删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

花生补灌条件下施氮对土壤氮素吸收与转化的影响

本站小编 Free考研考试/2022-01-01

胡家齐,
夏桂敏,,
张?,
张柏纶,
迟道才
沈阳农业大学水利学院 沈阳 110866
基金项目: 公益性行业(农业)科研专项项目201303125

详细信息
作者简介:胡家齐, 主要从事农业节水理论与技术研究。E-mail:hu_hooolic@163.com
通讯作者:夏桂敏, 主要从事农业与生态节水理论与技术研究。E-mail:xiagm1229@126.com
中图分类号:S27;TV93

计量

文章访问数:872
HTML全文浏览量:1
PDF下载量:1528
被引次数:0
出版历程

收稿日期:2017-06-05
录用日期:2017-08-02
刊出日期:2018-01-01

Effect of nitrogen application on soil nitrogen absorption and transformation under supplementary irrigation of peanut

HU Jiaqi,
XIA Guimin,,
ZHANG Yan,
ZHANG Bailun,
CHI Daocai
College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
Funds: the Special Fund for Agro-scientific Research in the Public Interest of China201303125

More Information
Corresponding author:XIA Guimin, E-mail: xiagm1229@126.com


摘要
HTML全文
(4)(2)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为提高辽西地区花生产量和水氮利用率,本文以‘白沙1016’为对象,采取裂区试验,主区为雨养(W0)和测墒补灌(W1)两种灌溉模式,子区为0 kg·hm-2(N0)、40 kg·hm-2(N1)、60 kg·hm-2(N2)和80 kg·hm-2(N3)4个施氮水平,研究施氮对测墒补灌条件下花生干物质积累和氮素积累及分配的影响。试验结果表明:在雨养和测墒补灌条件下,花生成熟期的单株干物质量分别为64.66~74.92 g和71.65~92.81 g,以W1N3处理最高,W0N0最低,且随施氮量呈现二次曲线变化趋势。花生植株氮积累量随施氮量变化趋势与干物质量一致,W1N2较其他处理显著提高了氮素积累量、产量和水分利用效率。测墒补灌优化了花生植株中氮素的分配,延长了叶片氮素积累时长,同时提高了叶片氮素向荚果的转移量,继而相对雨养处理显著增加了花生荚果氮积累量所占植株氮积累总量的比重(氮收获系数)2.13%、氮肥农学利用率78.57%、氮肥表观回收率25.90%。花生收获后,土壤硝态氮主要分布在0~40 cm土层内,占0~60 cm土层的77.75%,且累积量随着施氮量的增高而增加,但补灌会使土壤硝态氮下移造成硝态氮淋失。因此,综合考虑水氮利用效率,在辽西半干旱地区推荐W1N2为适宜花生生产水氮管理,其产量、水分利用效率和灌溉水利用效率最高,分别为6 485.03 kg·hm-2、2.02 kg·m-3和10.21 kg·m-3
关键词:花生/
雨养/
测墒补灌/
施氮量/
氮素吸收与转化/
硝态氮/
水氮利用率
Abstract:Rainfed agriculture is a mode of critical production which relies on natural rainfall in arid and semiarid regions. However, it causes crop yield instability due to frequent insufficient water supply at key growth stages of crops. Thus supplemental irrigation based on soil moisture has been widely adopted as an alternative water-saving irrigation method. To determine the effects of different nitrogen (N) application rates on nitrogen absorption and distribution, yield of peanut and soil nitrate accumulation under rainfed or supplementary irrigation conditions, a split plot experiment was conducted using the 'Baisha 1016' peanut variety with different N and irrigation managements in semiarid region of West Liaoning Province. The aim of the study was to explore suitable water and N managements and provide support for "modulate N with water" in peanut cultivation in semiarid regions. The irrigation treatments included W0 (rainfed condition) and W1 (supplemental irrigation based on soil moisture with the lower limit of soil water content of 55% of field capacity). The N treatments included N0[no N], N1[40 kg(N)·hm-2], N2[60 kg(N)·hm-2] and N3[80 kg(N)·hm-2]. The results indicated that biomass and plant N uptake were highest under W1N2 treatment (supplemental irrigation at N application rate of 60 kg·hm-2) among all treatments at maturity stage of peanut. The yield and nitrogen accumulation of peanut increased with increasing nitrogen, but decreased at N3 dose. N application rate, irrigation mode and their interactions significantly affected yield, water use efficiency (WUE), N use efficiency (NUE)[including N agronomic efficiency (NAE), grain N recovery efficiency (GRE) and apparent N recovery efficiency (NRE), and N harvest index (NHI)]. Total plant pod N accumulation greatly increased due to the optimal distribution of N nutrient in peanut, and accelerated N transfer from leaf to kernel under W1 treatment. This created beneficial effects on increasing total plant pod N accumulation, peanut harvest index, agronomic N efficiency and yield. Compared with W0, W1 increased peanut NHI, NAE and NRE by 2.13%, 78.57% and 25.90%, respectively. Soil nitrate content was highest in the 0-20 cm soil layer after peanut harvest, but decreased with increasing soil depth. The accumulation of soil nitrate N at the 0-60 cm soil depth increased with increasing N application rate. However, supplementary irrigation accelerated the leaching loss of soil nitrate N. It was concluded that W1N2 treatment had the highest yield (6 485.03 kg·hm-2), WUE (2.02 kg·m-3) and irrigation WUE (10.21 kg·m-3). It was therefore recommended as the best combination for water and N to improve peanut yield under drip irrigation with plastic film mulching in semi-arid regions in Western Liaoning Province.
Key words:Peanut/
Rainfed/
Supplemental irrigation/
Nitrogen application rate/
Nitrogen absorption and transfer/
Nitrate nitrogen/
Nitrogen and water use efficiency

