删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长期施肥对栗褐土区土壤-作物系统可持续性的影响

本站小编 Free考研考试/2022-01-01

黄学芳,,
王娟玲,
黄明镜,
赵聪,
刘化涛
山西省农业科学院旱地农业研究中心 太原 030031
基金项目: 国家公益性行业(农业)科研专项201503124
山西省重点研发计划重点项目201703D211002

详细信息
作者简介:黄学芳, 主要研究方向为农田水肥资源高效利用与生态环境。E-mail:hxfwmf@163.com
中图分类号:S154.4;S158.3;S127

计量

文章访问数:787
HTML全文浏览量:2
PDF下载量:585
被引次数:0
出版历程

收稿日期:2018-05-15
录用日期:2018-05-23
刊出日期:2018-08-01

Sustainability of soil-crop systems under different long-term fertilizations in Chestnut Cinnamon soil areas

HUANG Xuefang,,
WANG Juanling,
HUANG Mingjing,
ZHAO Cong,
LIU Huatao
Center for Arid Farming Research, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
Funds: the Special Fund for Agro-scientific Research in the Public Interest of China201503124
the Science and Technology Key Program of Shanxi Province, China201703D211002

More Information
Corresponding author:HUANG Xuefang, E-mail: hxfwmf@163.com


摘要
HTML全文
(1)(4)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:利用长期施肥定位试验开展土壤-作物系统的可持续性评价,可为农田合理施肥和管理提供理论支撑。在黄土丘陵区栗褐土农田进行了26年长期肥料定位试验,设置8个处理,分别是不施肥(CK)、单施氮肥[120.0 kg(N)·hm-2,N]、氮[120.0 kg(N)·hm-2]和磷[75 kg(P2O5)·hm-2]肥配施(NP)、单施低量有机肥(22 500 kg·hm-2,M1)、低量有机肥与氮肥配合施用(M1N)、低量有机肥与氮磷肥配合施用(M1NP)、高量有机肥(45 000 kg·hm-2)与氮肥配合施用(M2N)和高量有机肥与氮磷肥配合施用(M2NP)。测定了19项指标,根据三角性面积法计算了土壤养分指数、土壤微生物指数、作物指数和可持续性指数,分析讨论了长期施肥对栗褐土区土壤-作物系统可持续性的影响。结果表明:1)N、M1处理的可持续性指数较CK分别提高27.1%、141.7%,但较临界值(1.30)低53.1%和10.8%;NP处理的可持续性指数虽然较N处理提高62.3%,但仍比临界值(1.30)低23.8%。说明长期单施氮肥、低量有机肥和氮磷配施下土壤-作物系统均不可持续。2)施用无机肥处理(N和NP)的土壤养分指数、土壤微生物指数和作物指数较CK提高7.1%和46.4%、-6.0%和25.4%、40.0%和60.0%;单施低量有机肥(M1)的土壤养分指数、土壤微生物指数和作物指数较CK提高98.2%、41.8%和31.7%。说明施用无机肥有利于作物指数的提升,而施用有机肥有利于土壤养分指数和土壤微生物指数的提升。3)M1N处理的土壤养分指数(1.06)、土壤微生物指数(1.04)、作物指数(1.00)和可持续性指数(1.38)均超过或等于临界值,使土壤-作物系统具有较好的可持续性。4)M1NP、M2N、M2NP处理的土壤养分指数较M1N处理分别提高21.7%、37.7%和72.6%,土壤微生物指数较M1N处理分别提高15.4%、7.7%和18.3%,作物指数与M1N处理相比差异很小,可持续性指数较M1N处理分别提高28.3%、32.6%和68.1%。说明在M1N基础上再增施磷肥或有机肥,可持续性指数可进一步提升是由于土壤养分指数和土壤微生物指数提高的缘故,同时也增加了潜在的环境风险。适量有机肥与无机氮配合施用(M1N)是实现栗褐土区土壤-作物系统可持续生产的较佳施肥模式。
关键词:土壤-作物系统/
长期施肥/
栗褐土/
可持续性指数/
土壤养分指数/
土壤微生物指数/
作物指数
Abstract:The sustainability of soil-crop systems was evaluated based on a long-term fertilization experiment to provide theoretical support for farmland fertilization and management. The long-term fertilizer experiment consisting of 8 treatments and a CK was carried out in the Chestnut Cinnamon soil of loess hilly-gully region for 26 years. The treatments included:non-fertilization (CK), 120.0 kg(N)·hm-2 urea (N), 120.0 kg(N)·hm-2 urea + 75 kg(P2O5)·hm-2 calcium superphosphate (NP), 22 500 kg·hm-2 organic fertilizer (M1), M1 + N (M1N), M1 + NP (M1NP), 45 000 kg·hm-2 organic fertilizer + 120.0 kg(N)·hm-2 urea (M2N) and M2 + NP (M2NP). A total of 19 indicators of the soil-crop system were measured, and soil nutrient index, soil microbial index, crop index and sustainability index were calculated by the triangle area method. The effects of long-term fertilization on the sustainability of soil-crop systems in the Chestnut Cinnamon soil region were discussed. The results indicated that:1) the sustainability indexes of N and M1 treatments increased respectively by 27.1% and 141.7% compared with CK, but were 53.1% and 10.8% lower than the critical value (1.30). Although the sustainability index of NP treatment was 62.3% higher than N treatment, it was 23.8% lower than the critical value (1.30). This indicated that soil-crop systems under long-term application of single nitrogen, or low organic fertilizer or nitrogen and phosphorus were all unsustainable. 2) Nutrient index, microbial index and crop index of inorganic fertilizer (N, NP) treatments increased respectively by 7.1% and 46.4%, -6.0% and 25.4%, 40.0% and 60.0% compared with CK. Nutrient index, microbial index and crop index of single application of organic fertilizer (M1) were respectively 98.2%, 41.8% and 31.7% higher than those of CK, showing inorganic fertilizer application improved crop index, organic fertilizer application improved nutrient index and microbial index. 3) Soil nutrient index (1.06), soil microbial index (1.04), crop index (1.00) and sustainability index (1.38) of M1N all exceeded or equaled the critical value, which was good for the sustainability of soil-crop systems. 4) Soil nutrient indexes of M1NP, M2N and M2NP increased respectively by 21.7%, 37.7% and 72.6% compared with M1N, and the corresponding soil microbial index increased by 15.4%, 7.7% and 18.3% over M1N. There were small differences in crop indexes of the above treatments, compared with M1N. Sustainability indexes of the above treatments increased respectively by 28.3%, 32.6% and 68.1% compared with M1N. The results indicated that increasing application of phosphorus or organic fertilizer over M1N further enhanced sustainability index because of enhanced soil nutrient index and microbial index, but also increased potential environmental risk. A combination of moderate amounts of organic and inorganic N application (M1N) was a comparatively better fertilization model, which ensured sustainable production of soil-crop systems in Chestnut Cinnamon soil region.
Key words:Soil-crop system/
Long-term fertilization/
Chestnut Cinnamon soil/
Sustainability index/
Soil nutrient index/
Soil microbial index/
Crop index

