张黎明1, 2,
周碧青2,
巫顺金1, 2,
邢世和2,,
1.福建农林大学资源与环境学院 福州 350002
2.土壤生态系统健康与调控福建省高校重点实验室 福州 350002
基金项目: 农业部耕地质量调查与评价项目FJ2009304
详细信息
作者简介:詹秋丽, 主要从事农业资源与GIS应用研究。E-mail:zqlholiday@163.com
通讯作者:邢世和, 主要研究方向为土壤生态系统碳氮磷循环、健康评价与调控。E-mail:fafuxsh@126.com
中图分类号:S15计量
文章访问数:920
HTML全文浏览量:0
PDF下载量:1310
被引次数:0
出版历程
收稿日期:2017-08-24
录用日期:2017-10-26
刊出日期:2018-02-01
Spatial variation in phosphorus accumulation and the driving factors in cultivated lands in Fujian Province
ZHAN Qiuli1, 2,,ZHANG Liming1, 2,
ZHOU Biqing2,
WU Shunjin1, 2,
XING Shihe2,,
1. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. University Key Laboratory of Soil Ecosystem Health and Regulation in Fujian Province, Fuzhou 350002, China
Funds: the Cropland Quality Survey and Evaluation Project of National Agriculture Ministry of ChinaFJ2009304
More Information
Corresponding author:XING Shihe, E-mail:fafuxsh@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:利用1:250 000福建省耕地土壤类型空间数据库以及1982年1 676个和2008年200 322个耕地土壤调查样点数据资料,借助GIS技术与灰色关联分析模型,探讨了26年间研究区耕地耕层土壤有效磷富集程度空间差异及其影响因素。结果表明:26年来福建省耕地土壤有效磷呈明显富集趋势,全省92.81%的耕地有效磷处于不同程度富集状态,有效磷平均富集量和年均富集率分别高达24.38 mg·kg-1和10.01%,并呈较明显的空间差异。地处南亚热带的厦门市耕地有效磷富集程度最大,中亚热带的南平市富集程度最小;有效磷富集程度较高的土类为紫色土、潮土、水稻土和赤红壤,较小的土类为滨海盐土和石灰土;富集程度较大的亚类包括淹育水稻土、灰潮土和漂洗水稻土,较小的亚类包括棕色石灰土和滨海盐土。研究区耕地土壤磷素富集及其空间差异主要受年均磷肥施用量、pH、年均气温和土壤黏粒含量显著影响,灰色关联系数>0.722。根据研究区耕地土壤磷素富集程度及其空间差异制定磷肥优化管理措施是十分必要的。
Abstract:Phosphorus is one of the largest nutrient elements needed for plant growth. Under the intensive production conditions, most farmland soils in China have had phosphorus enrichment problem, mainly due to excessive application of phosphate fertilizers, strong fixation and inefficient use of phosphorus. The enrichment of phosphorus in cropland soils is one of the important causes of non-point pollution, which has also restricted sustainable agricultural development in China. In this study, the 1:250 000 spatial database on farmland soil types and the available phosphorus data on tillage layer soil samples of cultivated land (1 676 samples in 1982 and 200 322 samples in 2008) in Fujian Province were used to determine the spatial variation in the degree of phosphorus enrichment and the related driving factors in cultivated lands for the past 26 years. To do so, an integrated GIS with grey correlation analysis model was used. The aim of the study was to clarify the enrichment characteristics of soil available phosphorus, and its spatial variability and driving factors. The results showed that soil available phosphorus had been abundant in Fujian Province in the past 26 years. In addition, soil available phosphorus enrichment area reached 1 216 777 hm2, accounting for 92.81% of the total area of cultivated land in the province. The yearly average enrichment amount and rate of available phosphorus were 24.38 mg·kg-1 and 10.01%, respectively, which showed obvious spatial variations. While cropland soils in Xiamen (which is in southern subtropics) had the largest degree of available phosphorus enrichment, those in Nanping (which is in mid-subtropics) showed the lowest degree of available phosphorus enrichment in Fujian Province. The soil types with high available phosphorus enrichment included purplish soils, fluvo-aquic soils, paddy soils and latosolic red soils. Then the soils with less available phosphorus enrichment included coastal solonchaks and calcareous soils. Soil subtypes with larger degrees of available phosphorus enrichment included submerged paddy soils and bleached paddy soils, while those with lower levels of available phosphorus enrichment included brown calcareous soils and coastal solonchaks. In general, enrichment of available phosphorus in tillage layer of cultivated land soil had happened in large area with wide distribution range and significant spatial variation in Fujian Province. Grey correlation analysis showed that soil available phosphorus enrichment and its spatial variation were mainly affected by annual application rate of phosphate fertilizer, soil pH, mean temperature and soil clay content, which were with grey correlation coefficients higher than 0.722. However, the effect of soil sand content, precipitation and soil organic matter content on phosphorus enrichment in cultivated soils in study areas was relatively weaker. Their gray correlation coefficients were less than 0.720. Based on the degree of phosphorus enrichment and spatial variation, inorganic phosphate fertilizer application should be controlled strictly to deal with the phosphorus enrichment in cultivated soils in Fujian Province. At the same time, there was the need to optimize fertilization management by increasing organic fertilizer and reducing chemical fertilizer use.
