秦晓波2,,,
吕成文1,
李玉娥2,
吴红宝1, 2,
廖育林3,
鲁艳红3
1.安徽师范大学国土资源与旅游学院 芜湖 241000
2.中国农业科学院农业环境与可持续发展研究所/农业部农业环境重点实验室 北京 100081
3.湖南省土壤肥料研究所 长沙 410125
基金项目: 国家自然科学基金面上项目41475129
国家自然科学基金面上项目41775157
国家发改委CDM基金赠款项目2014081
详细信息
作者简介:赵强, 主要从事小流域氮循环及其稳定同位素溯源研究。E-mail:2459407179@qq.com
通讯作者:秦晓波, 主要从事农业生态系统温室气体减排及氮碳循环研究。E-mail:qinxiaobo@caas.cn
中图分类号:X522计量
文章访问数:1042
HTML全文浏览量:3
PDF下载量:1122
被引次数:0
出版历程
收稿日期:2017-06-09
录用日期:2017-08-18
刊出日期:2018-01-01
Distribution of nitrogen and its stable isotope from a small agricultural catchment in the subtropics
ZHAO Qiang1, 2,,QIN Xiaobo2,,,
LYU Chengwen1,
LI Yu'e2,
WU Hongbao1, 2,
LIAO Yulin3,
LU Yanhong3
1. College of Territorial Resources and Tourism, Anhui Normal University, Wuhu 241000, China
2. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, Ministry of Agriculture, Beijing 100081, China
3. Soil and Fertilizer Institute of Hunan Province, Changsha 410125, China
Funds: the National Natural Science Foundation of China41475129
the National Natural Science Foundation of China41775157
the China National Development and Reform Commission CDM Foundation2014081
More Information
Corresponding author:QIN Xiaobo, E-mail: qinxiaobo@caas.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为控制流域氮素养分流失、改善流域水体环境,以亚热带典型农业小流域脱甲河为研究对象,对表层水体铵态氮(NH4+-N)、硝态氮(NO3--N)浓度和水体硝态氮δ15N(δ15N-NO3-)、沉积物有机质δ15N(δ15N-Org)浓度进行了连续试验观测,分析氮素浓度及其稳定同位素值的时空特征,探讨影响氮素分布的环境因子及水体NO3-和沉积物有机质氮素的可能来源。结果表明:水体NO3--N浓度明显高于NH4+-N,均值分别为1.62 mg·L-1和0.90 mg·L-1,并且分别在6月、8月及冬季较高;城镇区和农田区水体NH4+-N浓度与其他类型区差异显著(P < 0.05),并且显著高于其他水体;NO3--N浓度在城镇区、农田区及山间林地区较高,水库区较低。支流NH4+-N浓度高于干流,均表现为冬季 > 春季 > 夏季 > 秋季;干流、支流NO3--N浓度分别表现为冬季 > 夏季 > 秋季 > 春季、秋季 > 冬季 > 夏季 > 春季。源头和出口处水体均表现为NO3--N浓度高于NH4+-N,源头处氮素浓度低于出口处。水体δ15N-NO3-及底泥δ15N-Org值分布范围分别为-19.87‰~8.11‰和-0.69‰~6.51‰,水体δ15N-NO3-最高值在Ⅲ级河段,最低值出现于Ⅳ级河段,各级河段间水体δ15N-NO3- 11月差异较小,而1、2月差异明显;河流底泥δ15N-Org最高值也位于Ⅲ级河段,而最低值则在Ⅰ级河段,Ⅲ、Ⅳ级河段δ15N-Org值随时间变化趋势较为一致,Ⅰ、Ⅱ级河段δ15N-Org最小值出现于1月。总之,脱甲河水体存在氮素污染现象且以外源输入为主,水体氮素来源主要为土壤有机质、人工合成肥料及陆源有机质,开展流域氮素分布及来源研究对认识流域尺度氮污染物的源解析具有一定科学意义。
关键词:脱甲河/
亚热带/
农业小流域/
氮污染/
氮同位素/
氮素来源
Abstract:The Tuojia River basin, a typical agricultural catchment in the subtropics, was investigated in this study to clarify the spatial and temporal distribution characteristics of nitrogen and the related stable isotopes in water system of the catchment. The environmental factors influencing nitrogen distribution and the sources of nitrate nitrogen and sediment organic matter nitrogen were also determined. The concentrations of NH4+-N and NO3--N in surface water were analyzed in a continuous monitoring experiment. At the same time, the characteristics of δ15N-NO3- in water and of δ15N-Org in sediments were determined. Results showed that the concentration of NO3--N was significantly higher than that of NH4+-N in the river, with respective mean values of 1.62 mg·L-1 and 0.90 mg·L-1. Higher values occurred in June, August and winter periods. NH4+-N concentrations in urban and farmland regions were significantly different (P < 0.05) from other areas and obviously higher than that in other