HTML全文


图1雨养(a)和测墒补灌(b)条件下施氮量对花生干物质量和荚果产量的影响
Figure1.Effects of nitrogen rate on dry biomass and pod yield of peanut under rainfed (a) and supplemental irrigation (b) conditions


下载: 全尺寸图片幻灯片


图2雨养和测墒补灌条件下施氮量对花生苗期(A)、花针期(B)、结荚期(C)和饱果期(D)各器官氮素积累量和分配的影响
不同小写字母表示0.05水平差异显著。Different lowercase letters indicate significant differences at 0.05 level.
Figure2.Effects of nitrogen rate on amounts of nitrogen accumulation and distribution in plant organs of peanut at seedling (A), pegging (B), podding (C) and pod filling (D) stages under rainfed and supplemental irrigation


下载: 全尺寸图片幻灯片


图3雨养(a)和测墒补灌(b)条件下不同施氮水平下花生叶片氮含量的动态变化
N0、N1、N2和N3分别表示施氮0 kg·hm-2、40 kg·hm-2、60 kg·hm-2和80 kg·hm-2。N0, N1, N2 and N3 represent nitrogen application rates of 0 kg·hm-2, 40 kg·hm-2, 60 kg·hm-2 and 80 kg·hm-2, respectively.
Figure3.Dynamic of nitrogen contents in peanut leaves of different nitrogen rates under rainfed (a) and supplemental irrigation (b) conditions


下载: 全尺寸图片幻灯片


图4雨养和测墒补灌条件下不同施氮水平对收获后0~60 cm土层内土壤硝态氮累积的影响
不同小写字母表示0.05水平差异显著。Different lowercase letters indicate significant differences at 0.05 level.
Figure4.Effect of nitrogen rate on NO3--N accumulation in 0-60 cm soil after peanut harvest under rainfed and supplemental irrigation conditions


下载: 全尺寸图片幻灯片

表1试验年份花生生育期内降水量及有效雨量
Table1.Precipitation and effective precipitation during peanut growth period in the study year
mm
日期(年-月) Date (month-day) 05-14—05-31 06.01—06-30 07-01—07-31 08-01—08-31 09-01—09-17
降水量Precipitation 12.4 42.0 236.9 80.7 7.6
有效降水量Effective precipitation 64.0 24.5 147.8 71.3 7.6


