刘明月1,
周相助1,
林志强2,
张卫清2,
许茹1,
王树彬1,
陈露1,
尚春雨1,
林勇文1,
侯毛毛1,
林义章1,
钟凤林1,,
1.福建农林大学园艺学院 福州 350002
2.福建省种子管理总站 福州 350003
基金项目: 福建省科技重大专题2018NZ0002-2
福建省发改委农业五新项目K6017201A
详细信息
作者简介:严逸男, 主要从事蔬菜生理生化研究。E-mail:13405959576@163.com
通讯作者:钟凤林, 主要从事设施植物种质创制及产业化、都市农业研究。E-mail:zhong591@fafu.edu.cn
中图分类号:S63计量
文章访问数:681
HTML全文浏览量:3
PDF下载量:473
被引次数:0
出版历程
收稿日期:2018-05-23
录用日期:2018-09-28
刊出日期:2019-01-01
Tomato growth as affected by soil extract of continuously cropped okra
YAN Yinan1,,LIU Mingyue1,
ZHOU Xiangzhu1,
LIN Zhiqiang2,
ZHANG Weiqing2,
XU Ru1,
WANG Shubin1,
CHEN Lu1,
SHANG Chunyu1,
LIN Yongwen1,
HOU Maomao1,
LIN Yizhang1,
ZHONG Fenglin1,,
1. College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou 350002, China
2. Fujian Seed Management Station, Fuzhou 350003, China
Funds: the Science and Technology Major Project of Fujian Province2018NZ0002-2
the Agricultural Five New Project of Development and Reform Commission of Fujian ProvinceK6017201A
More Information
Corresponding author:ZHONG Fenglin, E-mail:zhong591@fafu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:单一耕作制度和作物品种,使设施连作障碍日益加剧。番茄和秋葵都是重要的设施蔬菜类型,但种植发现秋葵对番茄存在生长障碍,研究秋葵对番茄的生长障碍发生的生理生态机制具有重要意义。本研究选取种植秋葵的1 a和10 a土壤浸提液(简称1 a浸提液和10 a浸提液),以全素营养液为对照(简称CK),探讨秋葵连作土壤浸提液对番茄萌发期种子和幼苗生长的影响。结果表明:同一浓度土壤浸提液处理下,10 a浸提液的番茄萌芽期种子表现出主根畸形,侧根增多但细弱;番茄幼苗分根增多,根系活性低于1 a浸提液且都显著低于CK,顶部嫩叶失绿异常,活性氧代谢系统紊乱。同一年限不同秋葵土壤浸提液浓度处理下,番茄萌发期种子随浸提液浓度的升高表现出主根畸形,侧根增多且细弱,番茄幼苗分根增多,1 a和10 a浸提液的番茄根尖数、分根数分别最高达1 146、3 321和2 291、1 947,显著高于对照(1 071、385);秋葵土壤浸提液浓度高于250 mg·mL-1处理下番茄幼苗根系活性都显著低于CK,顶部嫩叶失绿异常,活性氧代谢系统紊乱。研究表明秋葵根系物及分泌物在土壤中残留,对后茬番茄的生长造成不良影响,这些物质随种植年限增加而富集,从而对番茄产生更严重的毒害。
关键词:番茄/
秋葵/
土壤浸提液/
连作障碍/
轮作/
化感作用
Abstract:Single tillage system, single variety and excessive pursuit for economic efficiency have exacerbated the barriers of continuous cropping of greenhouse tomato (Lycopersicum esculentum). Although its root secretions can cause autotoxicity, okra (Hibiscus esculentus) is a new vegetable with great economic prospect in China. Rotation is an effective way to avoid continuous cropping obstacles, however, in practice, rotation of tomato and okra inhibited growth and impeded fruiting of tomato. To clear the hypotrophy between tomato and okra, soils of okra continuously cropped for 1 year and 10 years were used to conduct an experiment with tomato seeds and seedlings. Water extracts of two soils were diluted into 1 000 mg·mL-1, 2 000 mg·mL-1 and 3 000 mg·mL-1 to treat tomato seeds, and into 125 mg·mL-1, 250 mg·mL-1 and 500 mg·mL-1 to cultivate tomato seedlings. Physiological and biochemical analysis and seed root and stem morphology observation of tomato were conducted to investigate the influence on the below-ground and above-ground growth of tomato to determine the effects of okra soil extracts on tomato seed germination and seedling growth. The results showed that under the same concentration of soil extract, with continuous cropping years increase, the main root of tomato deformed with more but thin lateral root. Tomato seedling also showed increased root forks and root activity significantly lowered and with abnormal and green-lost