徐应明1,,,
黄青青1,
孙国红2,
尹秀玲3,
梁学峰1,
秦旭1
1.农业部环境保护科研监测所/农业部产地环境质量重点实验室 天津 300191
2.天津农学院工程技术学院 天津 300384
3.吉林大学环境与资源学院 长春 130012
基金项目: 中国农业科学院创新工程项目2017-cxgc-xym
农业部农业生态环境保护项目2017-sthj-xym
天津市科技支撑计划项目14ZCZDSF00004
天津市农业科技成果转化与推广项目201404100
国家现代农业产业技术体系CARS-03
详细信息
作者简介:黄荣, 主要从事施肥对农田土壤重金属镉污染修复影响研究。E-mail:huangrong1992@163.com
通讯作者:徐应明, 主要从事农田土壤重金属污染钝化修复技术研究。E-mail:ymxu1999@126.com
中图分类号:X131.2;X53计量
文章访问数:858
HTML全文浏览量:1
PDF下载量:557
被引次数:0
出版历程
收稿日期:2017-12-06
录用日期:2018-04-13
刊出日期:2018-08-01
Effect of potassium fertilizers on immobilization remediation of Cd-polluted soils using sepiolite
HUANG Rong1,,XU Yingming1,,,
HUANG Qingqing1,
SUN Guohong2,
YIN Xiuling3,
LIANG Xuefeng1,
QIN Xu1
1. Institute of Ago-Environmental Protection of Ministry of Agriculture/Key Laboratory of Original Agro-Environmental Quality, Ministry of Agriculture, Tianjin 300191, China
2. College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
3. College of Environment and Resources, Jilin University, Changchun 130012, China
Funds: the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences2017-cxgc-xym
the Agricultural Eco-Environmental Protection Project of the Ministry of Agriculture of China2017-sthj-xym
the Science and Technology Support Project of Tianjin, China14ZCZDSF00004
the Agricultural Science and Technology Achievement Transformation and Promotion Project of Tianjin, China201404100
the Modern Agricultural Industry Technology System of ChinaCARS-03
More Information
Corresponding author:XU Yingming, E-mail:ymxu1999@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了揭示钾肥对Cd污染土壤钝化修复效果的影响,为土壤钝化修复过程中合理施钾肥提供理论依据。本文选取不同剂量(含量以K2O计算,分别为0.1 g·kg-1、0.2 g·kg-1和0.3 g·kg-1)的KCl和K2SO4作为典型钾肥,以海泡石(10 g·kg-1)作为钝化材料,通过油菜盆栽试验,研究了两种钾肥在海泡石钝化条件下对Cd污染土壤修复效应的影响。结果表明:K2SO4显著增加了油菜的生物量,其增幅为6.06%~10.05%。与单施海泡石钝化相比,在海泡石钝化时施用KCl和K2SO4两种钾肥,油菜地上部茎叶Cd含量分别增加16.38%~60.73%和15.62%~25.19%;施用KCl和K2SO4对土壤pH未产生显著性影响,却显著地增加了土壤有效态Cd含量,其增幅分别为25.51%~34.65%和18.5%~24.96%。添加海泡石可使土壤的Zeta电位向负值方向移动,提高土壤对Cd的负载能力;但添加海泡石下施用KCl和K2SO4均能提高土壤的Zeta电位,降低土壤对Cd的负载能力。等温吸附试验同样表明,添加KCl和K2SO4均能降低海泡石对Cd的吸附量,在水溶液中海泡石对Cd的最大吸附量为5.30 mg·kg-1,添加KCl和K2SO4后吸附量分别降低至2.87 mg·g-1和4.92 mg·g-1。KCl和K2SO4显著改善了土壤中K、Mn、Cu和Zn等营养元素的有效态含量。从上述结果可以发现,在海泡石钝化修复Cd污染土壤过程中,施K2SO4对钝化效果的影响小于施KCl。
关键词:钾肥/
海泡石/
镉污染土壤/
油菜/
钝化/
原位修复
Abstract:Cadmium (Cd) is one of the most toxic pollutants in soil environments because of its persistence, toxicity and potential for bioaccumulation. Natural sepiolite has recently been found as a cost-effective material for immobilization remediation of metal-contaminated soils due to its low cost, high cation exchange capacity, and high specific surface area associated with the small particle sizes. In agricultural production, the application of various fertilizers is vital, but the effects of fertilizer addition to polluted soils on immobilization remediation have been little investigated. In previous studies on immobilization