删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北平原农田温室气体排放与减排综述

本站小编 Free考研考试/2022-01-01

王玉英1,,
李晓欣1,
董文旭1,
张玉铭1,
秦树平2,
胡春胜1,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室 石家庄 050022
2.福建农林大学资源与环境学院 福州 350002
基金项目: 国家自然科学基金项目41473021
国家自然科学基金项目41530859
国家自然科学基金项目41571291

详细信息
作者简介:王玉英, 主要从事农田生态系统温室效应研究。E-mail:wangyuying@sjziam.ac.cn
通讯作者:胡春胜, 主要研究方向为农田生态系统养分循环过程与机理。E-mail:cshu@sjziam.ac.cn
中图分类号:X51;X154.1

计量

文章访问数:1132
HTML全文浏览量:3
PDF下载量:1158
被引次数:0
出版历程

收稿日期:2017-12-01
录用日期:2017-12-08
刊出日期:2018-02-01

Review on greenhouse gas emission and reduction in wheat-maize double cropping system in the North China Plain

WANG Yuying1,,
LI Xiaoxin1,
DONG Wenxu1,
ZHANG Yuming1,
QIN Shuping2,
HU Chunsheng1,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou 350002, China
Funds: the National Natural Science Foundation of China41473021
the National Natural Science Foundation of China41530859
the National Natural Science Foundation of China41571291

More Information
Corresponding author:HU Chunsheng, E-mail:cshu@sjziam.ac.cn


摘要
HTML全文
(0)(0)
参考文献(46)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:华北平原作为典型的冬小麦-夏玉米轮作高水肥精细管理农田,高水高肥管理下其碳排放量高于秸秆还田的固碳量,其生态系统正在以每年77 g(C)·m-2·a-1的速度损失碳。华北平原农田>400 kg(N)·hm-2·a-1的过高氮素投入是造成其碳排放增加的主要原因,其土壤N2O排放强度在氮肥施入量为136 kg(N)·hm-2·a-1时最低,且在施氮量为317 kg(N)·hm-2·a-1时可获得最高作物产量。华北平原土壤中温室气体的产生和消耗主要发生在0~90 cm土壤剖面内,>90 cm土层主要作为土壤包气带中的缓冲层而存在。当前降低华北平原农田温室气体排放除了合理施肥和灌溉,还需要改变固有的农作制度,实行减免耕等保护性措施,并将减排和固碳同步进行。对华北平原温室气体净排放研究,今后需在以下几个方面加强:1)在地-气之间加强冠层尺度温室气体的原位连续在线监测研究,并将稳定性同位素技术应用到此研究中以达到追踪其来源和比例构成的目的。2)在土壤包气带中,利用稳定性同位素技术探索土壤空气中温室气体的来源比例,探索剖面土壤温室气体产生和消耗对土壤-大气界面温室气体排放的响应机制。3)将模型研究应用于土壤-大气连续体温室气体排放研究。
Abstract:The winter-wheat and summer-maize double cropping system in the North China Plain (NCP) is the classic intensive crop production pattern with high water demand and nitrogen fertilizer inputs. The carbon (C) emission quantities are higher than the carbon sequestration quantities in the cropping system. C was being lost from the intensive wheat-maize double cropping system in the NCP at a rate of 77 g(C)·m-2·a-1 when harvest removals are considered, even though crop residue C is input into the soil since 30 years ago. High nitrogen (N) fertilizer application rate[>400 g(N)·hm-2·a-1] results in the increase of C emissions directly. Yield-scaled N2O emission is lowest at N application rate of 136 g(N)·hm-2·a-1. And it is found that maximal crop yield is achieved at a N application rate of 317 g(N)·hm-2·a-1, which is 20% less than current practice. More than 90% of the annual cumulative greenhouse gas (GHG) fluxes originated at soil depths shallower than 90 cm. The subsoil (>90 cm) is not a major source or sink of GHG, but it acts as a 'reservoir'. Considering the synthetic greenhouse effect, some measures of greenhouse gas reductions were put forward in papers such as reductions of fertilizer input and water supply and improving farming system (tillage reduction or zero tillage). Furthermore C reduction needs to be in step with C sequestration. In the future, studies on greenhouse gas emissions in NCP require to be further strengthened in the following aspects:1) in-situ continuous online monitoring of canopy scale greenhouse gases, and using stable isotope techniques to track their sources and proportions; 2) in soil profile, using stable isotope techniques to study the sources and proportions of greenhouse gases, and exploring the responding mechanism between greenhouse gas production/consumption in soil profile and their emissions at soil surface is fairly crucial; 3) using models to estimate greenhouse gas emissions of soil-atmosphere continuum.

