删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

FeSO<sub>4</sub>引发提高秦艽种子萌发的生理机制

本站小编 Free考研考试/2022-01-01

牛晓雪1, 2,,
牟萌1,
李保华1,
董学会2,,
1.潍坊市农业科学院 潍坊 261071
2.中国农业大学农学院 北京 100193
基金项目: 国家“重大新药创制”科技重大专项20122X09304006

详细信息
作者简介:牛晓雪, 主要从事种子生理研究。E-mail:apple.xiaoxue@163.com
通讯作者:董学会, 主要研究方向为种子生理学。E-mail:xuehuidong@cau.edu.cn
中图分类号:S330.2

计量

文章访问数:590
HTML全文浏览量:0
PDF下载量:432
被引次数:0
出版历程

收稿日期:2018-03-13
录用日期:2018-06-30
刊出日期:2018-12-01

Physiological mechanism of FeSO4 priming improvement of seed germination performances of Gentiana macrophylla

NIU Xiaoxue1, 2,,
MU Meng1,
LI Baohua1,
DONG Xuehui2,,
1. Weifang Academy of Agricultural Sciences, Weifang 261071, China
2. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
Funds: the National Science and Technology Project of "Major New Drug Creation" of China20122X09304006

More Information
Corresponding author:DONG Xuehui, E-mail: xuehuidong@cau.edu.cn


摘要
HTML全文
(1)(6)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探讨FeSO4引发提高秦艽种子萌发抗性的生理机制,同时设置水引发处理,以未作任何处理的种子为对照(CK),研究了0.6% FeSO4引发处理24 h对种子膜透性、储藏性物质、能量、激素及抗性相关酶等方面的影响。结果表明:FeSO4引发降低了种子膜透性,提高种子活力,在吸水12 h和24 h时,电导率分别较CK降低了6.61%和11.67%;调动了种子内部储藏物质的代谢,蔗糖含量减少9.57%,可溶性蛋白增加49.63%,饱和脂肪酸中的豆蔻酸和木焦油酸甲酯含量分别增加4.93%和9.03%,不饱和脂肪酸中的山嵛酸、油酸、亚油酸和亚麻酸分别减少6.73%、8.18%、8.40%和6.70%;改变了种子激素平衡,其中脱落酸的含量下降64.78%,赤霉素含量增加近22倍;加速了种子能量代谢,ATP含量增加2.16倍,细胞色素C氧化酶活性增加67.91%。此外,FeSO4引发使线粒体非酶促系统中谷胱甘肽含量和抗坏血酸的含量分别增加74.08%和10.89%,使细胞内酶促系统超氧化物歧化酶、过氧化氢酶和抗坏血酸过氧化物酶活性分别增加285%、179%以及19.6%。因此,FeSO4引发对种子萌发是一个综合过程,一方面可促进种子物质代谢和提高能荷水平,一方面可改善种子内部生理状态和提高胁迫响应能力,从而提高种子活力,促进种子快速和整齐萌发。
关键词:种子引发/
秦艽/
FeSO4引发/
水引发/
萌发/
生理机制
Abstract:Gentiana macrophylla is a widely used ingredient in traditional Chinese medicine for more than 2 000 years.Now, it is under third-class protection in China and on the list of National Key Protected Wild Herbs.G.macrophylla is a seed-propagated plant with extremely low germination rate.Short seed vigor, lower seed yield and after-ripening severely hinder its seedling establishment and significantly raise nursery cost.Various priming methods have shown that ferrous priming is better than other liquid priming, having higher germination performance under both optimal and adverse environments than non-primed seeds.The objectives of this study was to investigate the physiological mechanism of FeSO4 priming increasing seed germination performance of G.macrophylla to lay the theoretical basis for FeSO4 priming in abiotic stress response and application of FeSO4 priming technology in other plants seeds.Compare with non-priming of seeds, we investigated the effects of 0.6% FeSO4 priming on seed membrane permeability, stored material metabolism, energy metabolism, hormone homeostasis and enzyme activity.In this study, we noted that FeSO4 reduced seed membrane permeability and improved seed vigor by decreasing electrical conductivity by 6.61% at 12 h, 11.67% at 24 h.The mobilization of stored materials such as sugars, proteins and fatty acids were activated, sucrose content decreased by 9.57%, and soluble protein content increased by 49.63%.With regard fatty acids, content of saturated fatty acids increased by 4.93% for myristic acid and 9.03% for methyl lignocerate.Then the content of unsaturated fatty acids decreased by 6.73% for behenic acid, 8.18% for oleic acid, 8.40% for linoleic acid and 6.70% for inolenic acid.In addition, FeSO4 priming altered hormone homeostasis of seeds between ABA and GA, of which ABA content decreased by 64.78% and GA content increased by nearly 22 times.In terms of energy metabolism, FeSO4 priming remarkably improved energy level, increased ATP content by 2.16 times and increased cytochrome C oxidase activity by 67.91%.Moreover, FeSO4 priming acted as an initial stress-exposure, both enzyme-catabolized and non-enzyme-catabolized systems response to environmental stress were activated.This was specifically so for the activities of SOD, CAT, APX of enzyme-catabolized elements, which increased by 2.85 times, 1.79 times and 19.6%, respectively.The contents of non-enzyme-catabolized elements were increased by 74.08% for glutathione and 10.89% for ascorbic acid.In summary, our study indicated that regulation of FeSO4 priming was a complex process that promoted stored material mobilization, ATP biosynthesis, key enzyme activation, phytohormone homeostasis between ABA and GA; and simultaneously regulated both enzymatic-catabolized and non-enzymatic-catabolized effecters in biotic and an-biotic stress.On the one hand, priming induced more advanced development in seeds towards complete germination than unprimed ones.On the other hand, priming was considered as a pre-germination stress-exposure that left seeds with "stress-memory" and improved anti-adversity ability.These changes were not eliminated even when seeds dried to original moisture content.This was the main reason why priming enhanced seed vigor and rapid, uniform seed germination performance.
Key words:Seed priming/
Gentiana mcrophylla Pall./
Ferrous sulfate priming/
Hydro-priming/
Germination/
Physiological mechanism