experiments, only remediation effects were emphasized. The effects of nutrient elements on remediation process promotion or inhibition has been largely ignored. For large application of immobilization remediation in different areas with various fertilizer forms, the impact of fertilizers on the process must be determined. In this research, natural sepiolite (10 g·kg-1) was used as immobilization agent and meanwhile potassium chloride (KCl) and potassium sulphate (K2SO4) used as representative potassic fertilizers in rape pot experiments to determine the effects of potassic fertilizers on the process of immobilization remediation of Cd-polluted soil. The potassium fertilizer content was calculated as K2O, with 0.1 g·kg-1, 0.2 g·kg-1 and 0.3 g·kg-1, respectively. The results showed that rape biomass significantly increased (by 6.06%-10.05%) after the application of K2SO4, compared with sole sepiolite treatment. Cd contents in shoot increased respectively by 16.38%-60.73% and 15.62%-25.19% after the application of KCl and K2SO4. KCl and K2SO4 had little effects on soil pH, but increased exchangeable Cd concentration significantly (respectively by 25.51%-34.65% and 18.5%-24.96%). Sepiolite conduced Zeta potential of soil samples to shift in negative direction, while the addition of KCl and K2SO4 made the Zeta potential of soil samples increase. The maximum adsorption of Cd by sepiolite in aqueous solution was 5.30 mg·g-1, but KCl and K2SO4 reduced sorption of Cd on sepiolite, with maximum sorption of respectively 2.87 mg·g-1 and 4.92 mg·g-1. Bioavailable fractions of K, Mn, Cu and Zn were enhanced significantly by the additions of KCl and K2SO4. Considering the various factors during passivation of sepiolite to Cd-contaminated soils therefore, the effect of application of K2SO4 on passivation was less than that of application of KCl. On the whole, K2SO4, rather than KCl, was recommended potassic fertilizer for remediation of Cd-contaminated soils using sepiolite.
Key words:Potassic fertilizer/
Sepiolite/
Cd-polluted soil/
Rape/
Passivation/
In-situ remediation
HTML全文
图1海泡石及钾肥施用对Cd污染土壤上油菜生物量的影响
CK:对照; S:海泡石钝化; S+K1.L:海泡石+低剂量(0.1 g·kg-1)KCl; S+K1.M:海泡石+中剂量(0.2 g·kg-1)KCl; S+K1.H:海泡石+高剂量(0.3 g·kg-1)KCl; S+K2.L:海泡石+低剂量(0.1 g·kg-1)K2SO4; S+K2.M:海泡石+中剂量(0.2 g·kg-1)K2SO4; S+K2.H:海泡石+高剂量(0.3 g·kg-1)K2SO4。图中不同字母表示不同处理间差异显著(P < 0.05)。
Figure1.Effects of sepiolite and potassium fertilizers application on biomasses of rape grown in Cd-polluted soils
CK: control; S: sepiolite; S+K1.L: sepiolite + low-dose (0.1 g·kg-1) KCl; S+K1.M: sepiolite + middle-dose (0.2 g·kg-1) KCl; S+K1.H: sepiolite + high-dose (0.3 g·kg-1) KCl; S+K2.L: sepiolite + low-dose (0.1 g·kg-1) K2SO4; S+K2.M: sepiolite + middle-dose (0.2 g·kg-1) K2SO4; S+K2.H: sepiolite + high-dose (0.3 g·kg-1) K2SO4. Different letters mean significant differences among different treatments (P < 0.05).