下载: 导出CSV
表2补灌和施氮对花生产量、水分利用效率和氮利用效率的影响
Table2.Effects of supplemental irrigation and nitrogen fertilization on yield, and water and nitrogen use efficiencies of peanut
灌水
Water condition
(W)
施氮量
Nitrogen rate
(N)
产量
Yield
(kg·hm-2)
水分利用效率
Water use efficiency (kg·m-3)
灌溉水利用效率
Irrigation water use efficiency
(kg·m-3)
氮收获系数
Nitrogen harvest index
(%)
氮肥农学利用率
Agronomic nitrogen efficiency
(kg·kg-1)
籽粒氮肥吸收利用率
Nitrogen grain recovery efficiency
(%)
氮肥表观回收率
Nitrogen recovery efficiency
(%)
W0 N0 4 155.63±11.53d 1.63±0.11c 66.38±3.33f
N1 4 783.73±198.33c 1.83±0.18b 74.78±7.60c 15.70±1.25cd 25.22±2.27b 46.93±5.32b
N2 4 903.87±543.75c 1.98±0.12a 74.26±6.54c 20.03±2.12bc 97.19±10.28a 72.83±8.39a
N3 4 951.53±76.76c 1.95±0.13a 73.18±4.97d 9.95±1.30de 19.27±1.64b 12.13±0.91c
W1 N0 4 645.50±54.89c 1.41±0.13d 6.50±0.08c 66.96±6.46f
N1 5 915.40±25.17b 1.76±0.09b 7.58±0.03b 81.22±7.93a 23.99±1.80b 37.92±4.38b 85.66±8.42a
N2 6 485.03±46.57a 2.02±0.17a 10.21±0.07a 78.11±6.77b 38.82±3.49a 81.58±7.33a 41.44±4.18b
N3 5 656.67±155.46c 1.73±0.09b 6.71±0.22c 68.46±5.97e 18.76±1.83c 21.54±1.39b 38.95±3.01b
显著性Significance
N 121.560** 120.662** 395.335** 149.523** 357.184** 39.336** 9.962**
W 195.320** 114.930** 611.974** 142.815** 178.066** 80.194**
W × N 61.408** 46.017** 483.691** 99.082** 90.249** 37.772**
???W0和W1分别为雨养和测墒补充灌; N0、N1、N2和N3分别表示施氮0 kg·hm-2、40 kg·hm-2、60 kg·hm-2和80 kg·hm-2。同列不同小写字母表示在0.05水平上差异显著。**表示极显著P < 0.01。W0 and W1 are treatments of rainfed and supplemental irrigation, respectively. N0, N1, N2 and N3 represent nitrogen application rates of 0 kg·hm-2, 40 kg·hm-2, 60 kg·hm-2 and 80 kg·hm-2, respectively. Different lowercase letters in the same column indicate significant differences at 0.05 level. ** means significant difference at 0.01 level.


