删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

耕作措施对旱作农田土壤颗粒态有机碳的影响

本站小编 Free考研考试/2022-01-01

武均1, 2,,
蔡立群1, 2, 3,
张仁陟1, 2, 3,,,
齐鹏1, 2,
张军1, 2, 3
1.甘肃农业大学资源与环境学院 兰州 730070
2.甘肃农业大学甘肃省干旱生境作物学重点实验室 兰州 730070
3.甘肃省节水农业工程技术研究中心 兰州 730070
基金项目: 国家自然科学基金项目31571594
国家自然科学基金项目41661049
"十二·五"《循环农业科技工程》项目2012BAD14B03
甘肃省自然科学基金项目上1606RJZA076

详细信息
作者简介:武均, 主要研究方向为保护性耕作、土壤生态学。E-mail: wujun210@126.com
通讯作者:张仁陟, 主要从事保护性耕作、节水农业及土壤生态学方面的教学与研究。E-mail: zhangrz@gsau.edu.cn
中图分类号:S153.6

计量

文章访问数:938
HTML全文浏览量:5
PDF下载量:984
被引次数:0
出版历程

收稿日期:2018-01-16
录用日期:2018-03-07
刊出日期:2018-05-01

Distribution of soil particulate organic carbon fractions as affected by tillage practices in dry farmland of the Loess Plateau of central Gansu Province

WU Jun1, 2,,
CAI Liqun1, 2, 3,
ZHANG Renzhi1, 2, 3,,,
QI Peng1, 2,
ZHANG Jun1, 2, 3
1. College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
2. Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
3. Gansu Engineering Research Center for Agriculture Water-saving, Lanzhou 730070, China
Funds: the National Natural Science Foundation of China31571594
the National Natural Science Foundation of China41661049
the "National Twelfth Five-Year Plan" Circular Agricultural Science and Technology Project of China2012BAD14B03
the Natural Science Foundation of Gansu Province of China1606RJZA076