HTML全文

参考文献(46)
[1]IPCC. Climate Change 2013: The Physical Science Basis: Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014
[2]HANSEN J E, LACIS A A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change[J]. Nature, 1990, 346(6286): 713–719 doi: 10.1038/346713a0
[3]WANG J X, HUANG J K, ROZELLE S. Climate change and China's agricultural sector: An overview of impacts, adaptation and mitigation[Z]. International Centre for Trade and Sustainable Development and International Food and Agricultural Trade Policy Council, 2010, (5): 1–31 http://www.oecd-ilibrary.org/agriculture-and-food/climate-change-and-agriculture_9789264086876-en
[4]吴泽新. 气候变化对黄淮海平原主要粮食作物的影响[D]. 兰州: 兰州大学, 2007: 9
WU Z X. The effects of the climate change on the main grain crop in the Huang-Huai-Hai Plain[D]. Lanzhou: Lanzhou University, 2007: 9
[5]NBSC. China Statistical Yearbook 2014[M]. Beijing: China Statistics Press, 2014
[6]钟茜, 巨晓棠, 张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J].植物营养与肥料学报, 2006, 12(3): 285–293 doi: 10.11674/zwyf.2006.0301
ZHONG Q, JU X T, ZHANG F S. Analysis of environmental endurance of winter wheat/summer maize rotation system to nitrogen in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3): 285–293 doi: 10.11674/zwyf.2006.0301
[7]王玉英, 胡春胜, 程一松, 等.太行山前平原夏玉米-冬小麦轮作生态系统碳截存及其气体调节价值[J].农业环境科学学报, 2009, 28(7): 1508–1515 https://wap.cnki.net/qikan-B-B7-NHBH-2009-07.html
WANG Y Y, HU C S, CHENG Y S, et al. Carbon sequestrations and gas regulations in summer-maize and winter-wheat rotation ecosystem affected by nitrogen fertilization in the piedmont plain of Taihang Mountains, China[J]. Journal of Agro-Environment Science, 2009, 28(7): 1508–1515 https://wap.cnki.net/qikan-B-B7-NHBH-2009-07.html
[8]王玉英, 胡春胜.施氮水平对太行山前平原冬小麦–夏玉米轮作体系土壤温室气体通量的影响[J].中国生态农业学报, 2011, 19(5): 1122–1128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110522&flag=1
WANG Y Y, HU C S. Soil greenhouse gas emission in winter wheat/summer maize rotation ecosystem as affected by nitrogen fertilization in the Piedmont Plain of Mount Taihang, China[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1122–1128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110522&flag=1
[9]QIN S P, WANG Y Y, HU C S, et al. Yield-scaled N2O emissions in a winter wheat-summer corn double-cropping system[J]. Atmospheric Environment, 2012, 55: 240–244 doi: 10.1016/j.atmosenv.2012.02.077
[10]宋利娜, 张玉铭, 胡春胜, 等.华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应[J].中国生态农业学报, 2013, 21(3): 297–307 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013305&flag=1
SONG L N, ZHANG Y M, HU C S, et al. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 297–307 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013305&flag=1
[11]黄坚雄, 隋鹏, 高旺盛, 等.华北平原玉米‖大豆间作农田温室气体排放及系统净温室效应评价[J].中国农业大学学报, 2015, 20(4): 66–74 https://image.hanspub.org/Html/1-2850041_22096.htm
HUANG J X, SUI P, GAO W S, et al. Effect of maize-soybean intercropping on greenhouse gas emission and the assessment of net greenhouse gas balance in North China Plain[J]. Journal of China Agricultural University, 2015, 20(4): 66–74 https://image.hanspub.org/Html/1-2850041_22096.htm
