孙颖,
高雷,
崔晓阳,
东北林业大学林学院 哈尔滨 150040
基金项目: 国家自然科学基金重点项目41330530
国家“十三五”重点研发计划项目2016YFA0600803
详细信息
作者简介:徐嘉晖, 主要研究方向为森林土壤碳循环。E-mail:897475390@qq.com
通讯作者:崔晓阳, 主要研究方向为森林土壤生态学。E-mail:c_xiaoyang@126.com
中图分类号:S154.1计量
文章访问数:1274
HTML全文浏览量:4
PDF下载量:2589
被引次数:0
出版历程
收稿日期:2017-07-10
录用日期:2017-09-15
刊出日期:2018-02-01
A review of the factors influencing soil organic carbon stability
XU Jiahui,SUN Ying,
GAO Lei,
CUI Xiaoyang,
College of Forestry, Northeast Forestry University, Harbin 150040, China
Funds: the National Natural Science Foundation of China41330530
the National Key Research and Development Program of China2016YFA0600803
More Information
Corresponding author:CUI Xiaoyang, E-mail: c_xiaoyang@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:增加土壤碳汇是应对全球气候变化的有效措施,作为土壤碳汇来源之一的有机碳在其中发挥重要作用。过去几十年,土壤有机碳的分子结构性质被认为是预测有机碳在土壤中循环的主要标准。然而最近的研究结果表明有机碳的分子结构并非绝对地控制着土壤有机碳的稳定,而土壤环境因子与有机碳的相互作用显著降低了土壤有机碳被降解的可能性。土壤微生物不仅参与有机碳的降解,其产物本身也是土壤有机碳的重要组成成分。非生物因子直接或间接地控制着土壤有机碳的稳定,包括土壤中的无机颗粒、无机环境以及养分状况等。其中,有机碳与土壤矿物的吸附作用和土壤团聚体的闭蓄作用被普遍认为高效地保护了有机碳。土壤矿物的吸附作用取决于其自身的矿物学性质和有机碳的化学性质。土壤团聚体在保护有机碳的同时也促进了有机碳与矿物的吸附,而有机-矿物络合物同样可以参与形成团聚体。此外,土壤无机环境也影响着有机碳循环。总之,土壤有机碳的稳定取决于有机碳与周围环境的相互作用。同时,有机碳的结构性质也受控于环境因素。然而,无论有机碳的结构性质,还是其所处的生物与非生物环境,都是生态系统的基本属性,且各属性间相互影响、相互作用。因此,土壤有机碳的稳定是生态系统的一种特有性质。
关键词:碳汇/
土壤有机碳/
稳定机制/
分子结构/
土壤生物/
非生物环境
Abstract:Increasing soil carbon sequestration is an effective measure to deal with global climate change. As an important carbon sink, soil organic carbon (SOC) is a critical medium for carbon sequestration. In recent decades, the molecular structure of SOC has been identified as the most important element in predicting SOC cycle. However, new studies have proven that the recalcitrance of the molecular structure of organic carbon limits the determination of SOC stability in the soil. Also the interaction between SOC and the surrounding environment significantly limits the possibility of degradation of SOC. Soil micro-organisms influence SOC cycle not only through decomposing, but also through microbial products which are the primarily components of SOC. Abiotic factors including inorganic soil particles, inorganic soil environment and nutrient conditions directly or indirectly control SOC dynamics. Among these factors, adsorption to soil minerals and occlusion within soil aggregates have been determined to strong support the long-term stability of SOC. The role of minerals in SOC adsorption and stability depends on the mineralogy and chemical property of SOC. Soil aggregates not only physically protect SOC from mi-crobial and enzymatic attack, but also promote the adsorption of SOC to minerals. On the contrary, organic mineral complex can also combine with other inorganic or organic materials to form aggregates so that SOC adsorbed to minerals can be further occluded by aggregation. Therefore, SOC adsorption to minerals and occlusion within aggregates complement each other. Moreover, inorganic environment (e.g., temperature and moisture) also acts on SOC dynamics. Put together, we suggest that the persistence of SOC was mainly due to complex interactions between SOC and the surrounding environment, including micro-organism, reactive mineral surfaces, soil aggregates, temperature, water and nutrient. Meanwhile the biochemical property of SOC also depends on environment conditions. However, whether the inherent quality of SOC or its surrounding environment is an ecosystem property; and each property affects and interacts with each other. Therefore, the persistence of SOC is a specific property of ecosystem that integrates each property.