HTML全文
图11982年(a)和2008年(b)福建省耕地土壤样点分布图
Figure1.Distribution of cropland soil sampling sites in Fujian Province in 1982 (a) and 2008 (b)
下载: 全尺寸图片幻灯片
图2福建省1982-2008年耕层土壤有效磷富集量空间分布图
Figure2.Spatial distribution of available phosphorus enrichment amount at topsoil in Fujian Province from 1982 to 2008
下载: 全尺寸图片幻灯片
图31982-2008年福建省各地级市耕层土壤有效磷年均富集率和富集量
Figure3.Annual enrichment rates and enrichment amounts of available phosphorus in cultivated land topsoil of different cities of Fujian Province from 1982 to 2008
下载: 全尺寸图片幻灯片
图41982-2008年福建省不同土类耕层土壤有效磷年均富集率和富集量
Figure4.Annual enrichment rates and enrichment amounts of available phosphorus in topsoil of different soil groups of Fujian Province from 1982 to 2008
下载: 全尺寸图片幻灯片
图51982-2008年福建省不同亚类耕层土壤有效磷年均富集率和富集量
Figure5.Annual enrichment rates and enrichment amounts of available phosphorus in topsoil of different soil subgroups of Fujian Province from 1982 to 2008
下载: 全尺寸图片幻灯片
表11982-2008年福建省各地级市耕层土壤有效磷富集面积及其比例
Table1.Enrichment areas and area proportions of soil available phosphorus in cultivated land topsoil of different cities of Fujian Province from 1982 to 2008
行政区 Administrative area | 有效磷富集 Available phosphorus enrichment | |
面积 Area (hm2) | 面积比例 Area proportion (%) | |
福州Fuzhou | 131 231 | 90.62 |
龙岩Longyan | 121 406 | 97.52 |
南平Nanping | 202 302 | 81.10 |
宁德Ningde | 115 926 | 94.44 |
莆田Putian | 47 938 | 75.37 |
泉州Quanzhou | 188 684 | 96.03 |
三明Sanming | 155 039 | 99.97 |
厦门Xiamen | 38 908 | 100.00 |
漳州Zhangzhou | 215 342 | 99.96 |
下载: 导出CSV
表21982-2008年福建省不同耕地土壤类型有效磷富集面积及其比例
Table2.Enrichment areas and proportions of available phosphorus in different soil types of Fujian Province from 1982 to 2008
土类 Soil group | 有效磷富集 Available phosphorus enrichment | 亚类 Subgroup | 有效磷富集 Available phosphorus enrichment | ||
面积 Area (hm2) | 面积比例 Area proportion (%) | 面积 Area (hm2) | 面积比例 Area proportion (%) | ||
滨海盐土 Coastal solonchaks | 2 427.59 | 58.52 | 滨海盐土Coastal solonchaks | 2 427.59 | 58.52 |
潮土Fluvo-aquic soils | 10 930.62 | 98.01 | 灰潮土Greyfluvo-aquic soils | 10 930.62 | 98.01 |
赤红壤Latosolic red soils | 94 126.19 | 87.51 | 赤红壤Latosolic red soils | 94 126.19 | 87.51 |
风砂土Aeolian sand | 12 588.97 | 78.97 | 耕作风砂土Tillage sand | 12 588.97 | 78.97 |
红壤Red soils | 82 940.10 | 92.13 | 红壤Red soils | 82 940.10 | 92.13 |
黄壤Yellow soils | 10 678.00 | 100.00 | 黄壤Yellow soils | 10 678.00 | 100.00 |
石灰土Calcareous soils | 135.53 | 100.00 | 棕色石灰土Brown calcareous soil | 135.53 | 100.00 |
水稻土Paddy soils | 1 004 449.97 | 93.87 | 漂洗水稻土Bleached paddy soils | 14 375.34 | 97.45 |
潜育水稻土Gleyed paddy soils | 106 805.61 | 86.59 | |||
渗育水稻土Percogenic paddy soils | 415 455.67 | 95.24 | |||
淹育水稻土Submergenic paddy soils | 11 593.71 | 98.53 | |||
盐渍水稻土Salinized paddy soils | 44 186.06 | 87.10 | |||
潴育水稻土Hydromorphic paddy soils | 408 688.92 | 94.33 | |||
紫色土Purplish soils | 1 347.00 | 100.00 | 酸性紫色土Acid purplish soils | 1 347.00 | 100.00 |
下载: 导出CSV
表31982-2008年福建省耕地土壤有效磷素富集量与影响因素的灰色关联分析