top leaves compared to the control (total nutrient solution, CK) treatment. The activity of antioxidant enzyme, and MDA and proline contents were also significantly different from CK. Under different concentrations of soil abstracts for the same continuous cropping year, main root deformity appeared gradually in germinated tomato seeds as the concentration of soil extract increased. Also lateral roots increased and most relatively thin, tomato seedling rootlets increased and root tip number and rootlets were respectively 1 146 and 3 321 for the 1-year and 2 291 and 1 947 for the 10-year continuous cropping, all significantly higher than those under the control (1 071 and 385, respectively). Root activity of tomato seedlings firstly rose and then fell. At 3 days of cultivation, root activity of tomato seedlings under soil abstracts with over 250 mg·mL-1 concentration of 1 year and 10 years continuous cropping were lower than that of CK. Antioxidant enzyme activity, MDA and proline contents were also significantly different from CK. Above all, some allelechemicals were secreted by okra roots, including the substances vestigital in the soil, which had negative effects on subsequent tomatoes. The substances were enriched with increasing years of continuous cropping, which caused more damage to succeeding tomato crops.
Key words:Tomato/
Okra/
Soil extract/
Continuous cropping obstacle/
Rotation/
Allelopathy
HTML全文
图1秋葵种植不同年限的土壤浸提液处理第5 d番茄种子生长情况[A:各处理番茄种子生长情况; B: T1、S6处理番茄种子根部生长情况(2×); C: T1、S6处理番茄种子根系透明情况(27×)]
T1: CK(全素营养液); S1: 1 000 mg·mL-1的种植秋葵1 a的土壤浸提液; S2: 2 000 mg·mL-1的种植秋葵1 a的土壤浸提液; S3: 3 000 mg·mL-1的种植秋葵1 a的土壤浸提液; S4: 1 000 mg·mL-1的种植秋葵10 a的土壤浸提液; S5: 2 000 mg·mL-1的种植秋葵10 a的土壤浸提液; S6: 3 000 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure1.Growth of tomato seeds cultured for 5 days with extracts of soils planting okra for 1 and 10 years [A: growth of tomato seeds under each treatment; B: root growth of tomato seeds under T1 and S6 treatments (2×); C: root transparency of tomato seeds under T1 and S6 treatments (27×)]
T1: nutrient solution; S1: 1 000 mg·mL-1 soil extract planting okra for 1 year; S2: 2 000 mg·mL-1 soil extract planting okra for 1 year; S3: 3 000 mg·mL-1 soil extract planting okra for 1 year; S4: 1 000 mg·mL-1 soil extract planting okra for 10 years; S5: 2 000 mg·mL-1 soil extract planting okra for 10 years; S6: 3 000 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
图2秋葵种植不同年限的土壤浸提液对番茄幼苗生长的影响(0~9 d)
T1: CK(全素营养液); T2: 125 mg·mL-1的种植秋葵1 a的土壤浸提液; T3: 250 mg·mL-1的种植秋葵1 a的土壤浸提液; T4: 500 mg·mL-1的种植秋葵1 a的土壤浸提液; T5: 125 mg·mL-1的种植秋葵10 a的土壤浸提液; T6: 250 mg·mL-1的种植秋葵10 a的土壤浸提液; T7: 500 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure2.Growth of tomato seedlings cultured for 0 to 9 days with extracts of soils planting okra for 1 and 10 years
T1: nutrient solution; T2: 125 mg·mL-1 soil extract planting okra for 1 year; T3: 250 mg·mL-1 soil extract planting okra for 1 year; T4: 500 mg·mL-1 soil extract planting okra for 1 year; T5: 125 mg·mL-1 soil extract planting okra for 10 years; T6: 250 mg·mL-1 soil extract planting okra for 10 years; T7: 500 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