HTML全文


图1三角形方法计算土壤-作物系统的可持续性指数
Figure1.Calculation of sustainability of soil-crop system with triangle method


下载: 全尺寸图片幻灯片

表1不同长期施肥处理下土壤养分指标及临界值
Table1.Soil nutrient indicators under different long-term fertilization treatments and their threshold values
处理
Treatment
有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
全磷
Total P
(g·kg-1)
碱解氮
Alkali-hydrolyzable N
(mg·kg-1)
速效磷
Olsen-P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
CK 5.73±0.16d 0.42±0.01d 0.70±0.02d 25.89±2.54d 4.80±0.13d 86.61±7.98d
N 6.49±0.18cd 0.51±0.02c 0.69±0.03d 27.97±2.16d 4.64±0.15d 87.34±6.58d
NP 6.84±0.13c 0.52±0.01c 0.89±0.06b 32.05±3.25cd 19.41±1.55c 88.69±8.45d
M1 11.49±0.22b 0.78±0.01b 0.81±0.04bc 38.56±2.59c 19.85±1.28c 195.84±12.32b
M1N 12.10±0.32b 0.76±0.02b 0.76±0.03cd 50.24±5.35b 16.35±1.49c 172.05±11.25c
M1NP 12.53±0.15b 0.75±0.03b 1.09±0.03a 49.90±1.39b 32.88±2.65b 157.92±12.36c
M2N 15.45±0.26a 0.97±0.02a 0.86±0.04b 59.72±2.68a 29.54±2.47b 256.74±15.36a
M2NP 15.30±0.18a 1.03±0.02a 1.15±0.05a 65.96±4.36a 54.94±3.05a 256.69±17.52a
临界值?Threshold 9.47 0.64 0.82 105.00 15.00 125.00
变异系数?CV (%) 31.6 26.4 19.1 30.4 62.8 40.2
CK:不施肥; N:单施氮肥[120.0 kg(N)·hm-2]; NP:氮肥[120.0 kg(N)·hm-2]和磷肥[75 kg(P2O5)·hm-2]配施; M1:单施低量有机肥(22 500 kg·hm-2); M1N:低量有机肥与氮肥配施; M1NP:低量有机肥与氮磷肥配施; M2N:高量有机肥(45 000 kg·hm-2)与氮肥配施; M2NP:高量有机肥与氮磷肥配施。不同小写字母表示处理间在0.05水平差异显著。CK: non fertilization; N: application of 120.0 kg(N)·hm-2 urea; NP: combined application of 120.0 kg(N)·hm-2 urea and 75 kg(P2O5)·hm-2 calcium superphosphate; M1: application of 22 500 kg·hm-2 organic fertilizer; M1N: combination of M1 and N treatments; M1NP: combination of M1 and NP treatments; M2N: combined application of 45 000 kg·hm-2 organic fertilizer and 120.0 kg(N)·hm-2 urea; M2NP: combination of M2 and NP treatments. Different small letters indicate significant differences among treatments at 0.05 level.


下载: 导出CSV
表2不同长期施肥处理下土壤微生物指标及临界值
Table2.Soil microbiological indicators under different long-term fertilization treatments and their threshold values
处理
Treatment
细菌
Bacterium
(×106CFU·g-1)
放线菌
Actinomyces
(×104CFU·g-1)
真菌
Fungus
(×103CFU·g-1)
无机磷细菌
Phosphorus solubilization bacterium
(×104CFU·g-1)
有机磷细菌
Organic phosphate-dissolving bacterium
(×104CFU·g-1)
CK 22.16±3.69c 16.81±1.86c 2.53±0.77d 22.18±5.65c 50.81±4.44bc
N 26.13±1.15c 20.78±5.94bc 2.48±0.83d 14.11±4.03d 39.92±4.06c
NP 38.96±1.89b 20.83±3.58bc 2.62±0.92cd 26.18±6.45bc 62.50±1.61ab
M1 50.86±8.37ab 22.09±3.56b 3.09±1.01c 30.87±1.21ab 60.97±2.02ab
M1N 55.19±1.53a 23.42±4.23ab 3.78±0.95b 33.06±4.44a 64.52±9.27ab
M1NP 50.95±1.46ab 27.03±4.92a 6.33±1.24a 30.65±2.02ab 77.82±12.1a
M2N 53.85±1.79a 24.22±3.06ab 4.23±1.04b 36.29±7.66a 75.00±3.63a
M2NP 55.33±0.31a 26.05±6.26a 6.77±1.12a 35.48±4.44a 68.55±2.82ab
临界值?Threshold 47.32 23.49 4.19 29.52 64.18
变异系数?CV (%) 23.04 10.44 41.38 25.09 19.34
CK:不施肥; N:单施氮肥[120.0 kg(N)·hm-2]; NP:氮肥[120.0 kg(N)·hm-2]和磷肥[75 kg(P2O5)·hm-2]配施; M1:单施低量有机肥(22 500 kg·hm-2); M1N:低量有机肥与氮肥配施; M1NP:低量有机肥与氮磷肥配施; M2N:高量有机肥(45 000 kg·hm-2)与氮肥配施; M2NP:高量有机肥与氮磷肥配施。不同小写字母表示处理间在0.05水平差异显著。CK: non fertilization; N: application of 120.0 kg(N)·hm-2 urea; NP: combined application of 120.0 kg(N)·hm-2 urea and 75 kg(P2O5)·hm-2 calcium superphosphate; M1: application of 22 500 kg·hm-2 organic fertilizer; M1N: combination of M1 and N treatments; M1NP: combination of M1 and NP treatments; M2N: combined application of 45 000 kg·hm-2 organic fertilizer and 120.0 kg(N)·hm-2 urea; M2NP: combination of M2 and NP treatments. Different small letters indicate significant differences among treatments at 0.05 level.