HTML全文


图1不同引发剂处理对秦艽种子电导率的影响
同一时间不同字母表示处理间差异显著(P < 0.05)。At the same soaking time, different lowercase letters indicate significant differences among different treatments (P < 0.05).
Figure1.Effect of seed priming with different agents on electrical conductivity of Gentiana macrophylla seeds


下载: 全尺寸图片幻灯片

表1不同引发剂处理对秦艽种子内储藏物质的影响
Table1.Effect of seed priming with different agents on storage materials metabolism of Gentiana macrophylla seeds
mg·g-1
引发剂
Priming agent
葡萄糖
Glucose
蔗糖
Sucrose
果糖
Fructose
淀粉
Starch
可溶性总糖
Soluble sugar
可溶性蛋白
Soluble protein
CK 8.23±0.65ab 56.37±1.41a 36.07±0.76a 248.11±2.99a 95.82±3.57a 34.01±2.39c
H2O 8.27±0.55a 56.17±1.39a 36.25±0.92a 243.97±1.42a 94.36±0.66a 38.43±1.84b
FeSO4 7.18±0.53b 51.01±2.36b 35.43±1.19a 246.29±5.00a 94.06±0.90a 50.89±1.99a
同列不同字母表示差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences (P < 0.05).


下载: 导出CSV
表2不同引发剂处理对秦艽种子脂肪酸含量的影响
Table2.Effect of seed priming with different agents on fatty acids contents of Gentiana macrophylla seeds
mg·g-1
脂肪酸种类Fatty acid CK H2O FeSO4
棕榈酸Palmitic acid (C16_0) 1.001 5±0.039 9a 0.981 1±0.025 6a 0.948 9±0.022 5a
硬脂酸Stearic acid (C18_0) 0.475 2±0.002 8a 0.451 0±0.008 1b 0.461 9±0.015 6ab
花生一烯酸Arachidonic acid(C20_0) 0.054 4±0.002 1a 0.054 6±0.001 0a 0.055 1±0.001 9a
山嵛酸甲酯Methyl behenate (C22_0) 0.024 6±0.002 5a 0.027 2±0.000 7a 0.026 6±0.001 2a
豆蔻酸Myristic acid (C14_0) 0.009 7±0.000 3b 0.009 7±0.000 1b 0.010 2±0.000 1a
木焦油酸甲酯Methyl Lignocerate (C24_0) 0.031 0±0.001 0b 0.033 1±0.001 1ab 0.033 8±0.001 4a
棕榈一烯酸Palmitoleic acid (C16_1) 0.024 2±0.000 9a 0.023 7±0.000 7a 0.022 8±0.001 0a
山嵛酸Behenic acid (C20_1) 0.053 5±0.000 7a 0.052 1±0.001 6ab 0.049 9±0.001 8b
油酸Oleic acid (C18_1) 5.009 8±0.059 9a 4.869 6±0.054 4a 4.602 8±0.199 7b
亚油酸Linoleic acid (C18_2) 11.878 1±0.097 3a 11.463 0±0.310 5ab 10.857 3±0.591 2b
亚麻酸Linolenic acid (C18_3) 0.209 4±0.002 9a 0.202 8±0.005 4ab 0.195 2±0.011 1b
同行不同字母表示差异显著(P < 0.05)。Different lowercase letters in the same line indicate significant differences (P < 0.05).