下载: 导出CSV

参考文献(42)
[1]王汉中, 殷艳.我国油料产业形势分析与发展对策建议[J].中国油料作物学报, 2014, 36(3):414-421 doi: 10.7505/j.issn.1007-9084.2014.03.020
WANG H Z, YIN Y. Analysis and strategy for oil crop industry in China[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(3):414-421 doi: 10.7505/j.issn.1007-9084.2014.03.020
[2]马文杰.中国食用油安全战略转变:国内条件与国际情景[J].中国工程科学, 2016, 18(1):42-47 http://industry.wanfangdata.com.cn/hk/Detail/Periodical?id=Periodical_zggckx201601007
MA W J. Changes of China's edible oil security strategies:Domestic condition and international situation[J]. Engineer-ing Sciences, 2016, 18(1):42-47 http://industry.wanfangdata.com.cn/hk/Detail/Periodical?id=Periodical_zggckx201601007
[3]朱兆良.中国土壤氮素研究[J].土壤学报, 2008, 45(5):778-783 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trxb200805003&dbname=CJFD&dbcode=CJFQ
ZHU Z L. Research on soil nitrogen in China[J]. Acta Pedo-logica Sinica, 2008, 45(5):778-783 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trxb200805003&dbname=CJFD&dbcode=CJFQ
[4]中华人民共和国国家统计局. 2016中国统计年鉴[M].北京:中国统计出版社, 2016
National Bureau of Statistics of People's Republic of China. China Statistical Yearbook 2016[M]. Beijing:China Statistics Press, 2016
[5]杨吉顺, 李尚霞, 张智猛, 等.施氮对不同花生品种光合特性及干物质积累的影响[J].核农学报, 2014, 28(1):154-160 doi: 10.11869/j.issn.100-8551.2014.01.0154
YANG J S, LI S X, ZHANG Z M, et al. Effect of nitrogen application on canopy photosynthetic and dry matter accu-mulation of peanut[J]. Journal of Nuclear Agricultural Sci-ences, 2014, 28(1):154-160 doi: 10.11869/j.issn.100-8551.2014.01.0154
[6]孙虎, 李尚霞, 王月福, 等.施氮量对不同花生品种积累氮素来源和产量的影响[J].植物营养与肥料学报, 2010, 16(1):153-157 doi: 10.11674/zwyf.2010.0122
SUN H, LI S X, WANG Y F, et al. Effects of nitrogen appli-cation on source of nitrogen accumulation and yields of dif-ferent peanut cultivars[J]. Plant Nutrition and Fertilizer Sci-ence, 2010, 16(1):153-157 doi: 10.11674/zwyf.2010.0122
[7]吕殿青, 同延安, 孙本华, 等.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报, 1998, 4(1):8-15 doi: 10.11674/zwyf.1998.0102
LYU D Q, TONG Y A, SUN B H, et al. Study on effect of nitrogen fertilizer use on environment pollution[J]. Plant Nutrition and Fertilizer Science, 1998, 4(1):8-15 doi: 10.11674/zwyf.1998.0102
[8]王红, 张瑞芳, 周大迈.氮肥引起的面源污染问题研究进展[J].北方园艺, 2011, 35(5):201-203 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bfyy201105080&dbname=CJFD&dbcode=CJFQ
WANG H, ZHANG R F, ZHOU D M. Current situations and research progress of non-point pollution problems caused by nitrogen[J]. Northern Horticulture, 2011, 35(5):201-203 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bfyy201105080&dbname=CJFD&dbcode=CJFQ
[9]孟美杉.氮肥与水体硝酸盐污染及防治措施[J].北方环境, 2012, 25(3):187-188 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nmhb201203065&dbname=CJFD&dbcode=CJFQ
MENG M B. Nitrogen and water nitrate pollution and prevention measures[J]. Northern Environmental, 2012, 25(3):187-188 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nmhb201203065&dbname=CJFD&dbcode=CJFQ
[10]DI H J, CAMERON K C. Nitrate leaching in temperate agroecosystems:Sources, factors and mitigating strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 64(3):237-256 doi: 10.1023/A:1021471531188
[11]姚珍珠, 夏桂敏, 王淑君, 等.水分胁迫和斜发沸石应用对花生叶片光合特性及水分利用的影响[J].中国农村水利水电, 2016, (9):105-110 http://industry.wanfangdata.com.cn/yj/Magazine?magazineId=zgncslsd&yearIssue=2016_9