Key words:Carbon sequestration/
Soil organic carbon/
Stabilization mechanism/
Molecular structure/
Soil organism/
Abiotic environment
HTML全文
表1土壤有机碳分子结构性质的历史观点与新发现
Table1.Historical views and emerging findings about the molecular structure of soil organic carbon
化合物 Compound | 历史观点 Historical views | 最新发现 Emerging findings |
糖类/蛋白质 Carbohydrate / protein | 糖类和蛋白质通常在土壤中被迅速降解, 因为它们的分子结构不稳定 Carbohydrates and proteins are usually rapidly decomposed due to their labile molecules | 糖类与蛋白质可与土壤中无机颗粒络合而得以保存[8, 17] Carbohydrates and proteins can preserve in soils through association with inorganic soil particles |
木质素 Lignin | 由于木质素具有大量的芳香结构和不可水解的化学键而稳定固持于土壤中 Lignin persists in soils because of its abundance of aromatic structures and non-hydrolyzable bonds | 环境条件适宜时, 木质素将被迅速降解[8, 18] Under favorable conditions, lignin can be mineralized within a relatively short period |
黑碳 Black carbon | 黑碳具有高度浓缩的芳香结构, 可在土壤中长期固持, 甚至上千年 Black carbon can persist in soils with an exceedingly long time, up to millennia due to its highly condensed aromatic structures | 黑碳的稳定受控于环境条件, 可能并没有之前认为的那么稳定[15, 19] The persistence of black carbon is a function of environmental conditions and is much more labile than previous understanding |
腐殖质 Humus | 腐殖质的抗性源于复杂的芳香结构 Persistence of humus results from complex, aromatic structures | 环境条件的变化可能导致腐殖质的降解[15] Environmental variables may control the degradation of humus |
下载: 导出CSV
参考文献
[1] | KNUTTI R, ROGELJ J, SEDlá?EK J, et al. A scientific critique of the two-degree climate change target[J]. Nature Geoscience, 2016, 9(1): 13–18 doi: 10.1038/ngeo2595 |
[2] | KRNA M A, RAPSON G L. Clarifying 'carbon sequestration'[J]. Carbon Management, 2013, 4(3): 309–322 doi: 10.4155/cmt.13.25 |
[3] | 高崇升, 王建国.黑土农田土壤有机碳演变研究进展[J].中国生态农业学报, 2011, 19(6): 1468–1474 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110639&flag=1 GAO C S, WANG J G. A review of researches on evolution of soil organic carbon in mollisols farmland[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1468–1474 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110639&flag=1 |
[4] | LüTZOW M, K?GEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review[J]. European Journal of Soil Science, 2006, 57(4): 426–445 doi: 10.1111/ejs.2006.57.issue-4 |
[5] | MELILLO J M, ABER J D, MURATORE J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63(3): 621–626 doi: 10.2307/1936780 |
[6] | BASILE-DOELSCH I, BALESENT J, ROSE J. Are interactions between organic compounds and nanoscale weathering minerals the key drivers of carbon storage in soils?[J]. Environmental Science & Technology, 2015, 49(7): 3997–3998 doi: 10.1021/acs.est.5b00650 |
[7] | HAN L F, SUN K, JIN J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016, 94: 107–121 doi: 10.1016/j.soilbio.2015.11.023 |
[8] | KIEM R, K?GEL-KNABNER I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils[J]. Soil Biology and Biochemistry, 2003, 35(1): 101–118 doi: 10.1016/S0038-0717(02)00242-0 |
[9] | SOLLINS P, HOMANNP P, CALDWELL B A. Stabilization and destabilization of soil organic matter: Mechanisms and controls[J]. Geoderma, 1996, 74(1/2): 65–105 https://www.sciencedirect.com/science/article/pii/S0016706196000365 |