water bodies. The concentrations of NO3--N in urban, farmland and forest areas were higher than in other regions, with lower values in reservoir areas. The order of seasonal variations in NH4+-N concentration in mainstream and tributary flows was winter > spring > summer > autumn, while that of NO3--N concentration was winter > summer > autumn > spring in mainstream, and autumn > winter > summer > spring in tributary flows. The concentrations of NO3--N of mainstream and tributary flows were high but similar, and NH4+-N concentration in tributary flow was higher than that in mainstream flow. At source and estuary, NO3--N concentration was higher than NH4+-N concentration. Also, nitrogen concentration of at source was lower than that in estuaries. The distributions of δ15N values (δ15N-NO3-) in the river and δ15N in sediment organic matters (δ15N-Org) were respectively -19.87‰ to 8.11‰ and -0.69‰ to 6.51‰. While the highest value of δ15N-NO3- was in the reach Ⅲ, the lowest was in the reach Ⅳ. The difference in δ15N-NO3- among different reaches was small in November, but was obvious in January and February. While the highest value of δ15N-Org in river sediment was also in the reach, the lowest was in the reach Ⅰ. The variation trend in δ15N-Org in the reach Ⅲ and reach Ⅳ was consistent with change in research time. However, the lowest δ15N-Org was in January in the reach Ⅰ and Ⅱ. The research indicated that there was nitrogen pollution in Tuojia River basin, and exogenous nitrogen was the priority in the region. The main environmental factors that influenced water pollution in the region included domestic sewage, industrial wastewater, farmland nitrogen and livestock/poultry waste. In addition, the sources of nitrogen in water bodies and sediments were mainly soil organic matter, synthetic fertilizers and terrestrial organic matter. The source of nitrogen in river systems was consistent with the identified environmental factors that caused nitrogen pollution. The study of the distributions and sources of nitrogen in the basin provided scientific basis for controlling nitrogen loss in the catchment, guiding agricultural production and improving water environment in the study area.
Key words:Tuojia River basin/
Subtropics/
Agricultural basin/
Nitrogen pollution/
Nitrogen isotope/
Nitrogen source
HTML全文
图1脱甲河采样点分布
Figure1.Distribution of sampling sites in the Tuojia River basin
下载: 全尺寸图片幻灯片
图2脱甲河水体NH4+-N和NO3--N浓度变化特征
Figure2.Variation characteristics of NH4+-N and NO3--N concentrations in Tuojia River
下载: 全尺寸图片幻灯片
图3研究期间不同类型区水体的NH4+-N和NO3--N浓度(a)及不同季节不同类型区NH4+-N(b)和NO3--N(c)浓度变化特征
图 3a中不同字母表示不同类型区水体NH4+-N、NO3--N浓度差异显著(P < 0.05)。图 3b、3c中不同字母表示同一类型区水体四季NH4+-N、NO3--N浓度差异显著(P < 0.05)。Different letters in the figure 3a indicate significant differences at 0.05 level in NH4+-N, NO3--N concentration among different land use types. Different letters in the figure 3b and 3c indicate significant differences at 0.05 level in NH4+-N, NO3--N concentration among four seasons for the same land use type.