下载: 全尺寸图片幻灯片
图2海泡石及钾肥施用对Cd污染土壤上油菜地上部中Cd含量影响
CK:对照; S:海泡石钝化; S+K1.L:海泡石+低剂量(0.1 g·kg-1) KCl; S+K1.M:海泡石+中剂量(0.2 g·kg-1)KCl; S+K1.H:海泡石+高剂量(0.3 g·kg-1)KCl; S+K2.L:海泡石+低剂量(0.1 g·kg-1)K2SO4; S+K2.M:海泡石+中剂量(0.2 g·kg-1)K2SO4; S+K2.H:海泡石+高剂量(0.3 g·kg-1)K2SO4。图中不同字母表示不同处理间差异显著(P < 0.05)。
Figure2.Effects of sepiolite and potassium fertilizers application on shoot Cd contents of rape grown in Cd-polluted soils
CK: control; S: sepiolite; S+K1.L: sepiolite + low-dose (0.1 g·kg-1) KCl; S+K1.M: sepiolite + middle-dose (0.2 g·kg-1) KCl; S+K1.H: sepiolite + high-dose (0.3 g·kg-1) KCl; S+K2.L: sepiolite + low-dose (0.1 g·kg-1) K2SO4; S+K2.M: sepiolite + middle-dose (0.2 g·kg-1) K2SO4; S+K2.H: sepiolite + high-dose (0.3 g·kg-1) K2SO4. Different letters mean significant differences among different treatments (P < 0.05).
下载: 全尺寸图片幻灯片
图3海泡石及钾肥施用对Cd污染土壤pH和0.025 mol·L-1 HCl可交换态Cd含量的影响
CK:对照; S:海泡石钝化; S+K1.L:海泡石+低剂量(0.1 g·kg-1)KCl; S+K1.M:海泡石+中剂量(0.2 g·kg-1)KCl; S+K1.H:海泡石+高剂量(0.3 g·kg-1)KCl; S+K2.L:海泡石+低剂量(0.1 g·kg-1)K2SO4; S+K2.M:海泡石+中剂量(0.2 g·kg-1)K2SO4; S+K2.H:海泡石+高剂量(0.3 g·kg-1)K2SO4。图中不同字母表示不同处理间差异显著(P < 0.05)。
Figure3.Effect of sepiolite and potassium fertilizers application on pH and exchangeable Cd contents of Cd-polluted soils
CK: control; S: sepiolite; S+K1.L: sepiolite + low-dose (0.1 g·kg-1) KCl; S+K1.M: sepiolite + middle-dose (0.2 g·kg-1) KCl; S+K1.H: sepiolite + high-dose (0.3 g·kg-1) KCl; S+K2.L: sepiolite + low-dose (0.1 g·kg-1) K2SO4; S+K2.M: sepiolite + middle-dose (0.2 g·kg-1) K2SO4; S+K2.H: sepiolite + high-dose (0.3 g·kg-1) K2SO4. Different letters mean significant differences among different treatments (P < 0.05).
下载: 全尺寸图片幻灯片
图4海泡石及钾肥施用对Cd污染土壤有效态K、Cu、Zn和Mn影响
CK:对照; S:海泡石钝化; S+K1.L:海泡石+低剂量(0.1 g·kg-1)KCl; S+K1.M:海泡石+中剂量(0.2 g·kg-1)KCl; S+K1.H:海泡石+高剂量(0.3 g·kg-1)KCl; S+K2.L:海泡石+低剂量(0.1 g·kg-1)K2SO4; S+K2.M:海泡石+中剂量(0.2 g·kg-1)K2SO4; S+K2.H:海泡石+高剂量(0.3 g·kg-1)K2SO4。图中不同字母表示不同处理间差异显著(P < 0.05)。
Figure4.Effects of sepiolite and potassium fertilizers on exchangeable K, Cu, Zn and Mn contents in Cd-polluted soil
CK: control; S: sepiolite; S+K1.L: sepiolite + low-dose (0.1 g·kg-1) KCl; S+K1.M: sepiolite + middle-dose (0.2 g·kg-1) KCl; S+K1.H: sepiolite + high-dose (0.3 g·kg-1) KCl; S+K2.L: sepiolite + low-dose (0.1 g·kg-1) K2SO4; S+K2.M: sepiolite + middle-dose (0.2 g·kg-1) K2SO4; S+K2.H: sepiolite + high-dose (0.3 g·kg-1) K2SO4. Different letters mean significant differences among different treatments (P < 0.05).