YAO Z Z, XIA G M, WANG S J, et al. Effects of water stress and clinoptilolite application on leaf photosynthetic charac-teristics and water use efficiency of peanut[J]. China Rural Water and Hydropower, 2016, (9):105-110 http://industry.wanfangdata.com.cn/yj/Magazine?magazineId=zgncslsd&yearIssue=2016_9
[12]李美, 张智猛, 丁红, 等.土壤水分胁迫对花生品质的影响[J].花生学报, 2014, 43(1):28-32 http://www.wenkuxiazai.com/doc/986d2f8052ea551811a68704.html
LI M, ZHANG Z M, DING H, et al. Effects of soil water stress on peanut kernel quality[J]. Journal of Peanut Science, 2014, 43(1):28-32 http://www.wenkuxiazai.com/doc/986d2f8052ea551811a68704.html
[13]袁宇霞, 张富仓, 张燕, 等.滴灌施肥灌水下限和施肥量对温室番茄生长、产量和生理特性的影响[J].干旱地区农业研究, 2013, 31(1):76-83 http://www.cnki.com.cn/Article/CJFDTotal-GHDQ201301016.htm
YUAN Y X, ZHANG F C, ZHANG Y, et al. Effects of irriga-tion threshold and fertilization on growth, yield and physio-logical properties of fertigated tomato in greenhouse[J]. Ag-ricultural Research in the Arid Areas, 2013, 31(1):76-83 http://www.cnki.com.cn/Article/CJFDTotal-GHDQ201301016.htm
[14]冯磊磊, 张富仓, 雷艳, 等.不同生育期灌水和施氮对春玉米农田硝态氮迁移及产量的影响[J].中国农村水利水电, 2010, (4):54-57 https://www.cnki.com.cn/huiyi-ZGNG201008002041.html
FENG L L, ZHANG F C, LEI Y, et al. Effect of irrigation at different growth period and nitrogen fertilizer on transfer of nitrate nitrogen and yield of the spring maize[J]. China Rural Water and Hydropower, 2010, (4):54-57 https://www.cnki.com.cn/huiyi-ZGNG201008002041.html
[15]岳文俊, 张富仓, 李志军, 等.水氮耦合对甜瓜氮素吸收与土壤硝态氮累积的影响[J].农业机械学报, 2015, 46(2):88-96 doi: 10.6041/j.issn.1000-1298.2015.02.014
YUE W J, ZHANG F C, LI Z J, et al. Effects of water and ni-trogen coupling on nitrogen uptake of muskmelon and nitrate accumulation in soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):88-96 doi: 10.6041/j.issn.1000-1298.2015.02.014
[16]姜丽娜, 刘佩, 齐冰玉, 等.不同施氮量及种植密度对小麦开花期氮素积累转运的影响[J].中国生态农业学报, 2016, 24(2):131-141 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016201&flag=1
JIANG L N, LIU P, QI B Y, et al. Effects of different nitrogen application amounts and seedling densities on nitrogen accumulation and transport in winter wheat at anthesis stage[J]. Chinese Journal of Eco-Agriculture, 2016, 24(2):131-141 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016201&flag=1
[17]丁红, 张智猛, 戴良香, 等.水氮互作对花生根系生长及产量的影响[J].中国农业科学, 2015, 48(5):872-881 doi: 10.3864/j.issn.0578-1752.2015.05.05
DING H, ZHANG Z M, DAI L X, et al. Effects of water and nitrogen interaction on peanut root growth and yield[J]. Sci-entia Agricultura Sinica, 2015, 48(5):872-881 doi: 10.3864/j.issn.0578-1752.2015.05.05
[18]夏桂敏, 陈俊秀, 迟道才.膜下滴灌水氮耦合效应对黑花生产量的影响[J].中国农村水利水电, 2016, (3):1-6 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_zgncslsd201603001
XIA G M, CHEN J X, CHI D C. The effects of water and ni-trogen interaction on yield of black peanuts under the condi-tion of mulched drip irrigation[J]. China Rural Water and Hydropower, 2016, (3):1-6 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_zgncslsd201603001
[19]汤笑. 水氮及其互作对花生生理特性和产量品质的影响[D]. 泰安: 山东农业大学, 2007: 51-55 http://cdmd.cnki.com.cn/article/cdmd-10434-2007135500.htm
TANG X. The effect and interaction of irrigation and nitrogen fertilizer on physiological characteristics, yield and quality of peanut[D]. Tai'an:Shandong Agricultural University, 2007:51-55 http://cdmd.cnki.com.cn/article/cdmd-10434-2007135500.htm
[20]XU Z Z, YU Z W, WANG D, et al. Nitrogen accumulation and translocation for winter wheat under different irrigation regimes[J]. Journal of Agronomy and Crop Science, 2010, 191(6):439-449 http://europepmc.org/abstract/AGR/IND43780404
