删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

东北黑土典型坡耕地土壤呼吸特征的研究

本站小编 Free考研考试/2022-01-01

黄诚诚1,,
王迎春1,
张渐飞2,
王立刚1,,
1.中国农业科学院农业资源与农业区划研究所/农业部面源污染控制重点实验室/中国农业科学院-美国新罕布什尔大学可持续农业生态系统联合实验室 北京 100081
2.黑龙江省绥化市青冈县人民办事中心 青冈 151600
基金项目: 国家自然科学基金项目31770486
公益性行业(农业)科研专项201303126-2
公益性行业(农业)科研专项201303103
国家重点研发计划项目2016YFE0101100
中国农业科学院创新工程CAAS-XTCX2016008-02

详细信息
作者简介:黄诚诚, 主要研究农田生态系统碳氮循环。E-mail:1027572376@qq.com
通讯作者:王立刚, 主要从事农业生态系统碳氮循环研究。E-mail:wangligang@caas.cn
中图分类号:S-3

计量

文章访问数:1138
HTML全文浏览量:5
PDF下载量:929
被引次数:0
出版历程

收稿日期:2017-06-21
录用日期:2017-07-28
网络出版日期:2021-06-01
刊出日期:2018-01-01

Characteristics of soil respiration on typical cropland slope in mollisol region of Northeast China

HUANG Chengcheng1,,
WANG Yingchun1,
ZHANG Jianfei2,
WANG Ligang1,,
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture/CAAS-UNH Joint Laboratory for Sustainable Agro-ecosystem Research, Beijing 100081, China
2. Heilongjiang Province Qinggang County People's Service Center, Qinggang 151600, China
Funds: the National Natural Science Foundation of China31770486
the Special Fund for Agro-scientific Research in the Public Interest of China201303126-2
the Special Fund for Agro-scientific Research in the Public Interest of China201303103
the National Key Research and Development Program of China2016YFE0101100
the Chinese Academy of Agricultural Sciences Innovation ProjectCAAS-XTCX2016008-02

More Information
Corresponding author:Wang Ligang,E-mail:wangligang@caas.cn


摘要
HTML全文
(3)(3)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本研究以东北黑土典型坡耕地为研究对象,利用LI-8100土壤呼吸测量仪对玉米全生育期土壤呼吸进行了原位监测,分析了坡耕地不同部位(坡顶、坡肩、坡背、坡趾)土壤呼吸速率变化规律、土壤呼吸总量、土壤呼吸速率与土壤水热因子之间的关系。结果表明:该地区土壤呼吸速率呈现"春秋季低夏季高"的季节性变化规律,坡趾位置土壤呼吸峰值显著高于坡顶、坡肩、坡背位置(P < 0.05)。不同部位土壤呼吸速率与土壤温度呈现显著线性关系(P < 0.05),与土壤含水量相关性不显著(P>0.05)。土壤呼吸总量以坡趾位置最高[523.97 g(CO2-C)·m-2],显著高于坡背[443.13 g(CO2-C)·m-2]、坡肩[426.81 g(CO2-C)·m-2]、坡顶[388.5 g(CO2-C)·m-2]3个位置18.5%、22.8%和34.9%(P < 0.05)。说明黑土坡耕地不同位置土壤呼吸存在显著差异,准确评价黑土坡耕地土壤呼吸需要综合考虑坡耕地不同坡位的差异,减少引用平地监测结果来评估坡耕地土壤呼吸量所造成的偏差。
关键词:黑土/
坡耕地/
土壤呼吸/
土壤温度/
土壤湿度
Abstract:The characteristics of soil respiration in cropland slopes are different from those in cropland plains. In order to accurately evaluate greenhouse gases emission in Northeast China farmland, it was necessary to study the patterns and factors influencing soil respiration in different cropland slopes. The study was conducted on a typical cropland slope in a mollisol region in Northeast China. An entire cropland slope was divided into four slope positions based on change in gradient-summit, shoulder-slope, back-slope and toe-slope. The LI-8100 probe was used to monitor soil respiration throughout the maize growing period. Water content and temperature of the surface soil (0-20 cm soil layer) were respectively measured using soil moisture meter and thermometer. The relationship between soil carbon dioxide (CO2) flux and the impact of temperature, soil moisture content were then analyzed for different slop positions (summit, shoulder-slope, back-slope and toe-slope). The study laid the basis for scientific evaluation of soil respiration and carbon balance in mollisol in cropland slopes. The results showed that CO2 flux in summer was higher than in spring and autumn. Peak soil respiration occurred during the period from maize silking to tasseling, which was from July 3 to August 23 in the study area. During this period, the cumulative respiration was 58.7%-59.9% of total soil respiration for the whole growing period of maize across the four slope positions, indicating it was the main period of soil respiration in mollisol regions in Northeast China. The peak rate of soil respiration was significantly different in each slope position (P < 0.05). It was significantly higher in the toe-slope position[7.56 μmol(CO2)·m-2·s-1] than at the summit[5.60 μmol(CO2)·m-2·s-1], shoulder-slope[6.08 μmol(CO2)·m-2·s-1] and back-slope[6.47 μmol(CO2)·m-2·s-1]. The results showed that soil respiration rates among different slope positions in typical mollisol regions were significantly different, especially in summer. CO2 flux had a positive, linear correlation with soil temperature for all the slope positions (P < 0.05). The exponential equation best expressed the relationship between soil temperature and soil respiration rate. Then temperature sensitivity (Q10) was the strongest for the back-slope position, compared with the others. There was an insignificant correlation between soil respiration and soil volumetric water content. These results indicated that change in soil temperature significantly influenced soil respiration rate. The cumulative emission of CO2 in toe-slope[523.97 g(CO2-C)·m-2] was 18.5%, 22.8% and 34.9% higher than in back-slope[443.13 g(CO2-C)·m-2], shoulder-slope[426.81 g(CO2-C)·m-2] and summit[388.50 g(CO2-C)·m-2], respectively. This was caused by the migration and redistribution of organic carbon, the change in soil bulk density, and the related effect on soil under the different environmental factors. The results of the study suggested that it was necessary to consider the respiration characteristics of different slope positions in order to limit any deviations in the monitoring results based on cropland plains respiration in the scientific evaluation of soil respiration on cropland slopes.
Key words:Mollisol/
Cropland slope/
Soil respiration/
Soil temperature/
Soil moisture content