[12]谭月臣, 诸葛玉平, 刘东雪, 等.华北平原农田管理措施对冬小麦-夏玉米轮作系统N2O和CH4排放的影响[J].环境科学学报, 2016, 36(7): 2638–2649 http://plantnutrifert.org/CN/abstract/abstract793.shtml
TAN Y C, ZHUGE Y P, LIU D X, et al. Effect of farmland management on N2O and CH4 emission from winter wheat-summer maize rotation system in North China Plain[J]. Acta Scientiae Circumstantiae, 2016, 36(7): 2638–2649 http://plantnutrifert.org/CN/abstract/abstract793.shtml
[13]HüTSCH B W. Methane oxidation in soils of two long-term fertilization experiments in Germany[J]. Soil Biology and Biochemistry, 1996, 28(6): 773–782 doi: 10.1016/0038-0717(96)88925-5
[14]李燕青, 唐继伟, 车升国, 等.长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响[J].中国农业科学, 2015, 48(21): 4381–4389 doi: 10.3864/j.issn.0578-1752.2015.21.018
LI Y Q, TANG J W, CHE S G, et al. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China Plain[J]. Scientia Agricultura Sinica, 2015, 48(21): 4381–4389 doi: 10.3864/j.issn.0578-1752.2015.21.018
[15]ZHOU Y Z, ZHANG Y Y, TIAN D, et al. The influence of straw returning on N2O emissions from a maize-wheat field in the North China Plain[J]. Science of the Total Environment, 2017, 584–585: 935–941 doi: 10.1016/j.scitotenv.2017.01.141
[16]裴淑玮, 张圆圆, 刘俊锋, 等.施肥及秸秆还田处理下玉米季温室气体的排放[J].环境化学, 2012, 31(4): 407–414 http://d.wanfangdata.com.cn/Thesis/Y2193403
PEI S W, ZHANG Y Y, LIU J F, et al. Greenhouse gas emission under the treatments of fertilization and wheat straw returning during the maize growing seasons[J]. Environmental Chemistry, 2012, 31(4): 407–414 http://d.wanfangdata.com.cn/Thesis/Y2193403
[17]LI H, QIU J J, WANG L G, et al. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China[J]. Agriculture, Ecosystems & Environment, 2010, 135(1/2): 24–33 http://cn.bing.com/academic/profile?id=0a0d60618868fc2c796e704d8bc4348a&encoded=0&v=paper_preview&mkt=zh-cn
[18]MENG L, DING W X, CAI Z C. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil[J]. Soil Biology and Biochemistry, 2005, 37(11): 2037–2045 doi: 10.1016/j.soilbio.2005.03.007
[19]GREGORICH E G, ROCHETTE P, VAN DEN BYGAART A J, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada[J]. Soil and Tillage Research, 2005, 83(1): 53–72 doi: 10.1016/j.still.2005.02.009
[20]刘恩科, 赵秉强, 李秀英, 等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报, 2008, 32(1): 176–182 http://d.old.wanfangdata.com.cn/Periodical/zwstxb200801020
LIU E K, ZHAO B Q, LI X Y, et al. Biological properties and enzymatic activity of arable soils affected by long-term different fertilization systems[J]. Journal of Plant Ecology, 2008, 32(1): 176–182 http://d.old.wanfangdata.com.cn/Periodical/zwstxb200801020
[21]张庆忠, 吴文良, 王明新, 等.秸秆还田和施氮对农田土壤呼吸的影响[J].生态学报, 2005, 25(11): 2883–2887 doi: 10.3321/j.issn:1000-0933.2005.11.013
ZHANG Q Z, WU W L, WANG M X, et al. The effects of crop residue amendment and N rate on soil respiration[J]. Acta Ecologica Sinica, 2005, 25(11): 2883–2887 doi: 10.3321/j.issn:1000-0933.2005.11.013
[22]强学彩, 袁红莉, 高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响[J].应用生态学报, 2004, 15(3): 469–472 http://www.oalib.com/paper/4380231