下载: 全尺寸图片幻灯片
图5海泡石及钾肥施用对Cd污染土壤Zata电位的影响
CK:对照; S:海泡石钝化; S+K1.L:海泡石+低剂量(0.1 g·kg-1)KCl; S+K1.M:海泡石+中剂量(0.2 g·kg-1)KCl; S+K1.H:海泡石+高剂量(0.3 g·kg-1)KCl; S+K2.L:海泡石+低剂量(0.1 g·kg-1)K2SO4; S+K2.M:海泡石+中剂量(0.2 g·kg-1)K2SO4; S+K2.H:海泡石+高剂量(0.3 g·kg-1)K2SO4。
Figure5.Effects of sepiolite and potassium fertilizers application on Zeta potentials of Cd-polluted soils
CK: control; S: sepiolite; S+K1.L: sepiolite + low-dose (0.1 g·kg-1) KCl; S+K1.M: sepiolite + middle-dose (0.2 g·kg-1) KCl; S+K1.H: sepiolite + high-dose (0.3 g·kg-1) KCl; S+K2.L: sepiolite + low-dose (0.1 g·kg-1) K2SO4; S+K2.M: sepiolite + middle-dose (0.2 g·kg-1) K2SO4; S+K2.H: sepiolite + high-dose (0.3 g·kg-1) K2SO4.
下载: 全尺寸图片幻灯片
图6KCl和K2SO4对海泡石吸附Cd等温平衡的影响
S:海泡石; S+K1:海泡石+KCl; S+K2:海泡石+K2SO4。
Figure6.Effects of KCl and K2SO4 on adsorption isotherms of Cd of sepiolite
S: sepiolite; S+K1: sepiolite + KCl; S+K2: sepiolite + K2SO4.
下载: 全尺寸图片幻灯片
表1KCl和K2SO4影响下海泡石对Cd的吸附等温线方程拟合参数
Table1.Parameters of Langmuri equations for Cd2+ adsorption by sepiolite under application of KCl and K2SO4
Langmuri方程: C/Q=1/A×k+C/A | |||
A | k | R2 (n=8) | |
S | 5.303 | 0.962 | 0.982 |
S+K1 | 2.872 | 0.266 | 0.928 |
S+K2 | 4.921 | 0.147 | 0.983 |
S:海泡石; S+K1:海泡石+KCl; S+K2:海泡石+K2SO4。S: sepiolite; S+K1: sepiolite + KCl; S+K2: sepiolite + K2SO4. |
下载: 导出CSV
参考文献
[1] | 环境保护部, 国土资源部.全国土壤污染状况调查公报[J].中国环保产业, 2014, (5):10-11 http://bianke.cnki.net/Web/Article/HJJY201406008.html Ministry of Environmental Protection, Ministry of Land and Resources of China. National survey of soil pollution bulletin[J]. China Environmental Protection Industry, 2014, (5):10-11 http://bianke.cnki.net/Web/Article/HJJY201406008.html |
[2] | 陈远其, 张煜, 陈国梁.石灰对土壤重金属污染修复研究进展[J].生态环境学报, 2016, 25(8):1419-1424 http://www.cjae.net/CN/abstract/abstract12314.shtml CHEN Y Q, ZHANG Y, CHEN G L. Remediation of heavy metal contaminated soils by lime:A review[J]. Ecology and Environmental Sciences, 2016, 25(8):1419-1424 http://www.cjae.net/CN/abstract/abstract12314.shtml |
[3] | 朱奇宏, 黄道友, 刘国胜, 等.海泡石对典型水稻土镉吸附能力的影响[J].农业环境科学学报, 2009, 28(11):2318-2323 doi: 10.3321/j.issn:1672-2043.2009.11.019 ZHU Q H, HUANG D Y, LIU G S, et al. Effect of sepiolite on sorption of Cd by typical paddy soils[J]. Journal of Agro-Environment Science, 2009, 28(11):2318-2323 doi: 10.3321/j.issn:1672-2043.2009.11.019 |
[4] | GUO G L, ZHOU Q X, MA L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:A review[J]. Environmental Monitoring & Assessment, 2006, 116(3):513-528 |
[5] | ZHU Q H, HUANG D Y, ZHU G X, et al. Sepiolite is recommended for the remediation of Cd-contaminated paddy soil[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2010, 60(2):110-116 |
[6] | LI L F, AI S Y, WANG Y H, et al. In Situ field-scale remediation of low Cd-contaminated paddy soil using soil amendments[J]. Water, Air, & Soil Pollution, 2016, 227(9):342 |
[7] | LIANG X F, XU Y M, SUN G H, et al. Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium[J]. Chemical Engineering Journal, 2011, 174(1):436-444 doi: 10.1016/j.cej.2011.08.060 |
[8] | LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235/236:9-18 doi: 10.1016/j.geoderma.2014.06.029 |