HTML全文


图1坡耕地各坡位地形图(为监测位点)
Figure1.Topographic map at different slope positions of the tested slope cropland ( shows sampling positions)


下载: 全尺寸图片幻灯片


图2研究区坡耕地各坡位土壤呼吸速率变化
Figure2.Dynamics of soil respiration rates at different slope positions of the tested slope cropland


下载: 全尺寸图片幻灯片


图3研究区坡耕地各坡位玉米生育期表层土壤累积呼吸量
各坡位不同字母表示差异显著。
Figure3.Accumulation of surface soil respiration during the growth stage of corn at different slope positions of the tested slope cropland
Different lowercase letters at different slope positions mean significant differences at 0.05 level.


下载: 全尺寸图片幻灯片

表1研究区坡耕地各坡位表层土壤有机碳、容重和坡度
Table1.Soil organic carbon contents, bulk densities and gradients at different slope positions of the tested slope cropland
坡位
Slope position
有机碳
Organiccarbon (g·kg-1)
容重
Bulk density(g×cm-3)
坡度
Gradient(°)
坡顶?Summit 18.5±0.5d 0.97±0.02ab 6
坡肩
Shoulder-slope
20.1±1.0c 0.95±0.03ab 3
坡背?Back-slope 24.7±0.2a 1.00±0.01a 2
坡趾?Toe-slope 21.7±0.3b 0.92±0.02b 1
同列不同字母表示差异显著。Different lowercase letters in the same column mean significant differences at 0.05 level.


下载: 导出CSV
表2坡耕地不同坡位土壤呼吸通量与土壤温度和土壤含水率的相关性
Table2.Correlations between soil respiration rate and soil temperature, water content at different slope positions of the tested slope cropland
坡位
Slope position
温度
Temperature
体积含水率
Water content
坡顶?Summit 0.81* 0.39ns
坡肩?Shoulder-slope 0.80* -0.12ns
坡背?Back-slope 0.72* 0.12ns
坡趾?Toe-slope 0.76* -0.37ns
*表示显著相关(P < 0.05), ns表示相关性不显著。* means significant correlation at 0.05 level, ns means no significant correlation.