Figure3.Concentrations of NH4+-N and NO3--N during the study period (a) and seasonal concentration variations of NH4+-N (b) and NO3--N (c) of water body of different land use types
下载: 全尺寸图片幻灯片
图4脱甲河干流和支流水体NH4+-N和NO3--N季节变化特征
图中不同小、大写字母分别表示干流、支流四季差异显著(P < 0.05)。Different lowercase and capital letters indicate significant differences at 0.05 level among four seasons for mainstream and tributaries, respectively.
Figure4.Seasonal variation characteristics of NH4+-N and NO3--N concentrations of mainstream and tributaries of Tuojia River
下载: 全尺寸图片幻灯片
图5脱甲河源头和河口水体NH4+-N和NO3--N季节变化
图中不同小、大写字母分别表示源头、出口四季差异显著(P < 0.05)。Different lowercase and capital letters indicate significant differences at 0.05 level among four seasons for source and estuary, respectively.
Figure5.Seasonal variation characteristics of NH4+-N and NO3--N concentrations of source and estuary in Tuojia River
下载: 全尺寸图片幻灯片
图6脱甲河水体(a)和底泥有机质(b)的δ15N值变化特征
图中A7、B3、A5和A1分别代表Ⅰ、Ⅱ、Ⅲ和Ⅳ级河段。In the figure, A7, B3, A5 and A1 represent the reaches Ⅰ, Ⅱ, Ⅲ and Ⅳ of Tuojia River, respectively.
Figure6.Variation characteristics of δ15N values of water body (a) and organic matters of sediments (b) of Tuojia River
下载: 全尺寸图片幻灯片
图7脱甲河水体、沉积物及常见氮素来源的δ15N值分布[44-47]
图中正方形和棱形分别代表各常见氮素来源δ15N的高、低值, 圆形为本试验观测的水体和沉积物有机质的δ15N值。In the figure, the squares and prisms represent high and low values of δ15N of the common nitrogen sources, respectively; the circles represent the δ15N values of the water body and organic matter of the sediments observed in this experiment.
Figure7.Distribution of δ15N values of the water body, sediments and common nitrogen sources in Tuojia River[44-47]
下载: 全尺寸图片幻灯片
表1脱甲河干支流、源头及河口NH4+-N和NO3--N浓度
Table1.Concentrations of NH4+-N and NO3--N of mainstream, tributaries, source and estuary of Tuojia River
干流 Mainstream | 支流 Tributaries | 源头 Source | 出口 Estuary | |
NH4+-N (mg·L-1) | 0.79±0.06 | 1.24±0.12 | 0.50±0.15 | 0.73±0.06 |
NO3--N (mg·L-1) | 1.57±0.06 | 1.53±0.07 | 0.94±0.10 | 1.60±0.10 |
下载: 导出CSV
表2其他流域水体NH4+-N、NO3--N浓度
Table2.Concentrations of NH4+-N and NO3--N in other river basins
流域River basin | NH4+-N (mg·L-1) | NO3--N (mg·L-1) | 文献来源Source of literature |
东江Dongjiang River | 0.30±0.16 | 0.87±0.33 | [9] |
汉江Hanjiang River | 1.04 | 1.75 | [29] |
赣江Ganjiang River | 0.48 | 1.64 | [30] |
丹江口Danjiangkou area | 0.71 | — | [33] |
子牙河Ziya River | 24.87 | 2.34 | [34] |
海河Haihe River | 4.25 | 1.28 | [35] |
鄱阳湖Poyanghu | 0.47 | 0.98 | [31] |
太湖Taihu | 0.75±0.18 | 2.94±0.64 | [32] |
脱甲河Tuojia River | 1.26±1.03 | 1.43±0.55 | [23] |
脱甲河Tuojia River | 0.63±1.70 | 1.55±0.03 | [36] |
脱甲河Tuojia River | 0.90±0.10 | 1.62±0.16 | 本研究This research |
下载: 导出CSV
参考文献