Table3.Grey correlation analysis of available phosphorus enrichment and possible impact factors in cultivated land topsoil in Fujian Province from 1982 to 2008
影响因子 Impact factor | 关联系数 Grey correlation coefficient |
pH | 0.762 0 |
年均磷肥施用量Annual phosphate application | 0.805 4 |
年均气温Annual average temperature | 0.729 7 |
年均降水量Annual rainfall | 0.707 8 |
砂粒Sand | 0.719 8 |
粉粒Powder | 0.721 5 |
黏粒Clay | 0.722 7 |
有机质Organic matter | 0.690 5 |
下载: 导出CSV
参考文献
[1] | 伦飞, 刘俊国, 张丹. 1961-2011年中国农田磷收支及磷使用效率研究[J].资源科学, 2016, 38(9):1681-1691 http://mall.cnki.net/magazine/magadetail/ZRZY201609.htm LUN F, LIU J G, ZHANG D. Trends in cropland P balance and P use efficiency in China from 1961 to 2011[J]. Resources Science, 2016, 38(9):1681-1691 http://mall.cnki.net/magazine/magadetail/ZRZY201609.htm |
[2] | 黄绍敏, 宝德俊, 皇甫湘荣, 等.长期施肥对潮土土壤磷素利用与积累的影响[J].中国农业科学, 2006, 39(1):102-108 doi: 10.11674/zwyf.2015.0617 HUANG S M, BAO D J, HUANGFU X R, et al. Effect of long-term fertilization on utilization and accumulation of phosphate nutrient in fluvo-aquic soil[J]. Scientia Agricultura Sinica, 2006, 39(1):102-108 doi: 10.11674/zwyf.2015.0617 |
[3] | 鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥, 2003, 18(1):4-8 doi: 10.3969/j.issn.1007-6220.2003.01.002 LU R K. The phosphorus level of soil and environmental protection of water body[J]. Phosphate & Compound Fertilizer, 2003, 18(1):4-8 doi: 10.3969/j.issn.1007-6220.2003.01.002 |
[4] | SATTARI S Z, BOUWMAN A F, GILLER K E, et al. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6348-6353 doi: 10.1073/pnas.1113675109 |
[5] | TóTH G, GUICHARNAUD R A, TóTH B, et al. Phosphorus levels in croplands of the European Union with implications for P fertilizer use[J]. European Journal of Agronomy, 2014, 55:42-52 doi: 10.1016/j.eja.2013.12.008 |
[6] | SCHOUMANS O F, BOURAOUI F, KABBE C, et al. Phosphorus management in Europe in a changing world[J]. Ambio, 2015, 44(S2):180-192 doi: 10.1007/s13280-014-0613-9 |
[7] | NIEDER R, KOSTER W, DAUCK H P. Contribution of agriculture to diffuse inputs of phosphate into the hydrosphere[J]. Wasser Wirtschaft, 2010, 100:2-25 https://www.cabdirect.org/cabdirect/abstract/20103145119 |
[8] | REIJNEVELD J A, EHLERT P A I, TERMORSHUIZEN A J, et al. Changes in the soil phosphorus status of agricultural land in the Netherlands during the 20th century[J]. Soil Use and Management, 2010, 26(4):399-411 doi: 10.1111/j.1475-2743.2010.00290.x |
[9] | 方玉东, 胡业翠, 封志明.基于GIS技术的中国农田磷素养分收支平衡研究[J].资源科学, 2008, 30(5):725-731 https://core.ac.uk/display/71588182 FANG Y D, HU Y C, FENG Z M. GIS study of phosphorus nutrient input/output in China at the county level[J]. Resources Science, 2008, 30(5):725-731 https://core.ac.uk/display/71588182 |
[10] | 麻万诸, 章明奎, 吕晓男.浙江省耕地土壤氮磷钾现状分析[J].浙江大学学报:农业与生命科学版, 2012, 38(1):71-80 https://www.wenkuxiazai.com/doc/e511776f7e21af45b307a858-2.html MA W Z, ZHANG M K, LYU X N. Concentrations and variations of total N, available P and K of cultivated soils in Zhejiang Province, China[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2012, 38(1):71-80 https://www.wenkuxiazai.com/doc/e511776f7e21af45b307a858-2.html |