More Information
Corresponding author:ZHANG Renzhi, E-mail: zhangrz@gsau.edu.cn


摘要
HTML全文
(6)(6)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了探明耕作措施对陇中黄土高原旱作农田土壤有机碳的影响,以连续进行17年的不同耕作措施长期定位试验为研究对象,利用碘化钠重液分组法,探索了传统耕作(T)、传统耕作+秸秆还田(TS)、免耕(NT)、免耕+秸秆覆盖(NTS)4种耕作措施对陇中黄土高原旱作农田土壤游离态颗粒有机碳、闭蓄态颗粒有机碳、颗粒态有机碳和矿质结合态有机碳的影响。结果表明:土壤总有机碳含量随土层加深而降低,游离态颗粒有机碳、闭蓄态颗粒有机碳、颗粒态有机碳的含量和占土壤总有机碳的比例均随土层加深而降低,而矿质结合态有机碳含量和占土壤总有机碳比例则随土层加深而增加。在0~40 cm各土层,各处理土壤颗粒态有机碳占总有机碳的比例(54.02%~76.78%)均高于矿质结合态有机碳占总有机碳的比例(31.78%~46.11%)。较之T处理,TS和NTS处理均不同程度提升土壤游离态颗粒有机碳、闭蓄态颗粒有机碳、颗粒态有机碳的含量和占土壤总有机碳的比例,其中NTS处理的提升效果最显著,TS处理次之。虽然NT、TS、NTS处理可提升土壤矿质结合态有机碳含量,但T处理下的矿质结合态有机碳占总有机碳的比例高于NT、TS和NTS处理。耕作模式和秸秆添加模式均对土壤总有机碳、游离态颗粒有机碳、闭蓄态颗粒有机碳、颗粒态有机碳和矿质结合态有机碳的提升具有显著效应,但秸秆添加模式的效应高于耕作模式。同时,免耕模式仅对0~10 cm各土层土壤总有机碳的提升效应达到显著水平,对0~20 cm各土层土壤碳组分的提升效应均达显著水平,而添加秸秆对0~40 cm各土层土壤总有机碳和各组分均发挥着显著提升效应。综合来看,免耕配合秸秆还田可以提升土壤活力,促进土壤固碳,有利于该区构建环境友好型和可持续发展型农业生产模式。
Abstract:As a vital indicator of soil quality, soil organic carbon and its fractions play an essential role in soil productive capacity and crop yield, while may be affected by soil tillage methods in dry farmland areas. Organic carbon is a key component of soil because it carries many functions in agro-ecosystem. A study was carried out to investigate the effects of different tillage and straw application patterns on the distribution of soil particulate organic carbon fractions under spring wheat-pea rotation by using the density fraction method[NaI:(1.70±0.02) g·cm-3]. Four particulate fractions of soil total organic carbon (STOC), free particulate organic carbon (FPOC), occluded particulate organic carbon (OPOC), particulate organic carbon (POC) and mineral-associated organic carbon (MOC) were obtained. The study involved a 17-year local field experiment at the Rainfed Agricultural Experimental Station of Gansu Agricultural University, Dingxi, Gansu Province, China (35°28'N, 104°44'E). The experiment included four treatments, which were conventional tillage (T), no-tillage (NT), no-tillage with straw incorporation (NTS) and conventional tillage with straw mulching (TS) arranged in a complete randomized block design with three replications. The soil samples were taken at four different soil depths (0-5 cm, 5-10 cm, 10-20 cm and 20-40 cm) per plot. The results showed that the dominant fraction of STOC for each soil layer was POC (the ratio range was 54.02%-76.78%) in four treatments, and the main component of POC was OPOC, suggesting that the effect of physical protection was the crucial role for soil carbon sequestration and fixation in the area. The contents of STOC, FPOC, OPOC and POC were decreased with increasing soil layers, MOC content, however, was increased with increasing soil layers. FPOC/STOC, OPOC/STOC and POC/STOC were decreased with increasing soil layer, MOC/STOC was increased with increasing soil layers. In 0-40 cm soil depth, compared with treatment T, the mean values of STOC, FPOC, OPOC, POC and MOC in NT, TS and NTS treatments were greater, and NTS treatment exhibited the greatest effect. The same trend was represented for FPOC/STOC and POC/STOC. No tillage system represented significantly enhance effect on contents of FPOC, OPOC, POC and MOC in 0-20 cm soil depths, but the straw retention system showed significantly boosting effect on contents of STOC, FPOC, OPOC, POC and MOC in 0-40 cm soil depths, and F test values of straw retention were greater than that of tillage system, thereby the effects of straw retention were greater than that of tillage system. As a whole, NTS may be an ideal enhancer of farmland productivity in the semi-arid soil ecosystem through enhancing soil organic carbon pool which resulted in the maintenance of higher nutrient content, and subsequently helping in contributing sustainable agricultural development in the Loess Plateau of central Gansu Province.

HTML全文


图1耕作措施对不同土层土壤总有机碳含量的影响s
同一土层不同小写字母表示不同处理间P≤5%水平差异显著。
Figure1.Contents of soil total organic carbon as affected by tillage practices in different soil layers
Different lowercase letters for the same soil layer stand for significant differences among different treatments at P ≤ 5% level.


下载: 全尺寸图片幻灯片


图2耕作措施对不同土层土壤游离态颗粒有机碳含量的影响
同一土层不同小写字母表示不同处理间P≤5%水平差异显著。
Figure2.Contents of soil free particulate organic carbon as affected by tillage practices in different soil layers
Different lowercase letters for the same soil layer stand for significant differences among different treatments at P ≤ 5% level.


下载: 全尺寸图片幻灯片


图3耕作措施对不同土层土壤闭蓄态颗粒有机碳含量的影响
同一土层不同小写字母表示不同处理间P≤5%水平差异显著。
Figure3.Contents of soil occluded particulate organic carbon as affected by tillage practices in different soil layerss
Different lowercase letters for the same soil layer stand for significant differences among different treatments at P ≤ 5% level.


下载: 全尺寸图片幻灯片


图4不同耕作措施下不同土层土壤颗粒态有机碳含量s
同一土层不同小写字母表示不同处理间P≤5%水平差异显著。
Figure4.Contents of soil particulate organic carbon as affected by tillage practices in different soil layers
Different lowercase letters for the same soil layer stand for significant differences among different treatments at P ≤ 5% level.