[1] | LENIHAN H S, PETERSON C H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs[J]. Ecological Applications, 1998, 8(1):128-140 doi: 10.1890/1051-0761(1998)008[0128:HHDTFD]2.0.CO;2 |
[2] | LIU T, WANG F, MICHALSKI G, et al. Using 15N, 17Oand 18O to determine nitrate sources in the Yellow River, China[J]. Environmental Science & Technology, 2013, 47(23):13412-13421 doi: 10.1021/ac0256282 |
[3] | CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of earth's nitrogen cycle[J]. Science, 2010, 330(6001):192-196 doi: 10.1126/science.1186120 |
[4] | POVILAITIS A, ?ILEIKA A, DEELSTRA J, et al. Nitrogen losses from small agricultural catchments in Lithuania[J]. Agriculture, Ecosystems & Environment, 2014, 198:54-64 https://www.deepdyve.com/lp/elsevier/nitrogen-losses-from-small-agricultural-catchments-in-lithuania-Z0QHYkkzow |
[5] | SAVAGE C, LEAVITT P R, ELMGREN R. Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea[J]. Limnology and Oceanography, 2010, 55(3):1033-1046 doi: 10.4319/lo.2010.55.3.1033 |
[6] | UDAWATTA R P, MOTAVALLI P P, GARRETT H E, et al. Nitrogen losses in runoff from three adjacent agricultural watersheds with claypansoils[J]. Agriculture, Ecosystems & Environment, 2006, 117(1):39-48 https://www.researchgate.net/publication/223224842_Nitrogen_losses_in_runoff_from_three_adjacent_agricultural_watersheds_with_claypan_soils |
[7] | ZHAO G J, H?RMANN G, FOHRER N, et al. Development and application of a nitrogen simulation model in a data scarce catchment in South China[J]. Agricultural Water Management, 2011, 98(4):619-631 doi: 10.1016/j.agwat.2010.10.022 |
[8] | 朱媛媛, 刘琰, 周北海, 等.丹江口水库流域氮素时空分布特征[J].中国环境监测, 2016, 32(2):50-57 http://www.cnki.com.cn/Article/CJFDTotal-IAOB201602008.htm ZHU Y Y, LIU Y, ZHOU B H, et al. The temporal and spatial distribution of nitrogen in Danjiangkou Reservoir water-shed[J]. Environmental Monitoring in China, 2016, 32(2):50-57 http://www.cnki.com.cn/Article/CJFDTotal-IAOB201602008.htm |
[9] | 廖剑宇, 彭秋志, 郑楚涛, 等.东江干支流水体氮素的时空变化特征[J].资源科学, 2013, 35(3):505-513 http://www.cqvip.com/QK/90831A/201303/45082973.html LIAO J Y, PENG Q Z, ZHENG C T, et al. Temporal-spatial distribution of nitrogen in the Dongjiang River and its tribu-taries[J]. Resources Science, 2013, 35(3):505-513 http://www.cqvip.com/QK/90831A/201303/45082973.html |
[10] | 赵海超, 王圣瑞, 焦立新, 等. 2010年洱海全湖氮负荷时空分布特征[J].环境科学研究, 2013, 26(4):389-395 http://www.cqvip.com/QK/92199X/201304/45421581.html ZHAO H C, WANG S R, JIAO L X, et al. Characteristics of temporal and spatial distribution of nitrogen loading in Erhai Lake in 2010[J]. Research of Environmental Sciences, 2013, 26(4):389-395 http://www.cqvip.com/QK/92199X/201304/45421581.html |