[11] | 张慧, 高如泰, 夏训峰, 等.北京市房山区农田表观磷平衡分析[J].生态环境学报, 2009, 18(5):1949-1955 https://wap.cnki.net/qikan-D-D1-TRYJ-2009-05.html ZHANG H, GAO R T, XIA X F, et al. Analysis of surface phosphorus balance of farmland in Fangshan District, Beijing[J]. Ecology and Environmental Sciences, 2009, 18(5):1949-1955 https://wap.cnki.net/qikan-D-D1-TRYJ-2009-05.html |
[12] | 金明清, 彭月月, 王佩, 等.四川省盐源县植烟土壤氮磷钾空间变异特征及影响因素[J].土壤, 2016, 48(5):984-991 http://www.cnki.com.cn/Article/CJFDTotal-SCLK201501014.htm JIN M Q, PENG Y Y, WANG P, et al. Spatial variability characteristic and its influencing factors of tobacco planting soil available N, P and K in Yanyuan County of Sichuan, China[J]. Soil, 2016, 48(5):984-991 http://www.cnki.com.cn/Article/CJFDTotal-SCLK201501014.htm |
[13] | 袁大刚, 张甘霖.不同利用方式下南京城市土壤碳、氮、磷的化学计量学特征[J].中国土壤与肥料, 2013, (3):19-25 doi: 10.11838/sfsc.20130304 YUAN D G, ZHANG G L. Stoichiometry of C:N:P in urban soil of Nanjing under different land use[J]. Soil and Fertilizer Sciences in China, 2013, (3):19-25 doi: 10.11838/sfsc.20130304 |
[14] | 陈玉东, 周健民, 邢璐, 等.黑龙江海伦市农田土壤重金属与磷素含量的特征研究[J].土壤, 2015, 47(5):965-972 doi: 10.13758/j.cnki.tr.2015.05.024.html CHEN Y D, ZHOU J M, XING L, et al. Characteristics of heavy metals and phosphorus contents in farmland soils of Hailun City, Heilongjiang Province[J]. Soil, 2015, 47(5):965-972 doi: 10.13758/j.cnki.tr.2015.05.024.html |
[15] | 于洋, 赵业婷, 常庆瑞.渭北台塬区耕地土壤速效养分时空变异特征[J].土壤学报, 2015, 52(6):55-65 https://mall.cnki.net/lunwen-1016157656.html YU Y, ZHAO Y T, CHANG Q R. Spatial-temporal variability of soil readily available nutrients in cultivated land of Weibei Tableland area[J]. Acta Pedologica Sinica, 2015, 52(6):55-65 https://mall.cnki.net/lunwen-1016157656.html |
[16] | YAN Z J, CHEN S, LI J L, et al. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses[J]. Journal of Environmental Management, 2016, 181:26-35 https://www.sciencedirect.com/science/article/pii/S030147971630336X |
[17] | SHEN Z Y, CHEN L, HONG Q, et al. Assessment of nitrogen and phosphorus loads and causal factors from different land use and soil types in the Three Gorges Reservoir Area[J]. Science of the Total Environment, 2013, 454-455:383-392 doi: 10.1016/j.scitotenv.2013.03.036 |
[18] | 张秀, 张黎明, 龙军, 等.亚热带耕地土壤酸化程度差异及影响因素[J].中国生态农业学报, 2017, 25(3):441-450 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170315&flag=1 ZHANG X, ZHANG L M, LONG J, et al. Soil acidification degree difference and impact factors of subtropical cropland[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3):441-450 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170315&flag=1 |
[19] | 龙军, 张黎明, 沈金泉, 等.复杂地貌类型区耕地土壤有机质空间插值方法研究[J].土壤学报, 2014, 51(6):1270-1281 https://mall.cnki.net/lunwen-1016129306.html LONG J, ZHANG L M, SHEN J Q, et al. Spatial interpolation of soil organic matter in farmlands in areas complex in landform[J]. Acta Pedologica Sinica, 2014, 51(6):1270-1281 https://mall.cnki.net/lunwen-1016129306.html |