下载: 导出CSV
表3坡耕地不同坡位土壤呼吸速率(Rs)与土壤温度(T)拟合方程和温度敏感性(Q10)
Table3.Fitting equations between soil respiration rate (Rs) and soil temperature (T) and temperature sensitivity (Q10) of soil at different slope positions of the tested slope cropland
坡位
Slope position
拟合方程?Fitted equation
指数方程
Exponential equation
R2 Q10
坡顶?Summit Rs=0.185e0.137T 0.932 3.9
坡肩?Shoulder-slope Rs=0.198e0.139T 0.856 4.0
坡背?Back-slope Rs=0.131e0.159T 0.913 4.9
坡趾?Toe-slope Rs=0.131e0.159T 0.896 4.2


下载: 导出CSV

参考文献(34)
[1]SCHIMEL D, STEPHENS B B, FISHER J B. Effect of in-creasing CO2 on the terrestrial carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2):436-441 doi: 10.1073/pnas.1407302112
[2]骆亦其, 周旭辉. 土壤呼吸与环境[M]. 姜丽芬, 曲来夜, 周玉梅, 等译. 北京: 高等教育出版社, 2007: 63-133
LUO Y Q, ZHOU X H. Soil Respiration and the Environment[M]. Jiang L F, Qu L Y, Zhou Y M, et al, Trans. Beijing:Higher Education Press, 2007:63-133
[3]李嵘, 李勇, 李俊杰, 等.黄土丘陵侵蚀坡地土壤呼吸初步研究[J].中国农业气象, 2008, 29(2):123-126 http://www.cqvip.com/QK/95720X/201204/43255489.html
LI R, LI Y, LI J J, et al. A preliminary study on soil respiration of eroded sloping land in Chinese Loess Plateau[J]. Chinese Journal of Agrometeorology, 2008, 29(2):123-126 http://www.cqvip.com/QK/95720X/201204/43255489.html
[4]LIU S G, BLISS N, SUNDQUIST E, et al. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition[J]. Global Biogeochemical Cycles, 2003, 17(2):1074
[5]VANDENBYGAART A J, KROETSCH D, GREGORICH E G, et al. Soil C erosion and burial in cropland[J]. Global Change Biology, 2012, 18(4):1441-1452 doi: 10.1111/j.1365-2486.2011.02604.x
[6]LAL R. Soil erosion and carbon dynamics[J]. Soil and Tillage Research, 2005, 81(2):137-142 doi: 10.1016/j.still.2004.09.002
[7]LAL R. Soil erosion and the global carbon budget[J]. Envi-ronment International, 2003, 29(4):437-450 doi: 10.1016/S0160-4120(02)00192-7
[8]魏守才. 水土流失对黑土坡耕地土壤有机碳的影响[D]. 长春: 中国科学院东北地理与农业生态研究所, 2015: 3-17
WEI S C. Effect of soil erosion on soil organic carbon on sloping field of black soil area in northeast China[D]. Changchun:Northeast Institute of Geography and Agroecol-ogy, Chinese Academy of Sciences, 2015:3-17
[9]李志刚, 侯扶江.管理方式与地形对黄土高原丘陵沟壑区草地土壤呼吸的影响[J].土壤通报, 2009, 40(4):721-724 http://d.wanfangdata.com.cn/Thesis/Y1090010
LI Z G, HOU F J. Effects of management and topography on soil respiration of grassland in gullied-hilly area of the Loess Plateau[J]. Chinese Journal of Soil Science, 2009, 40(4):721-724 http://d.wanfangdata.com.cn/Thesis/Y1090010
[10]杨玲, 廖允成, 高茂盛, 等.不同耕作措施下旱作麦田CO2排放速率与土壤水热关系分析[J].西北农业学报, 2011, 20(1):70-75 http://www.chinaagrisci.com/article/2014/0578-1752-47-22-4463.html
YANG L, LIAO Y C, GAO M S, et al. Relationship analysis of CO2 emission fluxes and soil temperature and moisture in rainfed wheat field with different tillage[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(1):70-75 http://www.chinaagrisci.com/article/2014/0578-1752-47-22-4463.html
[11]梁贻仓, 李佩茹.农田土壤呼吸研究进展[J].中国人口·资源与环境, 2014, 24(S2):279-281 http://www.cqvip.com/qk/94270B/200822/28855990.html
LIANG Y C, LI P R. Research advances of soil respiration in farmland[J]. China Population, Resources and Environment, 2014, 24(S2):279-281 http://www.cqvip.com/qk/94270B/200822/28855990.html
[12]张宇, 张海林, 陈继康, 等.耕作措施对华北农田CO2排放影响及水热关系分析[J].农业工程学报, 2009, 25(4):47-53 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201511001.htm