下载: 导出CSV
表3不同长期施肥处理下作物(玉米)指标及临界值
Table3.Crop (maize) indicators under different long-term fertilization treatments and their threshold values
处理
Treatment
籽粒产量
Grain yield
(kg·hm-2)
籽粒全氮
Grain total N
content (kg·hm-2)
籽粒全磷
Grain total P
content (kg·hm-2)
籽粒全钾
Grain total K content (kg·hm-2)
收获指数
Harvest index (%)
籽粒蛋白质
Grain protein content (%)
籽粒淀粉
Grain starch content (%)
籽粒脂肪
Grain fat content (%)
CK 3 200.8±865.9e 25.38±8.08e 7.89±2.29d 9.45±3.31c 40.73±2.35c 6.06±0.59d 70.60±0.42d 3.19±0.03b
N 6 408.0±663.3c 81.90±9.04c 12.10±1.87c 15.80±3.02b 51.47±1.62ab 8.22±0.22b 71.96±0.48a 3.20±0.13ab
NP 7 867.7±406.8b 104.90±7.20b 17.66±1.56b 21.43±2.06a 55.45±3.52a 8.59±0.50b 71.97±0.19a 3.22±0.13ab
M1 5 773.5±911.4d 59.11±15.64d 13.77±3.06c 16.31±3.21b 49.95±2.43b 6.94±0.48c 71.28±0.42bc 3.22±0.11ab
M1N 8 007.6±666.9ab 115.31±9.86a 18.30±2.68ab 21.15±1.89a 53.65±3.26ab 9.94±0.13a 71.59±0.24abc 3.36±0.05ab
M1NP 8 461.1±754.1a 117.70±10.14a 20.20±2.58a 23.00±3.20a 53.00±2.68ab 10.19±0.81a 71.76±0.45ab 3.30±0.12ab
M2N 7 905.6±653.8ab 116.49±11.33a 19.30±2.74ab 21.60±2.65a 53.53±3.12ab 10.08±0.40a 71.63±0.06ab 3.32±0.07ab
M2NP 8 185.1±981.9ab 116.66±12.7a 19.89±2.47a 22.45±2.26a 51.88±2.47ab 10.17±0.03a 71.11±0.22cd 3.39±0.08a
临界值
Threshold
8 085.42 114.21 19.07 21.93 53.50 9.79 71.61 3.32
变异系数
CV (%)
13.4 22.3 18.3 14.4 3.4 13.8 0.5 2.2
CK:不施肥; N:单施氮肥[120.0 kg(N)·hm-2]; NP:氮肥[120.0 kg(N)·hm-2]和磷肥[75 kg(P2O5)·hm-2]配施; M1:单施低量有机肥(22 500 kg·hm-2); M1N:低量有机肥与氮肥配施; M1NP:低量有机肥与氮磷肥配施; M2N:高量有机肥(45 000 kg·hm-2)与氮肥配施; M2NP:高量有机肥与氮磷肥配施。不同小写字母表示处理间在0.05水平差异显著。CK: non fertilization; N: application of 120.0 kg(N)·hm-2 urea; NP: combined application of 120.0 kg(N)·hm-2 urea and 75 kg(P2O5)·hm-2 calcium superphosphate; M1: application of 22 500 kg·hm-2 organic fertilizer; M1N: combination of M1 and N treatments; M1NP: combination of M1 and NP treatments; M2N: combined application of 45 000 kg·hm-2 organic fertilizer and 120.0 kg(N)·hm-2 urea; M2NP: combination of M2 and NP treatments. Different small letters indicate significant differences among treatments at 0.05 level.