[20] | 李增兵, 赵庚星, 赵倩倩, 等.县域耕地地力评价中土壤养分空间插值方法的比较研究[J].中国农学通报, 2012, 28(20):230-236 doi: 10.3969/j.issn.1007-7731.2011.17.046 LI Z B, ZHAO G X, ZHAO Q Q, et al. Comparison of spatial interpolation methods for soil nutrients in cultivated land fertility evaluation[J]. Chinese Agricultural Science Bulletin, 2012, 28(20):230-236 doi: 10.3969/j.issn.1007-7731.2011.17.046 |
[21] | 赵海东, 赵小敏, 谢林波, 等.江西上饶市水稻肥料利用率的空间差异及其影响因素研究[J].土壤学报, 2014, 51(1):22-31 https://www.wenkuxiazai.com/doc/37bacf29a76e58fafab0037c.html ZHAO H D, ZHAO X M, XIE L B, et al. Spatial variation and its affecting factors of rice fertilizer use efficiency in Shangrao City of Jiangxi Province[J]. Acta Pedologica Sinica, 2014, 51(1):22-31 https://www.wenkuxiazai.com/doc/37bacf29a76e58fafab0037c.html |
[22] | 巫顺金. 福建省耕地土壤磷素富集及其生态风险评价[D]. 福州: 福建农林大学, 2014: 3-38 WU S J. Soil phosphorus enrichment and ecological risk assessment of cultivated soil in Fujian[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014: 3-38 |
[23] | 曾招兵, 曾思坚, 汤建东, 等.广东省耕地土壤有效磷时空变化特征及影响因素分析[J].生态环境学报, 2014, 23(3):444-451 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201523021.htm ZENG Z B, ZENG S J, TANG J D, et al. Space-temporal variation of farmland soil AP in Guangdong Province and their causing factors[J]. Ecology and Environment Sciences, 2014, 23(3):444-451 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201523021.htm |
[24] | 刘敏英, 吕小娜, 朱志国.眉山市东坡区土壤有效磷空间变异特征及其影响因素分析[J].四川农业科技, 2015, (2):31-35 LIU M Y, LYU X N, ZHU Z G. Spatial variability of soil available P in Dongpo District of Meishan City and its influencing factors[J]. Sichuan Agricultural Science and Technology, 2015, (2):31-35 |
[25] | 蒋幸萤, 兰安军. 天全县耕地土壤有效磷空间分布及其影响因素分析[C]//中国环境科学学会. 中国环境科学学会学术年会论文集. 北京: 中国环境科学学会, 2015: 3734-3739 JIANG X Y, LAN A J. Spatial distribution of available phosphorus in cultivated land of Tianquan County and its influencing factors[C]//Chinese Society of Environmental Science. Chinese Society of Environmental Science 2015 Academic Annual Conference Proceedings. Beijing: China Environmental Science Society, 2015: 3734-3739 |
[26] | 朱晓晖, 杜晓玉, 张维理.有机肥种类对土壤有效磷累积量的影响及其流失风险[J].中国土壤与肥料, 2013, (5):14-18 doi: 10.11838/sfsc.20130503 ZHU X H, DU X Y, ZHANG W L. Effects of manure type on available-P accumulation in soil and its loss risk[J]. Soil and Fertilizer Sciences in China, 2013, (5):14-18 doi: 10.11838/sfsc.20130503 |
[27] | 蔡观, 胡亚军, 王婷婷, 等.基于生物有效性的农田土壤磷素组分特征及其影响因素分析[J].环境科学, 2017, 38(4):1606-1612 http://manu30.magtech.com.cn/zwyy/CN/Y2016/V22/I6/1690 CAI G, HU Y J, WANG T T, et al. Characteristics and influencing factors of biologically-based phosphorus fractions in the farmland soil[J]. Environmental Science, 2017, 38(4):1606-1612 http://manu30.magtech.com.cn/zwyy/CN/Y2016/V22/I6/1690 |