QIANG X C, YUAN H L, GAO W S. Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass[J]. Chinese Journal of Applied Ecology, 2004, 15(3): 469–472 http://www.oalib.com/paper/4380231
[23]叶文培, 王凯荣, JOHNSON S E, 等.添加玉米和水稻秸秆对淹水土壤pH、二氧化碳及交换态铵的影响[J].应用生态学报, 2008, 19(2): 345–350 https://www.wenkuxiazai.com/doc/eacdd1106c175f0e7cd13744.html
YE W P, WANG K R, JOHNSON S E, et al. Effects of maize and rice straw amendment on the pH, CO2, and exchangeable NH4+ of submerged soil[J]. Chinese Journal of Applied Ecology, 2008, 19(2): 345–350 https://www.wenkuxiazai.com/doc/eacdd1106c175f0e7cd13744.html
[24]马静, 徐华, 蔡祖聪, 等.焚烧麦杆对稻田CH4和N2O排放的影响[J].中国环境科学, 2008, 28(2): 107–110 http://plantnutrifert.org/CN/abstract/abstract4078.shtml
MA J, XU H, CAI Z C, et al. Influence of wheat Straw burning on CH4 and N2O emissions from rice fields[J]. China Environmental Science, 2008, 28(2): 107–110 http://plantnutrifert.org/CN/abstract/abstract4078.shtml
[25]GAO Y, YANG L L, SHEN X J, et al. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency[J]. Agricultural Water Management, 2014, 146: 1–10 doi: 10.1016/j.agwat.2014.07.010
[26]郭树芳, 齐玉春, 尹飞虎, 等.不同灌溉方式对华北平原冬小麦田土壤CO2和N2O排放通量的影响[J].环境科学, 2016, 37(5): 1880–1890 http://www.plantnutrifert.org/CN/abstract/abstract4183.shtml
GUO S F, QI Y C, YIN F H, et al. Effect of irrigation patterns on soil CO2 and N2O emissions from winter wheat field in North China Plain[J]. Environmental Science, 2016, 37(5): 1880–1890 http://www.plantnutrifert.org/CN/abstract/abstract4183.shtml
[27]KALLENBACH C M, ROLSTON D E, HORWATH W R. Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation[J]. Agriculture, Ecosystems & Environment, 2010, 137(3/4): 251–260 http://www.chinaagrisci.com/Jwk_zgnykxen/EN/abstract/abstract11522.shtml
[28]SáNCHEZ-MART N L, ARCE A, BENITO A, et al. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop[J]. Soil Biology and Biochemistry, 2008, 40(7): 1698–1706 doi: 10.1016/j.soilbio.2008.02.005
[29]AHMAD S, LI C F, DAI G Z, et al. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China[J]. Soil and Tillage Research, 2009, 106(1): 54–61 doi: 10.1016/j.still.2009.09.005
[30]LENKA N K, LAL R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system[J]. Soil and Tillage Research, 2013, 126: 78–89 doi: 10.1016/j.still.2012.08.011
[31]OMONODE R A, VYN T J, SMITH D R, et al. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn-soybean rotations[J]. Soil and Tillage Research, 2007, 95(1/2): 182–195 https://www.sciencedirect.com/science/article/pii/S0167198707000037
[32]KESSAVALOU A, MOSIER A R, DORAN J W, et al. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management[J]. Journal of Environmental Quality, 1998, 27(5): 1094–1104 http://cn.bing.com/academic/profile?id=0180e09900ea3da82becd7c0dac9eb09&encoded=0&v=paper_preview&mkt=zh-cn
[33]ABDALLA M, OSBORNE B, LANIGAN G, et al. Conservation tillage systems: A review of its consequences for greenhouse gas emissions[J]. Soil Use and Management, 2013, 29(2): 199–209 doi: 10.1111/sum.2013.29.issue-2