下载: 导出CSV
表3不同引发剂处理对秦艽种子激素(ABA、GA)含量、GA/ABA比值及ATP含量的影响
Table3.Effect of seed priming with different agents on hormone contents (ABA, GA), ratio of GA/ABA and ATP content of Gentiana macrophylla seeds
引发剂
Priming agent
脱落酸(ABA)
Abscisic acid (μg·g-1)
赤霉素(GA)
Gibberellin (μg·g-1)
GA/ABA比值
GA/ABA ratio
腺苷三磷酸(ATP)
Adenosine triphosphate (μmol·g-1)
CK 4.45±0.34a 0.16±0.03c 0.06±0.01c 9.08E-6±1.59E-7b
H2O 1.89±0.08b 0.21±0.01b 0.09±0.02b 9.04E-6±2.93E-7b
FeSO4 1.57±0.06c 3.51±0.23a 2.26±0.24a 2.87E-5±2.50E-6a
同列中不同字母表示差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences (P < 0.05).


下载: 导出CSV
表4不同引发剂处理对秦艽种子线粒体完整性的影响
Table4.Effect of seed priming with different agents on mitochondrial integrity of Gentiana macrophylla seeds
引发剂
Priming agent
细胞色素C氧化酶(COX) Cytochrome C oxidase (U·g-1·min-1) 线粒体完整性
Mitochondrial integrity (%)
加入Triton前Before adding triton 加入Triton后After adding triton
CK 0.458±0.002a 0.508±0.015a 9.873±0.438b
H2O 0.573±0.018b 0.637±0.028b 8.682±2.219ab
FeSO4 0.797±0.018c 0.853±0.039c 5.565±1.476a
同列不同字母表示差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences (P < 0.05).


下载: 导出CSV
表5不同引发剂对秦艽种子线粒体内非酶促保护系统酶的影响
Table5.Effects of seed priming with different agents on non-enzymatic antioxidants in mitochondria of Gentiana macrophylla seeds
引发剂
Priming agent
还原性谷胱甘肽
(GSH)
Reduced glutathione
[μmol·g-1(protein)]
氧化性谷胱甘肽(GSSH)
Oxidized glutathione
[μmol·g-1(protein)]
比值
Ratio
(GSH/GSSH)
抗坏血酸(ASC)
Ascorbic acid
[μmol·g-1(protein)]
脱氢抗坏血酸(DHA)
Dehydroascorbic acid
[μmol·g-1(protein)]
比值
Ratio
(ASC/DHA)
CK 23.88±0.86c 83.71±0.45a 0.31±0.04c 12.95±0.45b 3.67±0.81b 3.68±1.04a
H2O 27.74±1.98b 67.26±0.42b 0.41±0.03b 15.08±0.40a 6.15±0.99a 2.49±0.38ab
FeSO4 41.57±5.54a 64.80±4.77b 0.64±0.08a 14.36±0.87a 7.90±2.17a 1.89±0.38b
同列不同字母表示差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences (P < 0.05).


下载: 导出CSV
表6不同引发剂对秦艽种子抗性相关酶的影响
Table6.Effect of seed priming with different agents on resistance-related enzymes activities of Gentiana macrophylla seeds
引发剂
Priming agent
过氧化氢酶活性
Catalase activity
(U·mg-1·min-1)
抗坏血酸过氧化物酶活性
Ascorbate peroxidase activity
(U·mg-1·min-1)
超氧化物歧化酶活性
Superoxide dismutase activity
(mg·g-1)
丙二醛含量
Malondialdehyde content
(mg·g-1)
CK 0.82±0.29c 0.72±0.23c 1.43±0.02b 3.23±0.19b
H2O 2.07±0.63b 1.48±0.23b 1.46±0.01b 2.73±0.19c
FeSO4 3.17±0.28a 2.02±0.17a 1.70±0.03a 5.97±0.32a
同列不同字母表示差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences (P < 0.05).