[9] | SUN Y B, SUN G H, XU Y M, et al. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils[J]. Journal of Environmental Management, 2016, 166:204-210 |
[10] | 袁婷, 樊驰, 王正银, 等.钾肥对镉污染土壤中白菜生长与镉含量及保护酶活性的影响[J].安全与环境学报, 2016, 16(3):383-390 http://www.cqvip.com/QK/83738X/201603/669234118.html YUAN T, FAN C, WANG Z Y, et al. Effect of application of potassium ferterlizers on the cabbage growth in Cd polluted soil and its protective enzyme activity in the cabbage content[J]. Journal of Safety and Environment, 2016, 16(3):383-390 http://www.cqvip.com/QK/83738X/201603/669234118.html |
[11] | SPARROW L A, SALARDINI A A, JOHNSTONE J. Field studies of cadmium in potatoes (Solanum tuberosum L.), 3. Response of cv. russet burbank to sources of banded potassium[J]. Australian Journal of Agricultural Research, 1994, 45(1):243-249 doi: 10.1071/AR9940243 |
[12] | ZHAO Z Q, ZHU Y G, LI H Y, et al. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.)[J]. Environment International, 2004, 29(7):973-978 doi: 10.1016/S0160-4120(03)00081-3 |
[13] | 宋正国, 徐明岗, 丁永祯, 等.钾对土壤镉有效性的影响及其机理[J].中国矿业大学学报, 2010, 39(3):453-458 http://www.cqvip.com/QK/90626A/201206/41988277.html SONG Z G, XU M G, DING Y Z, et al. Effect of potassium cations on cadmium bioavailability and its mechanisms in lateritic red soils[J]. Journal of China University of Mining & Technology, 2010, 39(3):453-458 http://www.cqvip.com/QK/90626A/201206/41988277.html |
[14] | 晏哲, 高志强, 罗真华, 等.不同钾肥对几种烟草吸收累积土壤镉的影响[J].环境化学, 2016, 35(9):1913-1920 doi: 10.7524/j.issn.0254-6108.2016.09.2016020103 YAN Z, GAO Z Q, LUO Z H, et al. Effect of potassium fertilizers on the uptake of soil cadmium by flue-cured tobaccos[J]. Environmental Chemistry, 2016, 35(9):1913-1920 doi: 10.7524/j.issn.0254-6108.2016.09.2016020103 |
[15] | 王朋超. 施用不同无机肥对镉污染土壤钝化修复效应影响研究[D]. 北京: 中国农业科学院, 2016 http://cdmd.cnki.com.cn/Article/CDMD-82101-1016174538.htm WANG P C. Effects of different inorganic fertilizer on immobilization remediation of Cd contaminated soil[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016 http://cdmd.cnki.com.cn/Article/CDMD-82101-1016174538.htm |
[16] | 肖振林, 王果, 黄瑞卿, 等.酸性土壤中有效态镉提取方法研究[J].农业环境科学学报, 2008, 27(2):795-800 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh200802073 XIAO Z L, WANG G, HUANG R Q, et al. Extraction method for available cadmium in acid soils[J]. Journal of Agro-Environment Science, 2008, 27(2):795-800 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh200802073 |
[17] | KIKUCHI T, OKAZAKI M, KIMURA S D, et al. Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains:Ⅱ:Suppression of cadmium uptake and accumulation into rice grains due to application of magnesium oxide materials[J]. Journal of Hazardous Materials, 2008, 154(1/3):294-299 |
[18] | 蒋田雨, 姜军, 徐仁扣, 等.稻草生物质炭对3种可变电荷土壤吸附Cd(Ⅱ)的影响[J].农业环境科学学报, 2012, 31(6):1111-1117 https://www.doc88.com/p-2764838527690.html JIANG T Y, JIANG J, XU R K, et al. Effect of biochar from rice straw on adsorption of Cd(Ⅱ) by variable charge soils[J]. Journal of Agro-Environment Science, 2012, 31(6):1111-1117 https://www.doc88.com/p-2764838527690.html |