[34]LEMKE P, REN J, ALLEY R B, et al. Climate change 2007: The physical science basis: Summary for policymakers, technical summary and frequently asked questions[R]. Cambridge, United Kingdom, New York, NY, USA: Cambridge University Press, 2007: 337–383
[35]MALHI S S, LEMKE R L. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle[J]. Soil and Tillage Research, 2007, 96(1/2): 269–283 http://cn.bing.com/academic/profile?id=b2ffa9af045492eb5d40d5ca792716ce&encoded=0&v=paper_preview&mkt=zh-cn
[36]WANG Y Y, HU C S, DONG W X, et al. Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain[J]. Agriculture, Ecosystems & Environment 2015, 206: 33–45 https://www.sciencedirect.com/science/article/pii/S0167880915001000
[37]RETH S, GRAF W, GEFKE O, et al. Whole-year-round observation of N2O profiles in soil: A lysimeter study[J]. Water, Air, & Soil Pollution: Focus, 2008, 8(2): 129–137 doi: 10.1007/s10705-010-9420-2
[38]WANG Y Y, HU C S, MING H, et al. Concentration profiles of CH4, CO2 and N2O in soils of a wheat-maize rotation ecosystem in North China Plain, measured weekly over a whole year[J]. Agriculture, Ecosystems & Environment, 2013, 164: 260–272 http://www.sciencedirect.com/science/article/pii/S0167880912003672
[39]WANG Y Y, HU C S, MING H, et al. Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain[J]. PLoS One, 2014, 9(6): e98445 doi: 10.1371/journal.pone.0098445
[40]Fierer N, Chadwick O A, Trumbore S E. Production of CO2 in soil profiles of a California annual grassland[J]. Ecosystems, 2005, 8(4): 412–429 doi: 10.1007/s10021-003-0151-y
[41]梁巍, 张颖, 岳进, 等.长效氮肥施用对黑土水旱田CH4和N2O排放的影响[J].生态学杂志, 2004, 23(3): 44–48 http://www.cje.net.cn/CN/abstract/abstract6190.shtml
LIANG W, ZHANG Y, YUE J, et al. Effect of slow-releasing nitrogen fertilizers on CH4 and N2O emission in maize and rice fields in black earth soil[J]. Chinese Journal of Ecology, 2004, 23(3): 44–48 http://www.cje.net.cn/CN/abstract/abstract6190.shtml
[42]XU X K, BOECKX P, VAN CLEEMPUT O, et al. Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production[J]. Nutrient Cycling in Agroecosystems, 2002, 64(1/2): 203–211 doi: 10.1023/A:1021188415246
[43]李虎, 邱建军, 王立刚, 等.中国农田主要温室气体排放特征与控制技术[J].生态环境学报, 2012, 21(1): 159–165 https://www.wenkuxiazai.com/doc/44832927fad6195f312ba6b4-2.html
LI H, QIU J J, WANG L G, et al. The characterization of greenhouse gases fluxes from croplands of China and mitigation technologies[J]. Ecology and Environmental Sciences, 2012, 21(1): 159–165 https://www.wenkuxiazai.com/doc/44832927fad6195f312ba6b4-2.html
[44]ZOU J W, HUANG Y, ZONG L G, et al. Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature[J]. Advances in Atmospheric Sciences, 2004, 21(5): 691–698 doi: 10.1007/BF02916366
[45]QIU J J, LI C S, WANG L G, et al. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China[J]. Global Biogeochemical Cycles, 2009, 23(1): GB1007 http://cn.bing.com/academic/profile?id=5f3726dd82d36739a191539a4009cfe8&encoded=0&v=paper_preview&mkt=zh-cn
[46]ZHANG F, LI C, WANG Z, et al. Modeling impacts of management alternatives on soil carbon storage of farmland in northwest China[J]. Biogeosciences, 2006, 3: 451–466 doi: 10.5194/bg-3-451-2006

相关话题/土壤 农田 环境科学 生态 管理