下载: 导出CSV

参考文献(37)
[1]NIU X X, CHEN X W, SU H, et al. Changes of secondary metabolites and trace elements in Gentiana macrophylla flowers: A potential medicinal plant part[J]. Chinese Herbal Medicine, 2014, 6(2): 145-151 doi: 10.1016/S1674-6384(14)60023-X
[2]BRADFORD K J. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions[J]. Hortscience, 1986, 21(5): 1105-1112 http://agris.fao.org/openagris/search.do?recordid=us8708087
[3]阮松林, 薛庆中, 王清华.种子引发对杂交水稻幼苗耐盐性的生理效应[J].中国农业科学, 2003, 36(4): 463-468 doi: 10.3321/j.issn:0578-1752.2003.04.020
RUAN S L, XUE Q Z, WANG Q H. Physiological effects of seed priming on salt-tolerance of seedlings in hybrid rice (Oryza sativa L.)[J]. Scientia Agricultura Sinica, 2003, 36(4): 463-468 doi: 10.3321/j.issn:0578-1752.2003.04.020
[4]IQBAL M, ASHRAF M. Seed preconditioning modulates growth, ionic relations, and photosynthetic capacity in adult plants of hexaploid wheat under salt stress[J]. Journal of Plant Nutrition, 2007, 30(3): 381-396 doi: 10.1080/01904160601171330
[5]KORKMAZ A, KORKMAZ Y. Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress[J]. Scientia Horticulturae, 2009, 119(2): 98-102 doi: 10.1016/j.scienta.2008.07.016
[6]CHEN K, ARORA R, ARORA U. Osmopriming of spinach (Spinacia oleracea L. cv. Bloomsdale) seeds and germination performance under temperature and water stress[J]. Seed Science and Technology, 2010, 38(1): 36-48 doi: 10.15258/sst
[7]杨小环, 马金虎, 郭数进, 等.种子引发对盐胁迫下高粱种子萌发及幼苗生长的影响[J].中国生态农业学报, 2011, 19(1): 103-109 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110119&flag=1
YANG X H, MA J H, GUO S J, et al. Effect of seed priming on sorghum (Sorghum bicolor L.) seed germination and seedling growth under salt stress[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1): 103-109 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110119&flag=1
[8]肖雪峰, 刘丽, 郭巧生, 等.种子引发对NaCl胁迫下通关藤种子萌发及幼苗生理特性的影响[J].中国中药杂志, 2015, 40(2): 218-225 http://d.old.wanfangdata.com.cn/Periodical/zgzyzz201502011
XIAO X F, LIU L, GUO Q S, et al. Effects of seed priming on physiology of seed germination and seeding growth of Marsdenia tenacissima under NaCl stress[J]. China Journal of Chinese Materia Medica, 2015, 40(2): 218-225 http://d.old.wanfangdata.com.cn/Periodical/zgzyzz201502011
[9]谢娟娜, 路杨, 房琴, 等.种子引发对小麦抗盐及抗旱特性影响综述[J].中国生态农业学报, 2016, 24(8): 1025-1034 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016804&flag=1
XIE J N, LU Y, FANG Q, et al. Effect of seed priming on drought and salinity tolerance of wheat: An overview[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1025-1034 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016804&flag=1
[10]朱文彬, 王长林.种子引发对盐碱地夏枯草出苗质量的影响[J].江苏农业科学, 2017, 45(4): 106-108 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201704033
ZHU W B, WANG C L. Effect of seed priming on seedling quality of Prunella vulgaris on saline-alkali land[J]. Jiangsu Agricultural Sciences, 2017, 45(4): 106-108 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201704033
[11]马超, 孔蓓蓓, 张均, 等.不同引发剂处理对水分胁迫下小麦发芽及幼苗生理特性的影响[J].核农学报, 2017, 31(2): 357-363 http://d.old.wanfangdata.com.cn/Periodical/hnxb201702019
MA C, KONG P P, ZHANG J, et al. Effects of seed priming with different agents on seed germination and seedling physiological characteristics of wheat under dehydration stress[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(2): 357-363 http://d.old.wanfangdata.com.cn/Periodical/hnxb201702019
