706035
[32]刘义, 陈劲松, 刘庆, 等.土壤硝化和反硝化作用及影响因素研究进展[J].四川林业科技, 2006, 27(2):36-41 doi: 10.3969/j.issn.1003-5508.2006.02.007
LIU Y, CHEN J S, LIU Q, et al. Advances in studies of soil nitrification and denitrification and controlling factors[J]. Journal of Sichuan Forestry Science and Technology, 2006, 27(2):36-41 doi: 10.3969/j.issn.1003-5508.2006.02.007
[33]王雪, 郭雪莲, 郑荣波, 等.放牧对滇西北高原纳帕海沼泽化草甸湿地土壤氮转化的影响[J].生态学报, 2018, 38(7):2308-2314 http://d.old.wanfangdata.com.cn/Periodical/stxb201807007
WANG X, GUO X L, ZHENG R B, et al. Effects of grazing on nitrogen transformation in swamp meadow wetland soils in Napahai of Northwest Yunnan[J]. Acta Ecologica Sinica, 2018, 38(7):2308-2314 http://d.old.wanfangdata.com.cn/Periodical/stxb201807007
[34]张菁, 江山, 王改玲.安太堡露天矿不同复垦年限苜蓿地土壤养分和酶活性剖面特征[J].灌溉排水学报, 2018, 37(1):42-48 http://d.old.wanfangdata.com.cn/Periodical/ggps201801007
ZHANG J, JIANG S, WANG G L. Soil profile characteristics of soil nutrients and enzyme activity after reclaiming alfafa in Antaibao Opencast Coal Mine[J]. Journal of Irrigation and Drainage, 2018, 37(1):42-48 http://d.old.wanfangdata.com.cn/Periodical/ggps201801007
[35]CHAUDHURI S, MCDONALD L M, SKOUSEN J, et al. Soil organic carbon molecular properties:Effects of time since reclamation in a mine soil chronosequence[J]. Land Degradation & Development, 2015, 26(3):237-248
[36]李辉信, 胡锋, 刘满强, 等.红壤氮素的矿化和硝化作用特征[J].土壤, 2000, (4):194-197 doi: 10.3321/j.issn:0253-9829.2000.04.006
LI H X, HU F, LIU M Q, et al. Characteristics of nitrogen mineralization and nitrification in red soils[J]. Soils, 2000, (4):194-197 doi: 10.3321/j.issn:0253-9829.2000.04.006
[37]MALHI S S, MCGILL W B, NYBORG M. Nitrate losses in soils:Effect of temperature, moisture and substrate concentration[J]. Soil Biology and Biochemistry, 1990, 22(6):733-737 doi: 10.1016/0038-0717(90)90150-X
[38]CHU H Y, FUJⅡ T, MORIMOTO S, et al. Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management[J]. Soil Biology and Biochemistry, 2008, 40(7):1960-1963 doi: 10.1016/j.soilbio.2008.01.006
[39]SAHRAWAT K L. Nitrification in some tropical soils[J]. Plant and Soil, 1982, 65(2):281-286 doi: 10.1007/BF02374659
[40]艾娜, 周建斌, 杨学云, 等.长期施肥及撂荒对土壤氮素矿化特性及外源硝态氮转化的影响[J].应用生态学报, 2008, 19(9):1937-1943 http://d.old.wanfangdata.com.cn/Periodical/yystxb200809012
AI N, ZHOU J B, YANG X Y, et al. Effects of long-term fertilization and fallowing on soil nitrogen mineralization and exogenous NO3--N transformation[J]. Chinese Journal of Applied Ecology, 2008, 19(9):1937-1943 http://d.old.wanfangdata.com.cn/Periodical/yystxb200809012

相关话题/土壤 过程 生态 科学 图片