下载: 导出CSV
表4长期不同施肥处理的土壤养分、微生物、作物和土壤-作物系统可持续性指数
Table4.Soil nutrient index, soil microbial index, crop index and sustainability index of soil-crop system under different long-term fertilization treatments
处理
Treatment
土壤养分指数
Soil nutrient index
土壤微生物指数
Soil microbial index
作物指数
Crop index
可持续性指数
Sustainability index
CK 0.56 0.67 0.60 0.48
N 0.60 0.63 0.84 0.61
NP 0.82 0.84 0.96 0.99
M1 1.11 0.95 0.79 1.16
M1N 1.06 1.04 1.00 1.38
M1NP 1.29 1.20 1.02 1.77
M2N 1.46 1.12 1.00 1.83
M2NP 1.83 1.23 1.01 2.32
临界值
Threshold
1.00 1.00 1.00 1.30
变异系数
CV (%)
39.8 24.1 16.6 48.2
CK:不施肥; N:单施氮肥[120.0 kg(N)·hm-2]; NP:氮肥[120.0 kg(N)·hm-2]和磷肥[75 kg(P2O5)·hm-2]配施; M1:单施低量有机肥(22 500 kg·hm-2); M1N:低量有机肥与氮肥配施; M1NP:低量有机肥与氮磷肥配施; M2N:高量有机肥(45 000 kg·hm-2)与氮肥配施; M2NP:高量有机肥与氮磷肥配施。CK: non fertilization; N: application of 120.0 kg(N)·hm-2 urea; NP: combined application of 120.0 kg(N)·hm-2 urea and 75 kg(P2O5)·hm-2 calcium superphosphate; M1: application of 22 500 kg·hm-2 organic fertilizer; M1N: combination of M1 and N treatments; M1NP: combination of M1 and NP treatments; M2N: combined application of 45 000 kg·hm-2 organic fertilizer and 120.0 kg(N)·hm-2 urea; M2NP: combination of M2 and NP treatments.