ZHANG Y, ZHANG H L, CHEN J K, et al. Effects of different tillage practices on CO2 emission fluxes from farmland in North China Plain and the analysis of soil temperature and moisture[J]. Transactions of the CSAE, 2009, 25(4):47-53 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201511001.htm
[13]刘爽, 严昌荣, 何文清, 等.不同耕作措施下旱地农田土壤呼吸及其影响因素[J].生态学报, 2010, 30(11):2919-2924 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_stxb201011014
LIU S, YAN C R, HE W Q, et al. Soil respiration and it's affected factors under different tillage systems in dryland production systems[J]. Acta Ecologica Sinica, 2010, 30(11):2919-2924 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_stxb201011014
[14]王立刚, 邱建军, 李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究[J].土壤肥料, 2002, (6):13-17 http://d.wanfangdata.com.cn/Periodical/trfl200206003
WANG L G, QIU J J, LI W J. Study on the dynamics of soil respiration in the field of summer-corn in Huanghuaihai region in China[J]. Soils and Fertilizers, 2002, (6):13-17 http://d.wanfangdata.com.cn/Periodical/trfl200206003
[15]B??TH E, ARNEBRANT K. Growth rate and response of bacterial communities to pH in limed and ash treated forest soils[J]. Soil Biology and Biochemistry, 1994, 26(8):995-1001 doi: 10.1016/0038-0717(94)90114-7
[16]JIANG G F, LIU C, LI J Q, et al. Soil respiration and driving factors of farmland ecosystems in China[J]. Scientia Sinica Vitae, 2014, 44(7):725-735 http://life.scichina.com:8082/sciC/EN/abstract/abstract515046.shtml
[17]HAMDI S, MOYANO F, SALL S, et al. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions[J]. Soil Biology and Biochemistry, 2013, 58:115-126 doi: 10.1016/j.soilbio.2012.11.012
[18]陈盖, 许明祥, 张亚锋, 等.黄土丘陵区不同有机碳背景下侵蚀坡面土壤呼吸特征[J].环境科学, 2015, 36(9):3383-3392 http://www.oalib.com/paper/4740476
CHEN G, XU M X, ZHANG Y F, et al. Characteristics of soil respiration along eroded sloping land with different SOC background on the hilly Loess Plateau[J]. Environmental Science, 2015, 36(9):3383-3392 http://www.oalib.com/paper/4740476
[19]WEI S C, ZHANG X P, MCLAUGHLIN N B, et al. Effect of soil temperature and soil moisture on CO2 flux from eroded landscape positions on black soil in Northeast China[J]. Soil and Tillage Research, 2014, 144:119-125 doi: 10.1016/j.still.2014.07.012
[20]刘兴土, 阎百兴.东北黑土区水土流失与粮食安全[J].中国水土保持, 2009, (1):17-19 http://www.cqvip.com/QK/96008X/200901/29140573.html
LIU X T, YAN B X. Soil and water loss and grain security of black soil region in Northeast[J]. Soil and Water Conservation in China, 2009, (1):17-19 http://www.cqvip.com/QK/96008X/200901/29140573.html
[21]康日峰, 任意, 吴会军, 等. 26年来东北黑土区土壤养分演变特征[J].中国农业科学, 2016, 49(11):2113-2125 doi: 10.3864/j.issn.0578-1752.2016.11.008
KANG R F, REN Y, WU H J, et al. Changes in the nutrients and fertility of black soil over 26 years in Northeast China[J]. Scientia Agricultura Sinica, 2016, 49(11):2113-2125 doi: 10.3864/j.issn.0578-1752.2016.11.008
[22]XU X Z, XU Y, CHEN S C, et al. Soil loss and conservation in the black soil region of Northeast China:A retrospective study[J]. Environmental Science & Policy, 2010, 13(8):793-800 https://www.researchgate.net/publication/248516186_Soil_Loss_and_Conservation_in_the_Black_Soil_Region_of_Northeast_China_A_Retrospective_Study
[23]高燕. 黑土区不同侵蚀方式对土壤团聚体和泥沙颗粒流失的影响研究[D]. 杨凌: 西北农林科技大学, 2014: 1-7
GAO Y. Impacts of soil erosion on soil aggregates and particles losses in the black soil region[D]. Yangling:Northwest A&F University, 2014:1-7