[28] | 方睿红, 常庆瑞, 宋利珍, 等.改进灰色关联模型在秦巴山区耕地地力评价中的应用[J].水土保持通报, 2012, 32(2):122-126 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201506001.htm FANG R H, CHANG Q R, SONG L Z, et al. Application of modified grey relational model to evaluating farmland productivity in Qinling-Bashan Mountainous Area[J]. Bulletin of Soil and Water Conservation, 2012, 32(2):122-126 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201506001.htm |
[29] | 赵宇光, 梁成华, 杜立宇, 等.长期定位施肥设施土壤微团聚体磷素吸附解吸特征性探讨[J].北方园艺, 2009, (5):1-4 http://mall.cnki.net/magazine/magadetail/BFYY200905.htm ZHAO Y G, LIANG C H, DU L Y, et al. Adsorption-desorption of phosphorus on micro-aggregates of greenhouse soil of long-term fertilization[J]. Northern Horticulture, 2009, (5):1-4 http://mall.cnki.net/magazine/magadetail/BFYY200905.htm |
[30] | 福建省统计局.福建经济与社会统计年鉴-2008[M].福州:福建人民出版社, 2008 Fujian Provincial Bureau of Statistics. Fujian Economic and Social Statistical Yearbook-2008[M]. Fuzhou:Fujian People's Publishing House, 2008 |
[31] | 王涛, 杨元合, 马文红.中国土壤磷库的大小、分布及其影响因素[J].北京大学学报:自然科学版, 2008, 44(6):945-952 http://www.cqvip.com/QK/94075X/200806/28719187.html WANG T, YANG Y H, MA W H. Storage, patterns and environmental controls of soil phosphorus in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(6):945-952 http://www.cqvip.com/QK/94075X/200806/28719187.html |
[32] | 王淑平, 周广胜, 吕育财, 等.中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系[J].植物生态学报, 2002, 26(5):513-517 http://www.docin.com/p-1275736899.html WANG S P, ZHOU G S, LYU Y C, et al. Distribution of soil carbon, nitrogen and phosphorus along northeast China transect (NECT) and their relationships with climatic factors[J]. Acta Phytoecologica Sinica, 2002, 26(5):513-517 http://www.docin.com/p-1275736899.html |
[33] | 刘方, 黄昌勇, 何腾兵, 等.长期施肥下黄壤旱地磷对水环境的影响及其风险评价[J].土壤学报, 2003, 40(6):838-844 doi: 10.11766/trxb20030606 LIU F, HUANG C Y, HE T B, et al. The environmental impact of phosphorus on water by a long-term applying fertilizer p in the upland fields of yellow soil areas and its risks evaluation[J]. Acta Pedologica Sinica, 2003, 40(6):838-844 doi: 10.11766/trxb20030606 |
[34] | 于天一, 孙秀山, 石程仁, 等.土壤酸化危害及防治技术研究进展[J].生态学杂志, 2014, 33(11):3137-3143 http://www.docin.com/p-1260987952.html YU T Y, SUN X S, SHI C R, et al. Advances in soil acidification hazards and control techniques[J]. Chinese Journal of Ecology, 2014, 33(11):3137-3143 http://www.docin.com/p-1260987952.html |
[35] | 栾明明. 城乡交错带土壤磷素空间分布及其影响因素[D]. 成都: 四川农业大学, 2015: 5-40 LUAN M M. Spatial distribution of soil phosphorus in urban-rural fringe and its influencing factors[D]. Chengdu: Sichuan Agricultural University, 2015: 5-40 |
[36] | GUPPY C N, MENZIES N W, BLAMEY F P C, et al. Do decomposing organic matter residues reduce phosphorus sorption in highly weathered soils?[J]. Soil Science Society of America Journal, 2005, 69(5):1405-1411 doi: 10.2136/sssaj2004.0266 |
[37] | WANG G P, LIU J D, WANG J D, et al. Soil Phosphorus forms and their variations in depressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China)[J]. Geoderma, 2006, 132(1/2):59-74 https://www.sciencedirect.com/science/article/pii/S0016706105001308 |