图3秋葵种植不同年限的土壤浸提液处理6 d番茄幼苗根系尖端部分生长情况
T1: CK(全素营养液); T2: 125 mg·mL-1的种植秋葵1 a的土壤浸提液; T3: 250 mg·mL-1的种植秋葵1 a的土壤浸提液; T4: 500 mg·mL-1的种植秋葵1 a的土壤浸提液; T5: 125 mg·mL-1的种植秋葵10 a的土壤浸提液; T6: 250 mg·mL-1的种植秋葵10 a的土壤浸提液; T7: 500 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure3.Growth of tomato root top cultured for 6 days with extracts of soils planting okra for 1 and 10 years
T1: nutrient solution; T2: 125 mg·mL-1 soil extract planting okra for 1 year; T3: 250 mg·mL-1 soil extract planting okra for 1 year; T4: 500 mg·mL-1 soil extract planting okra for 1 year; T5: 125 mg·mL-1 soil extract planting okra for 10 years; T6: 250 mg·mL-1 soil extract planting okra for 10 years; T7: 500 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
图4秋葵种植不同年限的土壤浸提液对番茄幼苗茎叶生长的影响(0~9 d)
T1: CK(全素营养液); T2: 125 mg·mL-1的种植秋葵1 a的土壤浸提液; T3: 250 mg·mL-1的种植秋葵1 a的土壤浸提液; T4: 500 mg·mL-1的种植秋葵1 a的土壤浸提液; T5: 125 mg·mL-1的种植秋葵10 a的土壤浸提液; T6: 250 mg·mL-1的种植秋葵10 a的土壤浸提液; T7: 500 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure4.Leaf and stem growth of tomato seedlings cultured for 0 to 9 days with extracts of soils planting okra for 1 and 10 years
T1: nutrient solution; T2: 125 mg·mL-1 soil extract planting okra for 1 year; T3: 250 mg·mL-1 soil extract planting okra for 1 year; T4: 500 mg·mL-1 soil extract planting okra for 1 year; T5: 125 mg·mL-1 soil extract planting okra for 10 years; T6: 250 mg·mL-1 soil extract planting okra for 10 years; T7: 500 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
图5秋葵种植不同年限的土壤浸提液对番茄幼苗根系形态的影响
同一培养时间不同小写字母表示处理间差异显著(P < 0.05)。T1: CK(全素营养液); T2: 125 mg·mL-1的种植秋葵1 a的土壤浸提液; T3: 250 mg·mL-1的种植秋葵1 a的土壤浸提液; T4: 500 mg·mL-1的种植秋葵1 a的土壤浸提液; T5: 125 mg·mL-1的种植秋葵10 a的土壤浸提液; T6: 250 mg·mL-1的种植秋葵10 a的土壤浸提液; T7: 500 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure5.Root morphology of tomato seedlings cultured for 0 to 9 days with extracts of soils planting okra for 1 and 10 years
Different lowercase letters in bars for the same culture time indicate significant differences at 0.05 level among treatments. T1: nutrient solution; T2: 125 mg·mL-1 soil extract planting okra for 1 year; T3: 250 mg·mL-1 soil extract planting okra for 1 year; T4: 500 mg·mL-1 soil extract planting okra for 1 year; T5: 125 mg·mL-1 soil extract planting okra for 10 years; T6: 250 mg·mL-1 soil extract planting okra for 10 years; T7: 500 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
图6秋葵种植不同年限的土壤浸提液对番茄幼苗根系活力的影响
同一培养时间不同小写字母表示处理间差异显著(P < 0.05)。T1: CK(全素营养液); T2: 125 mg·mL-1的种植秋葵1 a的土壤浸提液; T3: 250 mg·mL-1的种植秋葵1 a的土壤浸提液; T4: 500 mg·mL-1的种植秋葵1 a的土壤浸提液; T5: 125 mg·mL-1的种植秋葵10 a的土壤浸提液; T6: 250 mg·mL-1的种植秋葵10 a的土壤浸提液; T7: 500 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure6.Root vitality of tomato seedlings cultured for 0 to 9 days with extracts of soils planting okra for 1 and 10 years