[24]吴限, 魏永霞, 王敏, 等.不同农田植被条件下黑土坡耕地产流和产沙特征[J].水土保持通报, 2015, 35(3):101-104 https://www.cnki.com.cn/qikan-JLNY201704008.html
WU X, WEI Y X, WANG M, et al. Characteristics of runoff and sediment yield in sloping farmland of black soil region under different farmland vegetation[J]. Bulletin of Soil and Water Conservation, 2015, 35(3):101-104 https://www.cnki.com.cn/qikan-JLNY201704008.html
[25]方海燕, 盛美玲, 孙莉英, 等. 137Cs和210Pbex示踪黑土区坡耕地土壤侵蚀对有机碳的影响[J].应用生态学报, 2013, 24(7):1856-1862 http://www.cjae.net/CN/abstract/abstract19132.shtml
FANG H Y, SHENG M L, SUN L Y, et al. Using 137Cs and 210Pbex to trace the impact of soil erosion on soil organic carbon at a slope farmland in the black soil region[J]. Chinese Journal of Applied Ecology, 2013, 24(7):1856-1862 http://www.cjae.net/CN/abstract/abstract19132.shtml
[26]魏守才, 张晓平, 陈学文.土壤水蚀对土壤有机碳动态及全球碳循环平衡的影响[J].土壤与作物, 2015, 4(4):156-162 doi: 10.11689/j.issn.2095-2961.2015.04.003
WEI S C, ZHANG X P, CHEN X W. Effects of water-driven erosion on soil organic carbon dynamics and global carbon balance[J]. Soil and Crop, 2015, 4(4):156-162 doi: 10.11689/j.issn.2095-2961.2015.04.003
[27]VAN OOST K, QUINE T A, GOVER G, et al. The impact of agricultural soil erosion on the global carbon cycle[J]. Science, 318(5850):626-629 doi: 10.1126/science.1145724
[28]宋秋来, 赵泽松, 龚振平, 等.东北黑土区旱作农田土壤CO2排放规律[J].农业工程学报, 2012, 28(23):200-207 http://plantnutrifert.org/CN/abstract/abstract1456.shtml
SONG Q L, ZHAO Z S, GONG Z P, et al. CO2 emission law of dry farmland soil in black soil region of Northeast China[J]. Transactions of CSAE, 2012, 28(23):200-207 http://plantnutrifert.org/CN/abstract/abstract1456.shtml
[29]来雪慧, 李丹, 于波峰, 等.东北农场农作物生长季土壤呼吸对温度和含水量的响应[J].水土保持研究, 2016, 23(1):117-122 http://www.cnki.com.cn/Article/CJFDTotal-BFYY201612043.htm
LAI X H, LI D, YU B F, et al. Effects of soil temperature and water content on soil respiration rate during the crop growing season in a farm of Northern China[J]. Research of Soil and Water Conservation, 2016, 23(1):117-122 http://www.cnki.com.cn/Article/CJFDTotal-BFYY201612043.htm
[30]乔云发, 苗淑杰, 王树起, 等.不同施肥处理对黑土土壤呼吸的影响[J].土壤学报, 2007, 44(6):1028-1035 doi: 10.11766/trxb200701080610
QIAO Y F, MIAO S J, WANG S Q, et al. Soil respiration af-fected by fertilization in black soil[J]. Acta Pedologica Sinica, 2007, 44(6):1028-1035 doi: 10.11766/trxb200701080610
[31]BAJRACHARYA R M, LAL R, KIMBLE J M. Diurnal and seasonal CO2-C flux from soil as related to erosion phases in central Ohio[J]. Soil Science Society of America Journal, 2000, 64(1):286-293 doi: 10.2136/sssaj2000.641286x
[32]崔利论, 袁文平, 张海成.土壤侵蚀对陆地生态系统碳源汇的影响[J].北京师范大学学报:自然科学版, 2016, 52(6):816-822 https://mall.cnki.net/qikan-STXB201517035.html
CUI L L, YUAN W P, ZHANG H C. Soil erosion effect on terrestrial ecosystem carbon source and sink[J]. Journal of Beijing Normal University:Natural Science, 2016, 52(6):816-822 https://mall.cnki.net/qikan-STXB201517035.html
[33]FRANZLUEBBERS A J, HANEY R L, HONEYCUTT C W, et al. Climatic influences on active fractions of soil organic matter[J]. Soil Biology and Biochemistry, 2001, 33(7/8):1103-1111 https://www.sciencedirect.com/science/article/pii/S0038071701000165
[34]DAVIDSON E A, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors con-trolling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 1998, 4(2):217-227 doi: 10.1046/j.1365-2486.1998.00128.x

相关话题/土壤 农业 农田 中国农业科学院 资源