[12]中国农业大学.一种促进秦艽种子萌发的方法: 中国, 201310157467.2[P/OL]. 2015-03-04[2018-03-12]. http://www.soopat.com/Patent/201310157467
China Agricultural University. Method for promoting germination of Gentiana macrophylla L. seed : CN, 201310157467.2[P/OL]. 2015-03-04[2018-03-12]. http://www.soopat.com/Patent/201310157467
[13]周长军, 李建英, 田中艳, 等.大豆芽菜萌发条件研究[J].黑龙江农业科学, 2010, (11): 12-14 doi: 10.3969/j.issn.1002-2767.2010.11.005
ZHOU C J, LI J Y, TIAN Z Y, et al. Study on germination and determination of material content of soybean sprouts[J]. Heilongjiang Agricultural Sciences, 2010, (11): 12-14 doi: 10.3969/j.issn.1002-2767.2010.11.005
[14]张志良, 瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社, 2003: 127-132
ZHANG Z L, QU W J. The Experimental Guide for Plant Physiology[M]. Beijing: Higher Education Press, 2003: 127-132
[15]何钟佩.农作物化学控制实验指导[M].北京:中国农业大学出版社, 1993: 60-68
HE Z P. The Experimental Guide for Crops Chemical Control[M]. Beijing: China Agricultural University Press, 1993: 60-68
[16]宋松泉.种子生物学研究指南[M].北京:科学出版社, 2005: 67-75
SONG S Q. The Research Guide for Seed Biology[M]. Beijing: Science Press, 2005: 67-75
[17]YIN G K, SUN H M, XIN X, et al. Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures[J]. Plant and Cell Physiology, 2009, 50(7): 1305-1318 doi: 10.1093/pcp/pcp074
[18]HERNáNDEZ J A, CORPAS F J, GóMEZ M, et al. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria[J]. Physiologia Plantarum, 1993, 89(1): 103-110 http://mplant.oxfordjournals.org/external-ref?access_num=10.1111/j.1399-3054.1993.tb01792.x&link_type=DOI
[19]NEUBURGE M. Preparation of plant mitochondria, criteria for assessement of mitochondrial integrity and purity, survival in vitro[M]//DOUCE R, DAY D A. Higher Plant Cell Respiration. Berlin, Heidelberg: Springer, 1985: 7-24
[20]杨小环, 王玉国, 杨文秀, 等.种子引发对水分胁迫下大豆幼苗生理特性的影响[J].中国生态农业学报, 2009, 17(6): 1191-1195 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009626&flag=1
YANG X H, WANG Y G, YANG W X, et al. Effect of seed priming on physiological characteristics of soybean seedling under water stress[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6): 1191-1195 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009626&flag=1
[21]张青, 李隆云, 孙年喜.青蒿种子萌发过程中生理生化变化的研究[J].种子, 2011, 30(3): 10-13 doi: 10.3969/j.issn.1001-4705.2011.03.003
ZHANG Q, LI L Y, SUN N X. Study on the change of physiology and biochemistry during process of Artemisia annua seed germination[J]. Seed, 2011, 30(3): 10-13 doi: 10.3969/j.issn.1001-4705.2011.03.003
[22]刘凤, 曹帮华, 蔡春菊, 等.毛竹种子萌发过程中生理生化特性变化的研究[J].种子, 2009, 28(2): 12-14 http://d.old.wanfangdata.com.cn/Periodical/zhongz200902004
LIU F, CAO B H, CAI C J, et al. Study on the change of physiology and biochemistry of Phyllostachys edulis seed during germination[J]. Seed, 2009, 28(2): 12-14 http://d.old.wanfangdata.com.cn/Periodical/zhongz200902004
[23]杨忠仁, 郝丽珍, 张凤兰, 等.沙葱种子萌发特性及脂质代谢变化规律试验[J].广东农业科学, 2013, 40(1): 31-34 doi: 10.3969/j.issn.1004-874X.2013.01.012
YANG Z R, HAO L Z, ZHANG F L, et al. Dynamic change of germination character and lipid metablism of Allium mongolicum Regel seed[J]. Guangdong Agricultural Sciences, 2013, 40(1): 31-34 doi: 10.3969/j.issn.1004-874X.2013.01.012
[24]LINKIES A, LEUBNER-METZGER G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination[J]. Plant Cell Reports, 2012, 31(2): 253-270 doi: 10.1007/s00299-011-1180-1