下载: 全尺寸图片幻灯片


图5不同耕作措施下不同土层土壤矿质结合态有机碳含量
同一土层不同小写字母表示不同处理间P≤5%水平差异显著。
Figure5.Contents of soil mineral-associated organic carbon as affected by tillage practices in different soil layers
Different lowercase letters for the same soil layer stand for significant differences among different treatments at P ≤ 5% level.


下载: 全尺寸图片幻灯片


图6不同耕作措施下不同土层土壤有机碳组分分布特征
FPOC:土壤游离态颗粒有机碳; OPOC:土壤闭蓄态颗粒有机碳; MOC:土壤矿质结合态有机碳。
Figure6.Distribution of soil total organic carbon (STOC) fractions as affected by tillage practices in different soil layers
FPOC: soil free particulate organic carbon; OPOC: soil occluded particulate organic carbon; MOC: soil mineral-associated organic carbon.


下载: 全尺寸图片幻灯片

表1试验各耕作处理描述
Table1.Description of tillage treatments in the experiment
代码
Code
处理
Treatment
耕作方法
Description
T 传统耕作
Conventional tillage
前茬作物收获后三耕两耱, 这是定西地区典型的传统耕作方式: 8月收获后进行第1次耕作, 8月底和9月分别进行第2次、3次耕作, 耕深依次为20 cm、10 cm和5 cm; 9月第3次耕后耱1次, 10月份冻结前再耱1次。
The field was ploughed 3 times and harrowed twice after harvesting. The first plough was in August immediately after harvesting, the second and third ploughs were in late August and September, respectively. The plough depths were 20 cm, 10 cm and 5 cm, respectively. The field was harrowed after the 3rd plough in September and re-harrowed in October before the ground was frozen. This was the typical conventional tillage practice in Dingxi Region.
NT 免耕
No-tillage
全年不耕作, 播种时用免耕播种机一次性完成施肥和播种。
No-tillage throughout a year. Sowing seeds and fertilization were performed with seeding-machine at the same time.
TS 传统耕作+秸秆还田
Conventional tillage with straw incorporation
耕作方式同T, 但结合第1次耕作将所有前作秸秆翻埋入土。
The field was ploughed and harrowed exactly as treatment T, but with straw incorporation at the first plough, and all the straw from previous crop.
NTS 免耕+秸秆覆盖
No-tillage with straw
mulching
播种、除草方法同NT, 收获脱粒后将全部前作秸秆覆盖在原小区。
No-tillage through a year. The ground was covered with straw of previous crop from August till next March. Seeding method was as the same as that of treatment NT.


下载: 导出CSV
表2耕作模式和秸秆添加模式对不同深度土壤总有机碳含量的影响效应s
Table2.Effects of tillage and straw returned modes on content of soil total organic carbon in different soil layers
模式
Mode
土层Soil layer (cm)
0~5 5~10 10~20 20~40
耕作
Tillage
420.11*** 52.84*** 2.79n.s. 0.03n.s.
秸秆添加
Straw returned
739.31*** 89.84*** 42.04*** 13.80*
耕作×秸秆添加
Tillage × straw returned
21.29** 3.62n.s. 4.07n.s. 0.29n.s.
******分别表示在P≤5%、P≤1%和P≤0.1%水平下有显著效应,n.s.表示在P>5%水平下无显著效应;表中数值为F检验值。*, **, *** indicate significant effects at P ≤ 5%, P ≤ 1% and P ≤ 0.1%, respectively. n.s. indicates no significant effect at P > 5%. The values are F statistic values in the table.


下载: 导出CSV
表3耕作模式和秸秆添加模式对不同深度土壤游离态颗粒有机碳含量的影响效应
Table3.Effects of tillage and straw returned modes on content of soil free particulate organic carbon in different soil layers
模式Mode 土层Soil layer (cm)
0~5 5~10 10 ~20 20~40
耕作Tillage 490.64*** 72.57*** 15.10** 1.04n.s.
秸秆添加Straw returned 872.24*** 127.91*** 163.34*** 33.45***
耕作×秸秆添加Tillage × straw returned 48.38*** 0.71n.s. 1.06n.s. 2.72n.s.
*****分别表示在P≤1%和P≤0.1%水平下有显著效应,n.s.表示在P > 5%水平下无显著效应;表中数值为F检验值。***** indicate significant effects at P ≤ 1% and P ≤ 0.1%,respectively. n.s. indicates no significant effect at P > 5%. The values are F statistic values in the table.