[10] | KRULL E S, BALDOCK J A, SKJEMSTAD J O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover[J]. Functional Plant Biology, 2003, 30(2): 207–222 doi: 10.1071/FP02085 |
[11] | SIX J, CONANT R, PAUL E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241: 155–176 doi: 10.1023/A:1016125726789 |
[12] | THROCKMORTON H M, BIRD J A, MONTE N, et al. The soil matrix increases microbial C stabilization in temperate and tropical forest soils[J]. Biogeochemistry, 2015, 122(1): 35–45 doi: 10.1007/s10533-014-0027-6 |
[13] | MCNALLY S R, BEARE M H, CURTIN D, et al. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand[J]. Global Change Biology, 2017, 23(11): 4544–4555 doi: 10.1111/gcb.2017.23.issue-11 |
[14] | 王磊, 应蓉蓉, 石佳奇, 等.土壤矿物对有机质的吸附与固定机制研究进展[J].土壤学报, 2017, 54(4): 805–818 http://www.doc88.com/p-2814915101907.html WANG L, YING R R, SHI J Q, et al. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 2017, 54(4): 805–818 http://www.doc88.com/p-2814915101907.html |
[15] | SCHMIDT M W I, TORN M S, ABOVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49–56 doi: 10.1038/nature10386 |
[16] | MARSCHNER B, BRODOWSKI S, DREVES A, et al. How relevant is recalcitrance for the stabilization of organic matter in soils?[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(1): 91–110 doi: 10.1002/(ISSN)1522-2624 |
[17] | BERHE A A, HARDEN J W, TORN M S, et al. Persistence of soil organic matter in eroding versus depositional landform positions[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G2): G02019 http://cn.bing.com/academic/profile?id=b0f7009cfcdc59ec7fecd1f5855a0ecb&encoded=0&v=paper_preview&mkt=zh-cn |
[18] | DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6): 1781–1796 doi: 10.1111/gcb.2012.18.issue-6 |
[19] | JAFFéR, DING Y, NIGGEMANN J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 2013, 340(6130): 345–347 doi: 10.1126/science.1231476 |
[20] | NYLANDER F, SUNNER H, OLSSON L, et al. Synthesis and enzymatic hydrolysis of a diaryl benzyl ester model of a lignin-carbohydrate complex (LCC)[J]. Holzforschung, 2016, 70(5): 385–391 doi: 10.1007/s00425-014-2037-y |
[21] | TALBOT J M, YELLE D J, NOWICK J, et al. Litter decay rates are determined by lignin chemistry[J]. Biogeochemistry, 2012, 108(1/3): 279–295 https://www.fpl.fs.fed.us/documnts/pdf2012/fpl_2012_talbot001.pdf |
[22] | ZHOU G Y, GUAN L L, WEI X H, et al. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China[J]. Plant and Soil, 2008, 311(1/2): 61–72 doi: 10.1007/s11104-008-9658-5 |
[23] | 刘宁, 何红波, 解宏图, 等.土壤中木质素的研究进展[J].土壤通报, 2011, 42(4): 991–996 https://www.wenkuxiazai.com/doc/1404885633687e21af45a958-3.html LIU N, HE H B, XIE H T, et al. An overview of studies on lignin in soil[J]. Chinese Journal of Soil Science, 2011, 42(4): 991–996 https://www.wenkuxiazai.com/doc/1404885633687e21af45a958-3.html |
[24] | MOORHEAD D L, LASHERMES G, SINSABAUGE R L, et al. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency[J]. Soil Biology and Biochemistry, 2013, 66: 17–19 doi: 10.1016/j.soilbio.2013.06.016 |