下载: 导出CSV

参考文献(38)
[1]RASMUSSEN P E, GOULDING K W T, BROWN J R, et al. Long-term agroecosystem experiments:Assessing agricultural sustainability and global change[J]. Science, 1998, 282(5390):893-896 doi: 10.1126/science.282.5390.893
[2]王庆仁, 李继云.论合理施肥与土壤环境的可持续性发展[J].环境科学进展, 1999, 7(2):116-124 http://www.oalib.com/paper/4830522
WANG Q R, LI J Y. Fertilizer proper use and sustainable development of soil environment in China[J]. Advances in Environmental Science, 1999, 7(2):116-124 http://www.oalib.com/paper/4830522
[3]徐明岗, 梁国庆, 张夫道.中国土壤肥力演变[M].北京:中国农业科学技术出版社, 2006
XU M G, LIANG G Q, ZHANG F D. Evolvement of Soil Fertility in China[M]. Beijing:China Agricultural Science and Technology Press, 2006
[4]孔令聪, 曹承富, 汪芝寿, 等.长期定位施肥对砂姜黑土肥力及生产力的影响研究[J].中国生态农业学报, 2004, 12(2):102-104 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2004231&flag=1
KONG L C, CAO C F, WANG Z S, et al. Effects of a long-term located fertilization on the fertility and productivity of Shajiang black soil[J]. Chinese Journal of Eco-Agriculture, 2004, 12(2):102-104 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2004231&flag=1
[5]姜东, 戴廷波, 荆奇, 等.有机无机肥长期配合施用对冬小麦籽粒品质的影响[J].生态学报, 2004, 24(7):1548-1555 http://www.cqvip.com/qk/90772X/200407/10151332.html
JIANG D, DAI T B, JING Q, et al. Effects of long-term application of manure and fertilizers on grain quality and yield of winter wheat[J]. Acta Ecologica Sinica, 2004, 24(7):1548-1555 http://www.cqvip.com/qk/90772X/200407/10151332.html
[6]GALANTINI J, ROSELL R. Long-term fertilization effects on soil organic matter quality and dynamics under different production systems in semiarid Pampean soils[J]. Soil and Tillage Research, 2006, 87(1):72-79 doi: 10.1016/j.still.2005.02.032
[7]孙波, 朱兆良, 牛栋.农田长期生态过程的长期试验研究进展与展望[J].土壤, 2007, 39(6):849-854 http://www.irgrid.ac.cn/handle/1471x/119057?mode=full&submit_simple=Show+full+item+record
SUN B, ZHU Z L, NIU D. Long-term experimental research on long-term ecological processes in agro-ecosystems:A review[J]. Soils, 2007, 39(6):849-854 http://www.irgrid.ac.cn/handle/1471x/119057?mode=full&submit_simple=Show+full+item+record
[8]王改兰, 段建南, 贾宁凤, 等.长期施肥对黄土丘陵区土壤理化性质的影响[J].水土保持学报, 2006, 20(4):82-85 http://www.cnki.com.cn/Article/CJFDTotal-TURA201103002.htm
WANG G L, DUAN J N, JIA N F, et al. Effects of long-term fertilization on soil physical and chemical property in loess hilly area[J]. Journal of Soil and Water Conservation, 2006, 20(4):82-85 http://www.cnki.com.cn/Article/CJFDTotal-TURA201103002.htm
[9]段建南, 赵丽兵, 王改兰, 等.长期定位试验条件下土地生产力和土壤肥力的变化[J].湖南农业大学学报:自然科学版, 2002, 28(6):479-482 http://www.cnki.com.cn/Article/CJFDTOTAL-NJNY201205015.htm
DUAN J N, ZHAO L B, WANG G L, et al. Changes of the land productivity and soil fertility under long term experiment[J]. Journal of Hunan Agricultural University:Natural Sciences, 2002, 28(6):479-482 http://www.cnki.com.cn/Article/CJFDTOTAL-NJNY201205015.htm
[10]杨艳菊, 王改兰, 张海鹏, 等.长期不同施肥处理对栗褐土可培养微生物数量的影响[J].中国土壤与肥料, 2013, (4):35-38 http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201304009.htm