Different lowercase letters in bars for the same culture time indicate significant differences at 0.05 level among treatments. T1: nutrient solution; T2: 125 mg·mL-1 soil extract planting okra for 1 year; T3: 250 mg·mL-1 soil extract planting okra for 1 year; T4: 500 mg·mL-1 soil extract planting okra for 1 year; T5: 125 mg·mL-1 soil extract planting okra for 10 years; T6: 250 mg·mL-1 soil extract planting okra for 10 years; T7: 500 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
图7秋葵种植不同年限的土壤浸提液对番茄幼苗叶绿素含量的影响
同一培养时间不同小写字母表示处理间差异显著(P < 0.05)。T1: CK(全素营养液); T2: 125 mg·mL-1的种植秋葵1 a的土壤浸提液; T3: 250 mg·mL-1的种植秋葵1 a的土壤浸提液; T4: 500 mg·mL-1的种植秋葵1 a的土壤浸提液; T5: 125 mg·mL-1的种植秋葵10 a的土壤浸提液; T6: 250 mg·mL-1的种植秋葵10 a的土壤浸提液; T7: 500 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure7.Chlorophyll contents of tomato seedlings cultured for 0 to 9 days with extracts of soils planting okra for 1 and 10 years
Different lowercase letters in bars for the same culture time indicate significant differences at 0.05 level among treatments. T1: nutrient solution; T2: 125 mg·mL-1 soil extract planting okra for 1 year; T3: 250 mg·mL-1 soil extract planting okra for 1 year; T4: 500 mg·mL-1 soil extract planting okra for 1 year; T5: 125 mg·mL-1 soil extract planting okra for 10 years; T6: 250 mg·mL-1 soil extract planting okra for 10 years; T7: 500 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
图8秋葵种植不同年限的土壤浸提液对番茄叶和根SOD、POD和CAT活性的影响
同一培养时间不同小写字母表示处理间差异显著(P < 0.05)。T1: CK(全素营养液); T2: 125 mg·mL-1的种植秋葵1 a的土壤浸提液; T3: 250 mg·mL-1的种植秋葵1 a的土壤浸提液; T4: 500 mg·mL-1的种植秋葵1 a的土壤浸提液; T5: 125 mg·mL-1的种植秋葵10 a的土壤浸提液; T6: 250 mg·mL-1的种植秋葵10 a的土壤浸提液; T7: 500 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure8.SOD, POD and CAT activities of tomato seedlings leaves and roots cultured for 0 to 9 days with extracts of soils planting okra for 1 and 10 years
Different lowercase letters in bars for the same culture time indicate significant differences at 0.05 level among treatments. T1: nutrient solution; T2: 125 mg·mL-1 soil extract planting okra for 1 year; T3: 250 mg·mL-1 soil extract planting okra for 1 year; T4: 500 mg·mL-1 soil extract planting okra for 1 year; T5: 125 mg·mL-1 soil extract planting okra for 10 years; T6: 250 mg·mL-1 soil extract planting okra for 10 years; T7: 500 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
图9秋葵种植不同年限的土壤浸提液对番茄幼苗叶和根脯氨酸和丙二醛含量的影响
同一培养时间不同小写字母表示处理间差异显著(P < 0.05)。T1: CK(全素营养液); T2: 125 mg·mL-1的种植秋葵1 a的土壤浸提液; T3: 250 mg·mL-1的种植秋葵1 a的土壤浸提液; T4: 500 mg·mL-1的种植秋葵1 a的土壤浸提液; T5: 125 mg·mL-1的种植秋葵10 a的土壤浸提液; T6: 250 mg·mL-1的种植秋葵10 a的土壤浸提液; T7: 500 mg·mL-1的种植秋葵10 a的土壤浸提液。
Figure9.Proline and MDA contents of tomato seedlings leaves and roots cultured for 0 to 9 days with extracts of soils planting okra for 1 and 10 years
Different lowercase letters in bars for the same culture time indicate significant differences at 0.05 level among treatments. T1: nutrient solution; T2: 125 mg·mL-1 soil extract planting okra for 1 year; T3: 250 mg·mL-1 soil extract planting okra for 1 year; T4: 500 mg·mL-1 soil extract planting okra for 1 year; T5: 125 mg·mL-1 soil extract planting okra for 10 years; T6: 250 mg·mL-1 soil extract planting okra for 10 years; T7: 500 mg·mL-1 soil extract planting okra for 10 years.