下载: 导出CSV
表4耕作模式和秸秆添加模式对不同深度土壤闭蓄态颗粒有机碳含量的影响效应s
Table4.Effects of tillage and straw returned modes on content of soil occluded particulate organic carbon in different soil layers
模式
Mode
土层Soil layer (cm)
0~5 5~10 10~20 20~40
耕作Tillage 297.86*** 301.42*** 12.36** 0.00ns.
秸秆添加
Straw returned
523.87*** 515.76*** 85.39*** 33.53***
耕作×秸秆添加
Tillage × straw returned
5.05n.s. 5.08n.s. 4.09n.s. 0.45n.s.
*****分别表示在P≤1%和P≤0.1%水平下有显著效应,n.s.表示在P > 5%水平下无显著效应;表中数值为F检验值。*****indicate significant effects at P ≤ 1% and P ≤ 0.1%,respectively. n.s. indicates no significant effect at P > 5%. The values are F statistic values in the table.


下载: 导出CSV
表5耕作模式和秸秆添加模式对不同深度土壤颗粒态有机碳含量的影响效应s
Table5.Effect of tillage and straw returned modes on content of soil particulate organic carbon in different soil layers
模式
Mode
土层Soil layer (cm)
0~5 5~10 10~20 20~40
耕作Tillage 2 281.05*** 154.55*** 15.23** 0.37n.s.
秸秆添加
Straw returned
4 029.43*** 265.29*** 126.30*** 48.58***
耕作×秸秆添加
Tillage × straw returned
95.58*** 10.23* 7.29* 1.97n.s.
******分别表示在P < 5%、P≤1%和P≤0.1%水平下有显著效应, n.s.表示在P > 5%水平下无显著效应;表中数值为F检验值。*, **, *** indicate significant effects at P ≤ 5%,P ≤ 1% and P ≤0.1%,respectively. n.s. indicates no significant effect at P > 5%. The values are F statistic values in the table.


下载: 导出CSV
表6耕作模式和秸秆添加模式对不同深度土壤矿质结合态有机碳含量的影响效应
Table6.Effects of tillage and straw returned modes on content of soil mineral-associated organic carbon in different soil layers
模式
Mode
土层Soil layer (cm)
0~5 cm 5~10 cm 10~20 cm 20~40 cm
耕作Tillage 29.85** 154.55*** 15.23** 0.37n.s.
秸秆添加Straw returned 80.18*** 265.29*** 126.30*** 48.58***
耕作×秸秆添加Tillage × straw returned 95.58*** 10.23* 7.29* 1.97n.s.
******分别表示在P≤5%、P≤1%和P≤0.1%水平下有显著效应,n.s.表示在P > 5%水平下无显著效应;表中数值为F检验值。****** indicate significant effects at P ≤ 5%,P ≤ 1% and P ≤0.1%,respectively. n.s. indicates no significant effect at P > 5%. The values are F statistic values in the table.