[19] | 孙约兵, 王朋超, 徐应明, 等.海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究[J].环境科学, 2014, 35(12):4720-4726 http://www.cnki.com.cn/Article/CJFDTotal-HJKZ201412045.htm SUN Y B, WANG P C, XU Y M, et al. Immobilization remediation of Cd and Pb contaminated soil:Remediation potential and soil environmental quality[J]. Environmental Science, 2014, 35(12):4720-4726 http://www.cnki.com.cn/Article/CJFDTotal-HJKZ201412045.htm |
[20] | SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208(PtB):739-746 |
[21] | 徐仁扣, 肖双成, 赵安珍.基于Zeta电位的水稻土吸附Pb(Ⅱ)和Cd(Ⅱ)能力的比较[J].环境化学, 2008, 27(6):742-745 http://www.oalib.com/paper/4733469 XU R K, XIAO S C, ZHAO A Z. Comparison of adsorption abilities of three of paddy soils for lead and cadmium based on Zeta potential[J]. Environmental Chemistry, 2008, 27(6):742-745 http://www.oalib.com/paper/4733469 |
[22] | 王林, 徐应明, 孙国红, 等.海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J].生态环境学报, 2012, 21(2):314-320 http://cdmd.cnki.com.cn/Article/CDMD-10183-1013196129.htm WANG L, XU Y M, SUN G H, et al. Effect and mechanism of immobilization of paddy soil contaminated by cadmium and lead using sepiolite and phosphate[J]. Ecology and Environmental Sciences, 2012, 21(2):314-320 http://cdmd.cnki.com.cn/Article/CDMD-10183-1013196129.htm |
[23] | 唐琨, 朱伟文, 周文新, 等.土壤pH对植物生长发育影响的研究进展[J].作物研究, 2013, 27(2):207-212 http://www.oalib.com/paper/4408288 TANG K, ZHU W W, ZHOU W X, et al. Research progress on effects of soil pH on plant growth and development[J]. Crop Research, 2013, 27(2):207-212 http://www.oalib.com/paper/4408288 |
[24] | YIN X L, XU Y M, HUANG R, et al. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale[J]. Environmental Science:Processes & Impacts, 2017, 19(12):1563-1570 http://www.ncbi.nlm.nih.gov/pubmed/29177306 |
[25] | 姜军, 徐仁扣.离子强度对三种可变电荷土壤表面电荷和Zeta电位的影响[J].土壤, 2015, 47(2):422-426 http://www.cqvip.com/QK/94853X/201502/664788652.html JIANG J, XU R K. Effects of ionic strengths on surface charge and ζ potential of three variable charge soils[J]. Soils, 2015, 47(2):422-426 http://www.cqvip.com/QK/94853X/201502/664788652.html |
[26] | 罗伟锋, 叶海林, 富潇杉, 等.水化学条件对海泡石吸附重金属镍(Ni2+)离子的影响及其机制研究[J].能源环境保护, 2012, 26(4):18-22 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nybh201204007&dbname=CJFD&dbcode=CJFQ LUO W F, YE H L, FU X S, et al. Study on the effects and mechanism of water chemistry conditions to adsorption of Ni2+ on sepiolite[J]. Energy Environmental Protection, 2012, 26(4):18-22 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nybh201204007&dbname=CJFD&dbcode=CJFQ |
[27] | 刘平, 徐明岗, 李菊梅, 等.不同钾肥对土壤铅植物有效性的影响及其机制[J], 环境科学, 2008, 29(1):202-206 http://www.oalib.com/paper/4734968 LIU P, XU M G, LI J M, et al. Effects of different potassium fertilizers on the phytoavailability of Pb in soil and its mechanisms[J], Environmental Science, 2008, 29(1):202-206 http://www.oalib.com/paper/4734968 |
[28] | 陈苏, 孙丽娜, 孙铁珩, 等.钾肥对镉的植物有效性的影响[J].环境科学, 2007, 28(1):182-188 http://www.oalib.com/paper/4735418 CHEN S, SUN L N, SUN T H, et al. Influence of potassium fertilizer on the phytoavailability of cadmium[J]. Environmental Science, 2007, 28(1):182-188 http://www.oalib.com/paper/4735418 |