[21]PLAUT Z, BUTOW B J, BLUMENTHAL C S, et al. Transport of dry matter into developing wheat kernels and its contri-bution to grain yield under post-anthesis water deficit and elevated temperature[J]. Field Crops Research, 2004, 86(2):185-198 http://www.sciencedirect.com/science/article/pii/S0378429003001898
[22]王小龙, 孟强, 谢永乐, 等.施氮水平对夏播花生氮素及干物质积累的影响[J].花生学报, 2015, 44(3):14-19 http://www.wenkuxiazai.com/doc/8cac39b8a417866fb94a8e4b.html
WANG X L, MENG Q, XIE Y L, et al. Effects of nitrogen fertilizer rate on nitrogen and dry matter accumulation in summer peanut[J]. Journal of Peanut Science, 2015, 44(3):14-19 http://www.wenkuxiazai.com/doc/8cac39b8a417866fb94a8e4b.html
[23]王才斌, 吴正锋, 刘俊华, 等.不同供N水平对花生硝酸盐累积与分布的影响[J].植物营养与肥料学报, 2007, 13(5):915-919 doi: 10.11674/zwyf.2007.0524
WANG C B, WU Z F, LIU J H, et al. Influence of N rates on nitrate accumulation and distribution in peanut[J]. Plant Nu-trition and Fertilizer Science, 2007, 13(5):915-919 doi: 10.11674/zwyf.2007.0524
[24]刘小刚, 张富仓, 杨启良, 等.石羊河流域武威绿洲春玉米水氮耦合效应[J].应用生态学报, 2013, 24(8):2222-2228 http://www.cqvip.com/QK/90626A/201308/46811153.html
LIU X G, ZHANG F C, YANG Q L, et al. Coupling effect of water and nitrogen on spring maize in Wuwei Oasis of Shiyang River Basin, Northwest China[J]. Chinese Journal of Applied Ecology, 2013, 24(8):2222-2228 http://www.cqvip.com/QK/90626A/201308/46811153.html
[25]GHEYSARI M, MIRLATIFI S M, BANNAYAN M, et al. In-teraction of water and nitrogen on maize grown for silage[J]. Agricultural Water Management, 2009, 96(5):809-821 doi: 10.1016/j.agwat.2008.11.003
[26]邢英英, 张富仓, 张燕, 等.滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响[J].中国农业科学, 2015, 48(4):713-726 doi: 10.3864/j.issn.0578-1752.2015.04.09
XING Y Y, ZHANG F C, ZHANG Y, et al. Effect of irrigation and fertilizer coupling on greenhouse tomato yield, quality, water and nitrogen utilization under fertigation[J]. Scientia Agricultura Sinica, 2015, 48(4):713-726 doi: 10.3864/j.issn.0578-1752.2015.04.09
[27]袁昌梅, 罗卫红, 张生飞, 等.温室网纹甜瓜发育模拟模型研究[J].园艺学报, 2005, 32(2):262-267 http://www.cqvip.com/qk/90024X/200502/15958107.html
YUAN C M, LUO W H, ZHANG S F, et al. Simulation of the development of greenhouse muskmelon[J]. Acta Horticulturae Sinica, 2005, 32(2):262-267 http://www.cqvip.com/qk/90024X/200502/15958107.html
[28]焦雯珺, 闵庆文, 林焜, 等.植物氮素营养诊断的进展与展望[J].中国农学通报, 2006, 22(12):351-355 doi: 10.3969/j.issn.1000-6850.2006.12.083
JIAO W J, MIN Q W, LIN K, et al. Progress and perspective on nutrition diagnosis of plant nitrogen[J]. Chinese Agricultural Science Bulletin, 2006, 22(12):351-355 doi: 10.3969/j.issn.1000-6850.2006.12.083
[29]LEIGH R A, JOHNSTON A B. Nitrogen concentrations in field-grown spring barley:An examination of the usefulness of expressing concentrations on the basis of tissue water[J]. The Journal of Agricultural Science, 1985, 105(2):397-406 doi: 10.1017/S0021859600056458
[30]ERTEK A, ?ENSOY S, Kü?üKYUMUK C, et al. Irrigation frequency and amount affect yield components of summer squash (Cucurbita pepo L.)[J]. Agricultural Water Manage-ment, 2004, 67(1):63-76 doi: 10.1016/j.agwat.2003.12.004
[31]FABEIRO C, DE SANTA OLALLA F M, DE JUAN J A. Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate[J]. Agricultural Water Management, 2002, 54(2):93-105 doi: 10.1016/S0378-3774(01)00151-2