下载: 全尺寸图片幻灯片
参考文献
[1] | 吴彤东.设施番茄连作障碍的生态控制关键技术研究[D].苏州: 苏州大学, 2009 WU T D. Research on key technology of ecological controlling the harm of continuous cropping obstacle in protected tomato[D]. Suzhou: Soochow University, 2009 |
[2] | 王建花, 陈婷, 林文雄.植物化感作用类型及其在农业中的应用[J].中国生态农业学报, 2013, 21(10):1173-1183 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20131001&flag=1 WANG J H, CHEN T, LIN W X. Plant allelopathy types and their application in agriculture[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10):1173-1183 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20131001&flag=1 |
[3] | CHOU C H. The role of allelopathy in biochemical ecology:Experience from Taiwan[J]. Biologia Plantarum, 1989, 31(6):458-470 doi: 10.1007/BF02876219 |
[4] | Einhellig F A. Mechanism of action of allelochemicals in allelopathy[J]. ACS Symp Ser, 1995, 582:96-116 doi: 10.1021-bk-1995-0582.ch001/ |
[5] | EINHELLIG F A. Interactions involving allelopathy in cropping systems[J]. Agronomy Journal, 1996, 88(6):886-893 doi: 10.2134/agronj1996.00021962003600060007x |
[6] | 林文雄, 熊君, 周军建, 等.化感植物根际生物学特性研究现状与展望[J].中国生态农业学报, 2007, 15(4):1-8 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2007401&flag=1 LIN W X, XIONG J, ZHOU J J, et al. Research status and its perspective on the properties of rhizosphere biology mediated by allelopathic plants[J]. Chinese Journal of Eco-Agriculture, 2007, 15(4):1-8 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2007401&flag=1 |
[7] | 林文雄, 陈婷, 周明明.农业生态学的新视野[J].中国生态农业学报, 2012, 20(3):253-264 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012301&flag=1 LIN W X, CHEN T, ZHOU M M. New dimensions in agroecology[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3):253-264 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012301&flag=1 |
[8] | DUKE S O. Allelopathy:Current status of research and future of the discipline:A commentary[J]. Allelopathy Journal, 2010, 25(1):17-30 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb200802024 |
[9] | 丁永川.设施番茄连作障碍及防控农艺技术研究[D].泰安: 山东农业大学, 2012 DING Y C. Study of succession cropping obstacle and protection agronomic technology in protected tomato[D]. Tai'an: Shandong Agricultural University, 2012 |
[10] | 葛晓颖, 孙志刚, 李涛, 等.设施番茄连作障碍与土壤芽孢杆菌和假单胞菌及微生物群落的关系分析[J].农业环境科学学报, 2016, 35(3):514-523 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201603016 GE X Y, SUN Z G, LI T, et al. Soil Pseudomonas spp., Bacillus spp., and microbial communities under tomato continuous cropping in greenhouse production[J]. Journal of Agro-Environment Science, 2016, 35(3):514-523 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201603016 |
[11] | 张若宇.番茄可溶性固形物和硬度的高光谱成像检测[D].杭州: 浙江大学, 2014 ZHANG R Y. Detection of soluble solids content and firmness of tomato using hyperspectral imaging[D]. Hangzhou: Zhejiang University, 2014 |
[12] | 喻景权, 杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报, 2000, 31(1):124-126 doi: 10.3969/j.issn.1000-1700.2000.01.035 YU J Q, DU Y S. Soil-sickness problem in the sustainable development for the protected production of vegetables[J]. Journal of Shenyang Agricultural University, 2000, 31(1):124-126 doi: 10.3969/j.issn.1000-1700.2000.01.035 |