YANG Y J, WANG G L, ZHANG H P, et al. Effects of long-term different fertilization on culturable microorganisms quantity in cinnamon soil[J]. Soil and Fertilizer Sciences in China, 2013, (4):35-38 http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201304009.htm
[11]黄学芳, 池宝亮, 张冬梅, 等.长期施肥对晋西北农田硝态氮累积与分布的影响[J].华北农学报, 2008, 23(4):204-207 doi: 10.7668/hbnxb.2008.04.046
HUANG X F, CHI B L, ZHANG D M, et al. Effects of long-term fertilization on distribution and accumulation of NO3-N in agricultural land in northwestern Shanxi Province[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(4):204-207 doi: 10.7668/hbnxb.2008.04.046
[12]王慎强, 蒋其鳌, 钦绳武, 等.长期施用有机肥与化肥对潮土土壤化学及生物学性质的影响[J].中国生态农业学报, 2001, 9(4):67-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2001419&flag=1
WANG S Q, JIANG Q A, QIN S W, et al. Influence of chemical and biological properties under long-term applying organic manure and chemical fertilizers on Fluvo-aquic soils[J]. Chinese Journal of Eco-Agriculture, 2001, 9(4):67-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2001419&flag=1
[13]张少民, 郝明德, 陈磊.黄土高原长期施肥对小麦产量及土壤肥力的影响[J].干旱地区农业研究, 2006, 24(6):85-89 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj200606019
ZHANG S M, HAO M D, CHEN L. Effects of long-term fertilization on yield of wheat and soil fertility in dry-land of Loess Plateau[J]. Agricultural Research in the Arid Areas, 2006, 24(6):85-89 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj200606019
[14]高瑞, 吕家珑, 张素霞.长期施肥对土肥力及作物产量的影响[J].干旱地区农业研究, 2006, 24(5):64-67 http://www.cnki.com.cn/Article/CJFDTotal-TURA201103002.htm
GAO R, LYU J L, ZHANG S X. Effect of long term fertilization on fertility of Lou soil and crop yield[J]. Agricultural Research in the Arid Areas, 2006, 24(5):64-67 http://www.cnki.com.cn/Article/CJFDTotal-TURA201103002.htm
[15]奚振邦.关于化肥对作物产量贡献的评估问题[J].磷肥与复肥, 2004, 19(3):68-71 http://www.nsfc.gov.cn/publish/portal0/tab87/info52276.htm
XI Z B. Evaluation on the contribution of fertilizer to the yield of crop[J]. Phosphate & Compound Fertilizer, 2004, 19(3):68-71 http://www.nsfc.gov.cn/publish/portal0/tab87/info52276.htm
[16]赖庆旺, 李茶苟, 黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究[J].土壤学报, 1992, 29(2):168-174 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201007012.htm
LAI Q W, LI C G, HUANG Q H. Effect of continuous application of inorganic fertilizer on soil structure properties of paddy soil derived from Red Soil[J]. Acta Pedologica Sinica, 1992, 29(2):168-174 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201007012.htm
[17]黄欠如, 胡锋, 李辉信, 等.红壤性水稻土施肥的产量效应及与气候、地力的关系[J].土壤学报, 2006, 43(6):926-933 doi: 10.11766/trxb200507280607
HUANG Q R, HU F, LI H X, et al. Crop yield response to fertilization and its relations with climate and soil fertility in Red paddy soil[J]. Acta Pedologica Sinica, 2006, 43(6):926-933 doi: 10.11766/trxb200507280607
[18]俄胜哲, 杨生茂, 郭永杰, 等.长期施肥对河西绿洲灌漠土作物产量及土壤养分自然供给能力的影响[J].植物营养与肥料学报, 2010, 16(4):786-793 doi: 10.11674/zwyf.2010.0402