[25]NAMBARA E, OKAMOTO M, TATEMATSU K, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010, 20(2): 55-67 doi: 10.1017/S0960258510000012
[26]SCHWEMBER A R, BRADFORD K J. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures[J]. Plant Molecular Biology, 2010, 73(1/2): 105-118 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2850532
[27]EI-ARABY M M, MOUSTAFA S M A, ISMAIL A I, et al. Hormone and phenol levels during germination and osmopriming of tomato seeds, and associated variations in protein patterns and anatomical seed features[J]. Acta Agronomica Hungarica, 2006, 54(4): 441-457 doi: 10.1556/AAgr.54.2006.4.7
[28]NAKAUNE M, HANADA A, YIN Y G, et al. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato[J]. Plant Physiology and Biochemistry, 2012, 52: 28-37 doi: 10.1016/j.plaphy.2011.11.005
[29]WANG L, HU X Y, JIAO C, et al. Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size[J]. BMC Genomics, 2016, 17(1): 898 doi: 10.1186/s12864-016-3193-1
[30]郑秀珍.紫穗槐和刺槐种子萌发过程中内源激素含量及相关酶活性的动态变化[J].长江大学学报:自然科学版, 2006, 3(3): 163-165 http://d.old.wanfangdata.com.cn/Periodical/cjdxxb-b200603019
ZHENG X Z. Dynamic changes of some endogenous hormone content and activities of some related enzymes during the germination of seeds of Amorpha frutiicosa L. and Robinia pseudoacacia L.[J]. Journal of Yangtze University: Natural Science Edition, 2006, 3(3): 163-165 http://d.old.wanfangdata.com.cn/Periodical/cjdxxb-b200603019
[31]陈博雯, 刘海龙, 陈晓明, 等. 2个油茶品种种子萌发过程中激素生理初探[J].山西农业科学, 2012, 40(8): 840-843 http://d.old.wanfangdata.com.cn/Periodical/shanxnykx201208009
CHEN B W, LIU H L, CHEN X M, et al. Hormone physiology of two Camellia oleifera Abel. species during seed germination[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(8): 840-843 http://d.old.wanfangdata.com.cn/Periodical/shanxnykx201208009
[32]苏海兰, 周先治, 李希, 等.云南重楼种子萌发过程内源激素含量及酶活性变化研究[J].核农学报, 2018, 32(1): 141-149 http://d.old.wanfangdata.com.cn/Periodical/hnxb201801017
SU H L, ZHOU X Z, LI X, et al. Dynamic changes of enzyme and endogenous of Paris polyphylla Smith var. yunnanensis seed during different stages of germination[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(1): 141-149 http://d.old.wanfangdata.com.cn/Periodical/hnxb201801017
[33]CHEN K, ARORA R. Priming memory invokes seed stress-tolerance[J]. Environmental and Experimental Botany, 2013, 94: 33-45 doi: 10.1016/j.envexpbot.2012.03.005
[34]WEITBRECHT K, MüLLER K, LEUBNER-METZGER G. First off the mark: Early seed germination[J]. Journal of Experimental Botany, 2011, 62(10): 3289-3309 doi: 10.1093/jxb/err030
[35]CHEN K T, ARORA R. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea)[J]. Plant Science, 2011, 180(2): 212-220 doi: 10.1016/j.plantsci.2010.08.007
[36]KHALIQ A, ASLAM F, MATLOOB A, et al. Seed priming with selenium: Consequences for emergence, seedling growth, and biochemical attributes of rice[J]. Biological Trace Element Research, 2015, 166(2): 236-244 doi: 10.1007/s12011-015-0260-4
[37]刘洁.引发提高老化葫芦种子活力的机理研究[D].武汉: 华中农业大学, 2013: 21-23 http://cdmd.cnki.com.cn/Article/CDMD-10504-1013336800.htm
LIU J. Research on mechanism of priming improving the vigor of aged gourd seeds[D]. Wuhan: Huazhong Agricultural University, 2013: 21-23 http://cdmd.cnki.com.cn/Article/CDMD-10504-1013336800.htm

相关话题/种子 生理 物质 北京 系统