[13] | 王芳.茄子连作障碍机理研究[D].北京: 中国农业大学, 2003 WANG F. The mechanism of eggplant (Solanum Melongena L.) replanting problem[D]. Beijing: China Agricultural University, 2003 |
[14] | 高玲, 刘迪发, 徐丽.黄秋葵研究进展与前景[J].热带农业科学, 2014, 34(11):22-29 doi: 10.3969/j.issn.1009-2196.2014.11.006 GAO L, LIU D F, XU L. Research progress and prospects of okra[J]. Chinese Journal of Tropical Agriculture, 2014, 34(11):22-29 doi: 10.3969/j.issn.1009-2196.2014.11.006 |
[15] | 陈仁柳.福建省黄秋葵高效生产技术研究及推广[D].福州: 福建农林大学, 2014 CHEN R L. Study on the efficiency cultivation techniques and generalization of Okra in Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014 |
[16] | 刘东祥, 叶花兰, 刘国道.黄秋葵的应用价值及栽培技术研究进展[J].安徽农业科学, 2006, 34(15):3718-3720 doi: 10.3969/j.issn.0517-6611.2006.15.072 LIU D X, YE H L, LIU G D. Review of the application value and cultivation technique of okra[J]. Journal of Anhui Agricultural Sciences, 2006, 34(15):3718-3720 doi: 10.3969/j.issn.0517-6611.2006.15.072 |
[17] | 张金燕, 孙雪婷, 陈军文, 等.连作三七根际土壤化感物质检测及其提取液对三种作物种子萌发的影响[J].南方农业学报, 2017, 48(7):1178-1184 doi: 10.3969/j.issn.2095-1191.2017.07.08 ZHANG J Y, SUN X T, CHEN J W, et al. Allelochemical detection from rhizosphere soil of continuous-cropping Panax notoginseng and effects of the extracts on seed germination of three crops[J]. Journal of Southern Agriculture, 2017, 48(7):1178-1184 doi: 10.3969/j.issn.2095-1191.2017.07.08 |
[18] | 周亮, 李朝晖, 魏宝阳, 等.景天三七水培营养液配方研究[J].湖南农业科学, 2017, (5):25-27 http://d.old.wanfangdata.com.cn/Periodical/hunannykx201705008 ZHOU L, LI Z H, WEI B Y, et al. Study on hydropinic nurtient solution formula of Sedum.k.F[J]. Hunan Agricultural Sciences, 2017, (5):25-27 http://d.old.wanfangdata.com.cn/Periodical/hunannykx201705008 |
[19] | 石婷婷, 翟奥博, 赵文, 等.达氏鳇大型鱼体剥制标本的制作研究[J].大连海洋大学学报, 2017, 32(2):205-210 http://d.old.wanfangdata.com.cn/Periodical/dlscxyxb201702014 SHI T T, ZHAI A B, ZHAO W, et al. Stripped specimen preparation of large Kaluga Huso dauricus[J]. Journal of Dalian Ocean University, 2017, 32(2):205-210 http://d.old.wanfangdata.com.cn/Periodical/dlscxyxb201702014 |
[20] | 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000 LI H S. Principles and Techniques of Plant Physiological Biochemical[M]. Beijing:Higher Education Press, 2000 |
[21] | 李锋, 李木英, 潘晓华, 等.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性[J].中国水稻科学, 2004, 18(1):48-52 doi: 10.3321/j.issn:1001-7216.2004.01.010 LI F, LI M Y, PAN X H, et al. Biochemical and physiological characteristics in seedlings roots of different rice cultivars under low-phosphorus stress[J]. Chinese Journal of Rice Science, 2004, 18(1):48-52 doi: 10.3321/j.issn:1001-7216.2004.01.010 |
[22] | 张恩和, 张新慧, 王惠珍.不同基因型春蚕豆对磷胁迫的适应性反应[J].生态学报, 2004, 24(8):1589-1593 doi: 10.3321/j.issn:1000-0933.2004.08.003 ZHANG E H, ZHANG X H, WANG H Z. Adaptable effects of phosphorus stress on different genotypes of faba-bean[J]. Acta Ecologica Sinica, 2004, 24(8):1589-1593 doi: 10.3321/j.issn:1000-0933.2004.08.003 |
[23] | 周晓星.柳属植物对重金属镉胁迫的生长与生理响应[D].北京: 中国林业科学研究院, 2012 ZHOU X X. Growth and physiological responses of Salix to cadmium stress[D]. Beijing: Chinese Academy of Forestry, 2012 |