[11] | 陈法锦, 李学辉, 贾国东.氮氧同位素在河流硝酸盐研究中的应用[J].地球科学进展, 2007, 22(12):1251-1257 doi: 10.3321/j.issn:1001-8166.2007.12.005 CHEN F J, LI X H, JIA G D. The application of nitrogen and oxygen isotopes in the study of nitrate in rivers[J]. Advances in Earth Science, 2007, 22(12):1251-1257 doi: 10.3321/j.issn:1001-8166.2007.12.005 |
[12] | 梁越, 肖化云, 刘小真, 等. δ13C和δ15N指示不同生态类型湖泊无机氮及有机质来源[J].湖泊科学, 2014, 26(5):691-697 doi: 10.18307/2014.0506 LIANG Y, XIAO H Y, LIU X Z, et al. Identifying provenance of inorganic nitrogen and organic matter in different ecotype lakes using δ13C and δ15N[J]. Journal of Lake Sciences, 2014, 26(5):691-697 doi: 10.18307/2014.0506 |
[13] | COLE M L, KROEGER K D, McCLELLAND J W, et al. Ef-fects of watershed land use on nitrogen concentrations and δ15N in groundwater[J]. Biogeochemistry, 2006, 77(2):199-215 doi: 10.1007/s10533-005-1036-2 |
[14] | 汪智军, 杨平恒, 旷颖仑, 等.基于15N同位素示踪技术的地下河硝态氮来源时空变化特征分析[J].环境科学, 2009, 30(12):3548-3554 doi: 10.3321/j.issn:0250-3301.2009.12.017 WANG Z J, YANG P H, KUANG Y L, et al. Temporal and spatial variations of the nitrate-nitrogen sources in an under-ground river using 15N isotope technique[J]. Environmental Science, 2009, 30(12):3548-3554 doi: 10.3321/j.issn:0250-3301.2009.12.017 |
[15] | 魏秀国, 沈承德, 孙彦敏, 等.珠江水体悬浮物颗粒有机碳稳定同位素组成及分布特征[J].地理科学, 2003, 23(4):471-476 http://edu.wanfangdata.com.cn/Periodical/Detail/dlkx200304014 WEI X G, SHEN C D, SUN Y M, et al. Characteristic of the organic carbon-isotope composition and contribution of suspended matter in the Pearl River[J]. Scientia Geographica Sinica, 2003, 23(4):471-476 http://edu.wanfangdata.com.cn/Periodical/Detail/dlkx200304014 |
[16] | 吴莹, 张经, 张再峰, 等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋与湖沼, 2002, 33(5):546-552 http://www.oalib.com/paper/4672100 WU Y, ZHANG J, ZHANG Z F, et al. Seasonal variability of stable carbon and nitrogen isotope of suspended particulate matter in the Changjiang River[J]. Oceanologiaet Limnologia Sinica, 2002, 33(5):546-552 http://www.oalib.com/paper/4672100 |
[17] | 王毛兰, 赖建平, 胡珂图, 等.鄱阳湖表层沉积物有机碳、氮同位素特征及其来源分析[J].中国环境科学, 2014, 34(4):1019-1025 http://www.doc88.com/p-5728148699632.html WANG M L, LAI J P, HU K T, et al. Compositions and sources of stable organic carbon and nitrogen isotopes in surface sediments of Poyang Lake[J]. China Environmental Science, 2014, 34(4):1019-1025 http://www.doc88.com/p-5728148699632.html |
[18] | 倪兆奎, 王圣瑞, 赵海超, 等.洱海入湖河流水体悬浮颗粒物有机碳氮来源特征[J].环境科学研究, 2013, 26(3):287-293 http://manu36.magtech.com.cn/Jweb_zghjkx/CN/abstract/abstract13808.shtml NI Z K, WANG S R, ZHAO H C, et al. The sources of organic carbon and nitrogen of suspended particulate matter in inflow river of Erhai Lake[J]. Research of Environmental Sciences, 2013, 26(3):287-293 http://manu36.magtech.com.cn/Jweb_zghjkx/CN/abstract/abstract13808.shtml |