[32]ANGHINONI I, BARBER S A. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply[J]. Agronomy Journal, 1980, 72(4):685-688 doi: 10.2134/agronj1980.00021962007200040028x
[33]ROBINSON D. The responses of plants to non-uniform supplies of nutrients[J]. New Phytologist, 1994, 127(4):635-674 doi: 10.1111/nph.1994.127.issue-4
[34]FRITSCHI F B, ROBERTS B A, TRAVIS R L, et al. Response of irrigated Acala and Pima cotton to nitrogen fertilization[J]. Agronomy Journal, 2003, 95(1):133-146 doi: 10.2134/agronj2003.0133
[35]李世清, 王瑞军, 李紫燕, 等.半干旱半湿润农田生态系统不可忽视的土壤氮库——土壤剖面中累积的硝态氮[J].干旱地区农业研究, 2004, 22(4):1-13 http://www.irgrid.ac.cn/handle/1471x/206321?mode=full&submit_simple=Show+full+item+record
LI S Q, WANG R J, LI Z Y, et al. Soil nitrogen pool not to be ignored residual NO3--N accumulated in soil profile in semi-arid and semihumid agro-ecological system[J]. Agricultural Research in the Arid Areas, 2004, 22(4):1-13 http://www.irgrid.ac.cn/handle/1471x/206321?mode=full&submit_simple=Show+full+item+record
[36]周顺利, 张福锁, 王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ.冬小麦[J].生态学报, 2001, 21(11):1782-1789 doi: 10.3321/j.issn:1000-0933.2001.11.006
ZHOU S L, ZHANG F S, WANG X R. Studies on the spa-tio-temporal variations of soil NO3--N and apparent budget of soil nitrogenⅠ. Winter wheat[J]. Acta Ecologica Sinica, 2001, 21(11):1782-1789 doi: 10.3321/j.issn:1000-0933.2001.11.006
[37]周顺利, 张福锁, 王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏Ⅱ.夏玉米[J].生态学报, 2002, 22(1):48-53 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stxb200201006
ZHOU S L, ZHANG F S, WANG X R. The spatio-temporal variations of soil NO3--N and apparent budget of soil nitrogen Ⅱ. Summer maize[J]. Acta Ecologica Sinica, 2002, 22(1):48-53 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stxb200201006
[38]郑永美, 冯昊, 吴正锋, 等.氮肥调控对土壤供氮特征及花生氮素吸收利用的影响[J].中国油料作物学报, 2016, 38(4):481-486 doi: 10.7505/j.issn.1007-9084.2016.04.011
ZHENG Y M, FENG H, WU Z F, et al. Effect of nitrogen fertilizer regulation on soil nitrogen supplying characteristics and utilization efficiency of nitrogen in peanut[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(4):481-486 doi: 10.7505/j.issn.1007-9084.2016.04.011
[39]张福锁.最佳养分管理技术列单[M].北京:中国农业大学出版社, 2010:17 http://www.bookask.com/book/483893.html
ZHANG F S. The Best Nutrient Management Technology List[M]. Beijing:China Agricultural University Press, 2010:17 http://www.bookask.com/book/483893.html
[40]WU Q, XIA G M, CHEN T T, et al. Impacts of nitrogen and zeolite managements on yield and physicochemical properties of rice grain[J]. International Journal of Agricultural and Bi-ological Engineering, 2016, 9(5):93-100 https://www.researchgate.net/profile/Taotao_Chen5/publication/311389107_Impacts_of_nitrogen_and_zeolite_managements_on_yield_and_physicochemical_properties_of_rice_grain/links/5908817b458515ebb4908048/Impacts-of-nitrogen-and-zeolite-managements-on-yield-and-physicochemical-properties-of-rice-grain.pdf
[41]WU Q, XIA G M, CHEN T T, et al. Nitrogen use and rice yield formation response to zeolite and nitrogen coupling effects:Enhancement in nitrogen use efficiency[J]. Journal of Soil Science and Plant Nutrition, 2016, 16(4):999-1009 http://www.scielo.cl/pdf/jsspn/v16n4/aop7316.pdf
[42]ZOTARELLI L, DUKES M D, SCHOLBERG J M, et al. Ni-trogen and water use efficiency of zucchini squash for a plastic mulch bed system on a sandy soil[J]. Scientia Horticulturae, 2008, 116(1):8-16 doi: 10.1016/j.scienta.2007.10.029

相关话题/土壤 物质 农业 生态 图片