E S Z, YANG S M, GUO Y J, et al. Effects of long-term fertilization on crop yield and indigenous soil nutrient supply in Hexi Oasis of Gansu Province[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4):786-793 doi: 10.11674/zwyf.2010.0402
[19]SARAWAD I M, SING D. Effect of long term fertilizer use on yield and nitrogen uptake by maize-wheat-cowpea sequence[J]. Journal of Farm Sciences, 2004, 17(4):705-711 doi: 10.1007/s10705-007-9152-0
[20]廖育林, 郑圣先, 聂军, 等.长期施用化肥和稻草对红壤水稻土肥力和生产力持续性的影响[J].中国农业科学, 2009, 42(10):3541-3550 doi: 10.3864/j.issn.0578-1752.2009.10.0020
LIAO Y L, ZHENG S X, NIE J, et al. Effects of long-term application of fertilizer and rice straw on soil fertility and sustainability of a reddish paddy soil productivity[J]. Scientia Agricultura Sinica, 2009, 42(10):3541-3550 doi: 10.3864/j.issn.0578-1752.2009.10.0020
[21]FAN T L, STEWART B A, YONG W, et al. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China[J]. Agriculture, Ecosystems & Environment, 2005, 106(4):313-329 https://www.sciencedirect.com/science/article/pii/S0167880904002609
[22]曹志洪, 周健民.中国土壤质量[M].北京:科学出版社, 2008:60-61
CAO Z H, ZHOU J M. Soil Quality of China[M]. Beijing:Science Press, 2008:60-61
[23]张心昱, 陈利顶.土壤质量评价指标体系与评价方法研究进展与展望[J].水土保持研究, 2006, 13(3):30-34 http://d.old.wanfangdata.com.cn/Periodical/stbcyj200603010
ZHANG X Y, CHEN L D. The progress and prospect of soil quality indicators and evaluation methods[J]. Research of Soil and Water Conservation, 2006, 13(3):30-34 http://d.old.wanfangdata.com.cn/Periodical/stbcyj200603010
[24]沈宏, 曹志洪.不同农田土壤养分可持续性指数的研究[J].农村生态环境, 1998, 14(3):35-39 http://www.oalib.com/paper/5081480
SHEN H, CAO Z H. Study on sustainability indices of soil nutrients under different agroecosystems[J]. Rural Eco-Environment, 1998, 14(3):35-39 http://www.oalib.com/paper/5081480
[25]MAJUMDER B, MANDAL B, BANDYOPADHYAY P K, et al. Soil organic carbon pools and productivity relationships for a 34 year old rice-wheat-jute agroecosystem under different fertilizer treatments[J]. Plant and Soil, 2007, 297(1/2):53-67 https://www.researchgate.net/publication/225851200_Soil_organic_carbon_pools_and_productivity_in_relation_to_nutrient_management_in_a_20-year-old_rice-berseem_agroecosystem
[26]李秀英, 李燕婷, 赵秉强, 等.褐潮土长期定位不同施肥制度土壤生产功能演化研究[J].作物学报, 2006, 32(5):683-689 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201601016.htm
LI X Y, LI Y T, ZHAO B Q, et al. The dynamics of crop yields under different fertilization systems in Drab Fluvo-aquic soil[J]. Acta Agronomica Sinica, 2006, 32(5):683-689 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201601016.htm
[27]李忠芳, 徐明岗, 张会民, 等.长期施肥和不同生态条件下我国作物产量可持续性特征[J].应用生态学报, 2010, 21(5):1264-1269 http://www.cqvip.com/Main/Detail.aspx?id=34003319
LI Z F, XU M G, ZHANG H M, et al. Sustainability of crop yields in China under long-term fertilization and different ecological conditions[J]. Chinese Journal of Applied Ecology, 2010, 21(5):1264-1269 http://www.cqvip.com/Main/Detail.aspx?id=34003319
[28]李强, 许明祥, 刘国彬, 等.基于几何方法评价长期施用化肥坡耕地作物轮作系统可持续性[J].植物营养与肥料学报, 2012, 18(4):885-893 doi: 10.11674/zwyf.2012.11380