下载: 导出CSV

参考文献(26)
[1]刘中良, 宇万太, 周桦, 等.不同有机厩肥输入量对土壤团聚体有机碳组分的影响[J].土壤学报, 2011, 48(6):1149-1157 doi: 10.11766/trxb201011110470
LIU Z L, YU W T, ZHOU H, et al. Effect of application rate of barnyard manure on organic carbon fraction of soil aggregates[J]. Acta Pedologica Sinica, 2011, 48(6):1149-1157 doi: 10.11766/trxb201011110470
[2]SMITH P. Soils as carbon sinks:The global context[J]. Soil Use and Management, 2004, 20(2):212-218 doi: 10.1079/SUM2004233
[3]王虎, 王旭东, 田宵鸿.秸秆还田对土壤有机碳不同活性组分储量及分配的影响[J].应用生态学报, 2014, 25(12):3491-3498 http://www.cjae.net/CN/abstract/abstract19834.shtml
WANG H, WANG X D, TIAN X H. Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon[J]. Chinese Journal of Applied Ecology, 2014, 25(12):3491-3498 http://www.cjae.net/CN/abstract/abstract19834.shtml
[4]BILLINGS S A. Soil organic matter dynamics and land use change at a grassland/forest ecotone[J]. Soil Biology and Biochemistry, 2006, 38(9):2934-2943 doi: 10.1016/j.soilbio.2006.05.004
[5]武均, 蔡立群, 齐鹏, 等.不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J].中国生态农业学报, 2015, 23(3):276-284 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015303&flag=1
WU J, CAI L Q, QI P, et al. Distribution characteristics of organic carbon and total nitrogen in dry farmland soil aggregates under different tillage methods in the Loess Plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3):276-284 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015303&flag=1
[6]姜学兵, 李运生, 欧阳竹, 等.免耕对土壤团聚体特征以及有机碳储量的影响[J].中国生态农业学报, 2012, 20(3):270-278 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012303&flag=1
JIANG X B, LI Y S, OUYANG Z, et al. Effect of no-tillage on soil aggregate and organic carbon storage[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3):270-278 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012303&flag=1
[7]杨永辉, 武继承, 张洁梅, 等.耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响[J].中国生态农业学报, 2017, 25(2):258-266 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170213&flag=1
YANG Y H, WU J C, ZHANG J M, et al. Effect of tillage method on soil water infiltration, organic carbon content and structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2):258-266 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170213&flag=1
[8]SIX J, ELLIOTT E T, PAUSTIAN K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5):1367-1377 doi: 10.2136/sssaj1998.03615995006200050032x
[9]王玉博, 赵光影, 臧淑英, 等.人为干扰对小兴安岭森林湿地土壤碳组分和酶活性的影响[J].环境科学学报, 2017, 37(12):4757-4764 http://www.actasc.cn/hjkxxb/ch/reader/create_pdf.aspx?file_no=20170419002&year_id=2017&quarter_id=12&falg=1
WANG Y B, ZHAO G Y, ZANG S Y, et al. Effects of human disturbance on soil carbon fractions and enzyme activities in forest wetlands of Xiaoxing'an Mountains[J]. Acta Scientiae Circumstantiae, 2017, 37(12):4757-4764 http://www.actasc.cn/hjkxxb/ch/reader/create_pdf.aspx?file_no=20170419002&year_id=2017&quarter_id=12&falg=1
[10]佟小刚, 黄绍敏, 徐明岗, 等.长期不同施肥模式对潮土有机碳组分的影响[J].植物营养与肥料学报, 2009, 15(4):831-836 http://plantnutrifert.org/CN/abstract/abstract1315.shtml
TONG X G, HUANG S M, XU M G, et al. Effects of the different long-term fertilizations on fractions of organic carbon in fluvo-aquic soil[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4):831-836 http://plantnutrifert.org/CN/abstract/abstract1315.shtml
[11]王朔林, 王改兰, 赵旭, 等.长期施肥对栗褐土有机碳含量及其组分的影响[J].植物营养与肥料学报, 2015, 21(1):104-111 doi: 10.11674/zwyf.2015.0111
WANG S L, WANG G L, ZHAO X, et al. Effect of long-term fertilization on organic carbon fractions and contents of cinnamon soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1):104-111 doi: 10.11674/zwyf.2015.0111
[12]COOKSON W R, ABAYE D A, MARSCHNER P, et al. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure[J]. Soil Biology and Biochemistry, 2005, 37(9):1726-1737 doi: 10.1016/j.soilbio.2005.02.007