[25] | 钟敏, 庄舜尧, 曹志洪.绰墩埋藏古水稻土中木质素特征研究[J].土壤学报, 2012, 49(4): 764–772 doi: 10.11766/trxb201105050171 ZHONG M, ZHUANG S Y, CAO Z H. Lignin in buried ancient paddy soils at Chuodun site[J]. Acta Pedologica Sinica, 2012, 49(4): 764–772 doi: 10.11766/trxb201105050171 |
[26] | 王仁佑, 曾光明, 郁红艳, 等.木质素的微生物降解机制[J].微生物学杂志, 2008, 28(3): 59–63 doi: 10.3969/j.issn.1001-9960.2008.10.006 WANG R Y, ZENG G M, YU H Y, et al. Lignin degradation mechanism by microbes[J]. Journal of Microbiology, 2008, 28(3): 59–63 doi: 10.3969/j.issn.1001-9960.2008.10.006 |
[27] | 谢长校, 孙建中, 李成林, 等.细菌降解木质素的研究进展[J].微生物学通报, 2015, 42(6): 1122–1132 http://journals.im.ac.cn/wswxtbcn/ch/reader/create_pdf.aspx?file_no=tb15061122 XIE C X, SUN J Z, LI C L, et al. Exploring the lignin degradation by bacteria[J]. Microbiology China, 2015, 42(6): 1122–1132 http://journals.im.ac.cn/wswxtbcn/ch/reader/create_pdf.aspx?file_no=tb15061122 |
[28] | SINGH N, ABIVEN S, TORN M S, et al. Fire-derived organic carbon in soil turns over on a centennial scale[J]. Biogeosciences, 2012, 9(8): 2847–2857 doi: 10.5194/bg-9-2847-2012 |
[29] | FANG Y, SINGH B, SINGH B P, et al. Biochar carbon stability in four contrasting soils[J]. European Journal of Soil Science, 2014, 65(1): 60–71 doi: 10.1111/ejss.12094 |
[30] | PRESOTN C M, SCHMIDT M W I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions[J]. Biogeosciences, 2006, 3(1): 397–420 https://core.ac.uk/download/pdf/52756657.pdf |
[31] | MARíN-SPIOTTA E, GRULEY K, CRAWFORD J, et al. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: Transcending disciplinary and ecosystem boundaries[J]. Biogeochemistry, 2014, 117(2/3): 279–297 doi: 10.1007/s10533-013-9949-7.pdf |
[32] | KERRé B, HERNADEZ-SORIANO M C, SMOLDERS E. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A 13C study[J]. Science of the Total Environment, 2016, 547: 30–38 doi: 10.1016/j.scitotenv.2015.12.107 |
[33] | MITCHELL P J, SIMPSON A J, SOONG R, et al. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil[J]. Soil Biology and Biochemistry, 2015, 81: 244–254 doi: 10.1016/j.soilbio.2014.11.017 |
[34] | 余健, 房莉, 卞正富, 等.土壤碳库构成研究进展[J].生态学报, 2014, 34(17): 4829–4838 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201417004 YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829–4838 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201417004 |
[35] | RODRíGUEZ-MURILLO J C, ALENDROS G, KNICKER H. Humic acid composition and humification processes in wetland soils of a Mediterranean semiarid wetland[J]. Journal of Soils and Sediments, 2017, 17(8): 2104–2115 doi: 10.1007/s11368-017-1663-y |
[36] | RUMPEL C, K?GEL-KNABNER I. Deep soil organic matter — A key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1/2): 143–158 doi: 10.1007/s11104-010-0391-5 |
[37] | LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60–68 doi: 10.1038/nature16045 |
[38] | 刘满强, 陈小云, 郭菊花, 等.土壤生物对土壤有机碳稳定性的影响[J].地球科学进展, 2007, 22(2): 152–158 http://www.adearth.ac.cn/CN/abstract/abstract3654.shtml LIU M Q, CHEN X Y, GUO J H, et al. Soil biota on soil organic carbon stabilization[J]. Advances in Earth Science, 2007, 22(2): 152–158 http://www.adearth.ac.cn/CN/abstract/abstract3654.shtml |