LI Q, XU M X, LIU G B, et al. Evaluation of crop rotation system sustainability in slope land under long-term chemical fertilization based on geometry method[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4):885-893 doi: 10.11674/zwyf.2012.11380
[29]孙本华, 孙瑞, 郭芸, 等.塿土区长期施肥农田土壤的可持续性评价[J].植物营养与肥料学报, 2015, 21(6):1403-1412 doi: 10.11674/zwyf.2015.0604
SUN B H, SUN R, GUO Y, et al. Evaluation on the sustainability of cropland under different long-term fertilization in Eum-Orthic Anthrosols area[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6):1403-1412 doi: 10.11674/zwyf.2015.0604
[30]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 1999:106-315
LU R K. Analysis Methods of Soil and Agricultural Chemistry[M]. Beijing:China Agricultural Science and Technology Press, 1999:106-315
[31]赵斌, 何绍江.微生物学实验[M].北京:科学出版社, 2002:69-75
ZHAO B, HE S J. Experiment of Microbiology[M]. Beijing:Science Press, 2002:69-75
[32]李振高, 骆永明, 滕应.土壤与环境微生物研究法[M].北京:科学出版社, 2008:61-62
LI Z G, LUO Y M, TENG Y. Soil and Environmental Microorganism Research Method[M]. Beijing:Science Press, 2008:61-62
[33]KANG G S, BERI V, SIDHU B S, et al. A new index to assess soil quality and sustainability of wheat-based cropping systems[J]. Biology and Fertility of Soils, 2005, 41(6):389-398 doi: 10.1007/s00374-005-0857-4
[34]解文艳, 周怀平, 关春林, 等.山西省主要农田土壤速效养分状况与分布[J].山西农业科学, 2011, 39(10):1083-1087 doi: 10.3969/j.issn.1002-2481.2011.10.16
XIE W Y, ZHOU H P, GUAN C L, et al. Spatial distribution of soil active nutrients in farmland in Shanxi Province[J]. Journal of Shanxi Agricultural Sciences, 2011, 39(10):1083-1087 doi: 10.3969/j.issn.1002-2481.2011.10.16
[35]GOMEZ A A, KELLY D E S, SYERS J K, et al. Measuring sustainability of agricultural systems at the farm level[J]. American Society of Agronomy, 1996, 49(8):401-410 https://www.researchgate.net/publication/272881193_Measuring_agricultural_sustainability_at_the_farm-level_A_pragmatic_approach
[36]李彦, 于兴伟, 高弼模, 等.长期施肥对山东三大土类钾有效性及小麦产量的影响[J].中国生态农业学报, 2008, 16(3):583-586 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=200803123&flag=1
LI Y, YU X W, GAO B M, et al. Effect of long-term fertilization on potassium availability in three soil types and yield of wheat in Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3):583-586 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=200803123&flag=1
[37]杨艳菊, 王改兰, 张海鹏, 等.长期施肥条件下栗褐土磷素积累特征[J].生态学杂志, 2013, 32(5):1215-1220 http://mall.cnki.net/magazine/Article/ZWYF201506018.htm
YANG Y J, WANG G L, ZHANG H P, et al. Phosphorus accumulation characteristics in Cinnamon soil under long-term fertilization[J]. Chinese Journal of Ecology, 2013, 32(5):1215-1220 http://mall.cnki.net/magazine/Article/ZWYF201506018.htm
[38]龚娟, 马友华, 胡宏祥, 等.农田土壤磷的环境指标研究进展[J].中国农学通报, 2016, 32(2):112-117 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200702002.htm
GONG J, MA Y H, HU H X, et al. Research advances on environmental indicator of soil phosphorus in farmland[J]. Chinese Agricultural Science Bulletin, 2016, 32(2):112-117 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200702002.htm

相关话题/土壤 作物 微生物 系统 农田