[24] | CLAUSSEN W. Growth, water use efficiency, and proline content of hydroponically grown tomato plants as affected by nitrogen source and nutrient concentration[J]. Plant and Soil, 2002, 247(2):199-209 doi: 10.1023/A:1021453432329 |
[25] | 刘艳阳, 李俊周, 陈磊, 等.低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响[J].麦类作物学报, 2006, 26(4):70-73 doi: 10.3969/j.issn.1009-1041.2006.04.017 LIU Y Y, LI J Z, CHEN L, et al. Effect of low temperature stress on peroxidation product of membrane lipids and activity of related enzymes in wheat seedling leaves[J]. Journal of Triticeae Crops, 2006, 26(4):70-73 doi: 10.3969/j.issn.1009-1041.2006.04.017 |
[26] | 陈锋, 孟永杰, 帅海威, 等.植物化感物质对种子萌发的影响及其生态学意义[J].中国生态农业学报, 2017, 25(1):36-46 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170106&flag=1 CHEN F, MENG Y J, SHUAI H W, et al. Effect of plant allelochemicals on seed germination and its ecological significance[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):36-46 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170106&flag=1 |
[27] | HAN C M, PAN K W, WU N, et al. Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive[J]. Scientia Horticulturae, 2008, 116(3):330-336 doi: 10.1016/j.scienta.2008.01.005 |
[28] | TURK M A, TAWAHA A M. Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.)[J]. Crop Protection, 2003, 22(4):673-677 doi: 10.1016/S0261-2194(02)00241-7 |
[29] | 董小艳, 程智慧, 张亮.百合根系分泌物对4种观赏植物的化感作用[J].西北农林科技大学学报:自然科学版, 2008, 36(9):113-117 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200809020 DONG X Y, CHENG Z H, ZHANG L. Allelopathy of lily root exudates on some receiver ornamental plants[J]. Journal of Northwest A&F University:Natural Science Edition, 2008, 36(9):113-117 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200809020 |
[30] | 王海燕, 蒋展鹏.化感作用及其在环境保护中的应用[J].环境污染治理技术与设备, 2002, 3(6):86-89 http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200206019 WANG H Y, JIANG Z P. Allelopathy and its use in environmental protection[J]. Techniques and Equipment for Environmental Pollution Control, 2002, 3(6):86-89 http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb200206019 |
[31] | 童朝阳, 韩丽梅, 邹永久.大豆专用肥对轮作、连作大豆叶片超微结构的影响[J].大豆科学, 1998, 17(4):358-362 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800033731 TONG Z Y, HAN L M, ZOU Y J. Effect of soybean specificy complex fertilizer of ultrastructre of chloroplast under different cropping systems[J]. Soybean Science, 1998, 17(4):358-362 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800033731 |
[32] | HALLAK A M G, DAVIDE L C, SOUZ I F. Effects of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) root[J]. Genetics and Molecular Biology, 1999, 22(1):95-99 doi: 10.1590/S1415-47571999000100018 |
[33] | 闵红.大棚蔬菜连作障碍机理研究[D].杨凌: 西北农林科技大学, 2010 MIN H. The study of mechanization of continuous cropping in greenhouse[D]. Yangling: Northwest A&F University, 2010 |
[34] | BAZIRAMAKENGA R, LEROUX G D, SIMARD R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots[J]. Journal of Chemical Ecology, 1995, 21(9):1271-1285 doi: 10.1007/BF02027561 |