[39] | 刘满强, 胡锋, 陈小云, 等.土壤有机碳稳定机制研究进展[J].生态学报, 2007, 27(6): 2642–2650 https://www.wenkuxiazai.com/doc/0f58c41b55270722192ef76f.html LIU M Q, HU F, CHEN X Y, et al. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica, 2007, 27(6): 2642–2650 https://www.wenkuxiazai.com/doc/0f58c41b55270722192ef76f.html |
[40] | 潘根兴, 陆海飞, 李恋卿, 等.土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J].地球科学进展, 2015, 30(8): 940–951 doi: 10.11867/j.issn.1001-8166.2015.08.0940 PAN G X, LU H F, LI L Q, et al. Soil carbon sequestration with bioactivity: A new emerging frontier for sustainable soil management[J]. Advances in Earth Science, 2015, 30(8): 940–951 doi: 10.11867/j.issn.1001-8166.2015.08.0940 |
[41] | GROVER M, MAHESWARI M, DESAI S, et al. Elevated CO2: Plant associated microorganisms and carbon sequestration[J]. Applied Soil Ecology, 2015, 95: 73–85 doi: 10.1016/j.apsoil.2015.05.006 |
[42] | PINHEIRO é F M, CAMPOS D V B D, BALIEIRO F D C, et al. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter[J]. Agricultural Systems, 2015, 132: 35–39 doi: 10.1016/j.agsy.2014.08.008 |
[43] | HANKE A, SAUERWEIN M, KAISER K, et al. Does anoxic processing of dissolved organic matter affect organic-mineral interactions in paddy soils?[J]. Geoderma, 2014, 228/229: 62–66 doi: 10.1016/j.geoderma.2013.12.006 |
[44] | KAISER M, ZEDERER D P, ELLERBROCK R H, et al. Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis[J]. Geoderma, 2016, 263: 1–7 doi: 10.1016/j.geoderma.2015.08.029 |
[45] | WATTEL-KOEKKOEK E J W, VAN GENUCHTEN P P L, BUURMAN P, et al. Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils[J]. Geoderma, 2001, 99(1/2): 27–49 https://www.sciencedirect.com/science/article/pii/S0016706100000628 |
[46] | LALNDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198–200 doi: 10.1038/nature10855 |
[47] | CHASSé A W, OHNO T. Higher molecular mass organic matter molecules compete with orthophosphate for adsorption to iron (oxy) hydroxide[J]. Environmental Science & Technology, 2016, 50(14): 7461–7469 http://adsabs.harvard.edu/abs/2016EnST...50.7461C |
[48] | CHOROVER J, AMISTADI M K. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces[J]. Geochimica et Cosmochimica Acta, 2001, 65(1): 95–109 doi: 10.1016/S0016-7037(00)00511-1 |
[49] | KLEBER M, MIKUTTA R, TORN M S, et al. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons[J]. European Journal of Soil Science, 2005, 56(6): 717–725 http://cn.bing.com/academic/profile?id=e818443dabc36676c65f4ceb6437cce1&encoded=0&v=paper_preview&mkt=zh-cn |
[50] | GRYBOS M, DAVRANCHE M, GRUAU G, et al. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions[J]. Geoderma, 2009, 154(1/2): 13–19 http://cn.bing.com/academic/profile?id=e10fec60d3525be65d0df6f5066aae68&encoded=0&v=paper_preview&mkt=zh-cn |
[51] | RODIONOV A, AMELUNG W, HAUMAIER L, et al. Black carbon in the zonal steppe soils of Russia[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 363–369 doi: 10.1002/(ISSN)1522-2624 |
[52] | 刘中良, 宇万太.土壤团聚体中有机碳研究进展[J].中国生态农业学报, 2011, 19(2): 447–455 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110237&flag=1 LIU Z L, YU W T. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447–455 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110237&flag=1 |