[13]GOLCHIN A, OADES J M, SKJEMSTAD J O, et al. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy[J]. Australian Journal of Soil Research, 1994, 32(2):285-309 doi: 10.1071/SR9940285
[14]倪进治, 徐建民, 谢正苗.土壤轻组有机质[J].环境污染治理技术与设备, 2000, 1(2):58-64 http://www.docin.com/p-871838471.html
NI J Z, XU J M, XIE Z M. Soil light fraction organic matter[J]. Techniques and Equipments for Environmental Pollution Control, 2000, 1(2):58-64 http://www.docin.com/p-871838471.html
[15]HUANG G B, ZHANG R Z, LI G D, et al. Productivity and sustainability of a spring wheat-field pea rotation in a semi-arid environment under conventional and conservation tillage systems[J]. Field Crops Research, 2008, 107(1):43-55 doi: 10.1016/j.fcr.2007.12.011
[16]张仁陟, 黄高宝, 蔡立群, 等.几种保护性耕作措施在黄土高原旱作农田的实践[J].中国生态农业学报, 2013, 21(1):61-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013108&flag=1
ZHANG R Z, HUANG G B, CAI L Q, et al. Dry farmland practice involving multi-conservation tillage measures in the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1):61-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013108&flag=1
[17]VAN DEN PUTTE A, GOVERS G, DIELS J, et al. Assessing the effect of soil tillage on crop growth:A meta-regression analysis on European crop yields under conservation agriculture[J]. European Journal of Agronomy, 2010, 33(3):231-241 doi: 10.1016/j.eja.2010.05.008
[18]梁尧, 韩晓增, 宋春, 等.不同有机物料还田对东北黑土活性有机碳的影响[J].中国农业科学, 2011, 44(17):3565-3574 doi: 10.3864/j.issn.0578-1752.2011.17.009
LIANG Y, HAN X Z, SONG C, et al. Impacts of returning organic materials on soil labile organic carbon fractions redistribution of mollisol in northeast China[J]. Scientia Agricultura Sinica, 2011, 44(17):3565-3574 doi: 10.3864/j.issn.0578-1752.2011.17.009
[19]SONG K, YANG J J, XUE Y, et al. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system[J]. Scientific Reports, 2016, 6:36602 doi: 10.1038/srep36602
[20]FUENTES M, HIDALGO C, ETCHEVERS J, et al. Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions[J]. Plant and Soil, 2012, 355(1/2):183-197 doi: 10.1007/s11104-011-1092-4
[21]武均, 蔡立群, 罗珠珠, 等.保护性耕作对陇中黄土高原雨养农田土壤物理性状的影响[J].水土保持学报, 2014, 28(2):112-117 http://www.cqvip.com/QK/96166X/201402/49437075.html
WU J, CAI L Q, LUO Z Z, et al. Effects of conservation tillage on soil physical properties of rainfed field of the Loess Plateau in central of Gansu[J]. Journal of Soil and Water Conservation, 2014, 28(2):112-117 http://www.cqvip.com/QK/96166X/201402/49437075.html
[22]韩晓日, 王玲莉, 杨劲峰, 等.长期施肥对土壤颗粒有机碳和酶活性的影响[J].土壤通报, 2008, 39(2):266-269 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb200802012
HAN X R, WANG L L, YANG J F, et al. Effect of long-term fertilizations on particulate organic carbon and enzyme activities in a brown earth[J]. Chinese Journal of Soil Science, 2008, 39(2):266-269 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb200802012
[23]Cambardella C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3):777-783 doi: 10.2136/sssaj1992.03615995005600030017x
[24]GOLCHIN A, OADES J M, SKJEMSTAD J O, et al. Soil structure and carbon cycling[J]. Australian Journal of Soil Research, 1994, 32(5):1043-1068 doi: 10.1071/SR9941043
[25]JENKINSON D S, FOX R H, RAYNER J H. Interactions between fertilizer nitrogen and soil nitrogen-The so-called 'priming' effect[J]. European Journal of Soil Science, 1985, 36(3):425-444 doi: 10.1111/ejs.1985.36.issue-3
[26]樊廷录, 王淑英, 周广业, 等.长期施肥下黑垆土有机碳变化特征及碳库组分差异[J].中国农业科学, 2013, 46(2):300-309 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgnykx201302009
FAN T L, WANG S Y, ZHOU G Y, et al. Effects of long-term fertilizer application on soil organic carbon change and fraction in cumulic haplustoll of Loess Plateau in China[J]. Scientia Agricultura Sinica, 2013, 46(2):300-309 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgnykx201302009

相关话题/土壤 图片 比例 检验 农田