[53] | TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141–163 doi: 10.1111/ejs.1982.33.issue-2 |
[54] | OADES J M. Soil organic matter and structural stability: Mechanisms and implications for management[J]. Plant and Soil, 1984, 76(1/3): 319–337 doi: 10.1007/BF02205590 |
[55] | JANZEN H H. Beyond carbon sequestration: Soil as conduit of solar energy[J]. European Journal of Soil Science, 2015, 66(1): 19–32 doi: 10.1111/ejss.2015.66.issue-1 |
[56] | GABRIEL C E, KELLMAN L. Investigating the role of moisture as an environmental constraint in the decomposition of shallow and deep mineral soil organic matter of a temperate coniferous soil[J]. Soil Biology and Biochemistry, 2014, 68: 373–384 doi: 10.1016/j.soilbio.2013.10.009 |
[57] | MAKAROV M I, MALYSHEVA T I, MULYKOVA O S, et al. Freeze-thaw effect on the processes of transformation of carbon and nitrogen compounds in alpine meadow soils[J]. Russian Journal of Ecology, 2015, 46(4): 317–324 doi: 10.1134/S1067413615040116 |
[58] | 王洋, 刘景双, 王全英.冻融作用对土壤团聚体及有机碳组分的影响[J].生态环境学报, 2013, 22(7): 1269–1274 http://cdmd.cnki.com.cn/Article/CDMD-10335-1017039806.htm WANG Y, LIU J S, WANG Q Y. The Effects of freeze-thaw processes on soil aggregates and organic carbon[J]. Ecology and Environmental Sciences, 2013, 22(7): 1269–1274 http://cdmd.cnki.com.cn/Article/CDMD-10335-1017039806.htm |
[59] | CHAI Y J, ZENG X B, E S Z, et al. Effects of freeze-thaw on aggregate stability and the organic carbon and nitrogen enrichment ratios in aggregate fractions[J]. Soil Use and Management, 2015, 30(4): 507–516 http://cn.bing.com/academic/profile?id=9a69cd7a5fbb871aabba1561e02fe4c5&encoded=0&v=paper_preview&mkt=zh-cn |
[60] | HAYES D J, KICKLIGHTER D W, MCGUIRE A D, et al. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange[J]. Environmental Research Letters, 2014, 9(4): 045005 doi: 10.1088/1748-9326/9/4/045005 |
[61] | MUELLER C W, RETHEMEYER J, KAO-KNIFFIN J, et al. Large amounts of labile organic carbon in permafrost soils of northern Alaska[J]. Global Change Biology, 2015, 21(7): 2804–2817 doi: 10.1111/gcb.12876 |
[62] | 王健波, 张燕卿, 严昌荣, 等.干湿交替条件下土壤有机碳转化及影响机制研究进展[J].土壤通报, 2013, 44(4): 998–1004 https://www.cnki.com.cn/qikan-YYSB201411041.html WANG J B, ZHANG Y Q, YAN C R, et al. Research advances in soil organic carbon transformation as related to drying and wetting cycles[J]. Chinese Journal of Soil Science, 2013, 44(4): 998–1004 https://www.cnki.com.cn/qikan-YYSB201411041.html |
[63] | 张梦瑶, 高永恒, 谢青琰.干湿交替对土壤有机碳矿化影响的研究进展[J].世界科技研究与发展, 2017, 39(1): 17–23 https://www.cnki.com.cn/qikan-KXSD201402002.html ZHANG M Y, GAO Y H, XIE Q Y. Effects of alternate drying and wetting on soil organic carbon mineralization: A review[J]. World Sci-Tech R & D, 2017, 39(1): 17–23 https://www.cnki.com.cn/qikan-KXSD201402002.html |
[64] | ZHU B, CHENG W X. Impacts of drying-wetting cycles on rhizosphere respiration and soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2013, 63: 89–96 doi: 10.1016/j.soilbio.2013.03.027 |
[65] | SHI A D, YAN N, MARSCHNER P. Cumulative respiration in two drying and rewetting cycles depends on the number and distribution of moist days[J]. Geoderma, 2015, 243/244: 168–174 doi: 10.1016/j.geoderma.2014.12.019 |
[66] | 赵志霞, 李正才, 周君刚, 等.火烧对北亚热带杉木林土壤有机碳的影响[J].林业科学研究, 2016, 29(2): 301–305 https://mall.cnki.net/qikan-TURA200001002.html ZHAO Z X, LI Z C, ZHOU J G, et al. Effects of fire on soil organic carbon of Cunninghamia lanceolata stands in north subtropical area[J]. Forest Research, 2016, 29(2): 301–305 https://mall.cnki.net/qikan-TURA200001002.html |
[67] | WANG Q K, ZHONG M C, WANG S L. A meta-analysis on the response of microbial biomass dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems[J]. Forest Ecology and Management, 2012, 271: 91–97 doi: 10.1016/j.foreco.2012.02.006 |
[68] | 任清胜, 辛颖, 赵雨森.重度火烧对大兴安岭落叶松天然林土壤团聚体有机碳和黑碳的影响[J].北京林业大学学报, 2016, 38(2): 29–36 https://www.cnki.com.cn/qikan-ZGNZ201608003.html REN Q S, XIN Y, ZHAO Y S. Impact of severe burning on organic carbon and black carbon in soil aggregates in natural Larix gmelinii forest of Great Xing'an Mountains[J]. Journal of Beijing Forestry University, 2016, 38(2): 29–36 https://www.cnki.com.cn/qikan-ZGNZ201608003.html |
[69] | NOVARA A, GRISTINA L, R HL J, et al. Grassland fire effect on soil organic carbon reservoirs in semiarid environment[J]. Solid Earth Discussions, 2013, 5(2): 883–895 doi: 10.5194/sed-5-883-2013 |
[70] | 李媛, 程积民, 魏琳, 等.云雾山典型草原火烧不同恢复年限土壤化学性质变化[J].生态学报, 2013, 33(7): 2131–2138 http://www.cqvip.com/QK/90772X/201307/45676762.html LI Y, CHENG J M, WEI L, et al. Changes of soil chemical properties after different burning years in typical steppe of Yunwu Mountains[J]. Acta Ecologica Sinica, 2013, 33(7): 2131–2138 http://www.cqvip.com/QK/90772X/201307/45676762.html |
[71] | 王绍强, 于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报, 2008, 28(8): 3937–3947 http://www.doc88.com/p-2002062292116.html WANG S Q, YU G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937–3947 http://www.doc88.com/p-2002062292116.html |
[72] | ZHU J X, WANG Q F, HE N P, et al. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1605–1616 doi: 10.1002/2016JG003393 |
[73] | WANG Q K, WANG Y P, WANG S L, et al. Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers[J]. Soil Biology and Biochemistry, 2014, 72: 145–151 doi: 10.1016/j.soilbio.2014.01.020 |
[74] | 汪金松, 赵秀海, 张春雨, 等.模拟氮沉降对油松林土壤有机碳和全氮的影响[J].北京林业大学学报, 2016, 38(10): 88–94 http://www.cje.net.cn/CN/abstract/abstract8171.shtml WANG J S, ZHAO X H, ZHANG C Y, et al. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2016, 38(10): 88–94 http://www.cje.net.cn/CN/abstract/abstract8171.shtml |
[75] | RAMIREZ K S, CRAINE J M, FIERER N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6): 1918–1927 doi: 10.1111/gcb.2012.18.issue-6 |
[76] | WANG Q, ZHANG P J, LIU M, et al. Mineral-associated organic carbon and black carbon in restored wetlands[J]. Soil Biology and Biochemistry, 2014, 75: 300–309 doi: 10.1016/j.soilbio.2014.04.025 |
[77] | LIANG C, BALSER T C. Preferential sequestration of microbial carbon in subsoils of a glacial-landscape toposequence, Dane County, WI, USA[J]. Geoderma, 2008, 148(1): 113–119 doi: 10.1016/j.geoderma.2008.09.012 |