[19] | 刘姝, 孔繁翔, 蔡元锋, 等.巢湖四条入湖河流硝态氮污染来源的氮稳定同位素解析[J].湖泊科学, 2012, 24(6):952-956 doi: 10.18307/2012.0619 LIU S, KONG F X, CAI Y F, et al. Nitrogen stable isotope study on nitrate nitrogen pollution of four in flowing rivers of Lake Chaohu[J]. Journal of Lake Sciences, 2012, 24(6):952-956 doi: 10.18307/2012.0619 |
[20] | 郭凯, 赵文, 王珊, 等.白石水库颗粒有机物及沉积物中碳、氮稳定同位素的空间分布特征[J].环境科学, 2015, 36(12):4430-4435 http://www.oalib.com/paper/4740416 GUO K, ZHAO W, WANG S, et al. Spatial distribution of stable isotopes in particle organic matters and sediments from Baishi Reservoirs[J]. Environmental Science, 2015, 36(12):4430-4435 http://www.oalib.com/paper/4740416 |
[21] | HE B, KANAE S, OKI T, et al. Assessment of global nitrogen pollution in rivers using an integrated biogeochemical mod-eling framework[J]. Water Research, 2011, 45(8):2573-2586 doi: 10.1016/j.watres.2011.02.011 |
[22] | BUTMAN D, RAYMOND P A. Significant efflux of carbon dioxide from streams and rivers in the United States[J]. Na-ture Geoscience, 2011, 4(12):839-842 doi: 10.1038/ngeo1294 |
[23] | 张羽, 秦晓波, 廖育林, 等.亚热带农业小流域水系N2O扩散通量及其影响因素[J].农业工程学报, 2016, 32(7):215-223 doi: 10.11975/j.issn.1002-6819.2016.07.030 ZHANG Y, QIN X B, LIAO Y L, et al. Diffusion flux of N2O and its influencing factor in agricultural watershed of sub-tropics[J]. Transactions of the CSAE, 2016, 32(7):215-223 doi: 10.11975/j.issn.1002-6819.2016.07.030 |
[24] | YUAN H Z, ZHU Z K, LIU S L, et al. Microbial utilization of rice root exudates:13C labeling and PLFA composition[J]. Biology and Fertility of Soils, 2016, 52(5):615-627 doi: 10.1007/s00374-016-1101-0 |
[25] | GEARING J N. The use of stable isotope ratios for tracing the nearshore-offshore exchange of organic matter[M]//Jansson B O. Coastal-Offshore Ecosystem Interactions. Berlin Heidelberg:Springer, 1988, 22:69-101 |
[26] | HEATON T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:A review[J]. Chemical Geology:Isotope Geoscience Section, 1986, 59:87-102 doi: 10.1016/0168-9622(86)90059-X |
[27] | RUIZ-FERNáNDEZ A C, HILLAIRE-MARCEL C, GHALEB B, et al. Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico:Geochemical evidence from organic matter and nutrients[J]. Environmental Pollution, 2002, 118(3):365-377 doi: 10.1016/S0269-7491(01)00287-1 |
[28] | SIGMAN D M, ALTABET M A, FRANCOIS R, et al. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments[J]. Paleoceanography, 1999, 14(2):118-134 doi: 10.1029/1998PA900018 |
[29] | 刘智峰.汉江上游水体氮素污染特征[J].水土保持通报, 2014, 34(5):317-321 http://www.cqvip.com/QK/95720X/201405/663673919.html LIU Z F. Nitrogen pollution characteristics in upstream of Hanjiang River[J]. Bulletin of Soil and Water Conservation, 2014, 34(5):317-321 http://www.cqvip.com/QK/95720X/201405/663673919.html |
[30] | 王鹏, 齐述华, 袁瑞强.赣江流域土地利用方式对无机氮的影响[J].环境科学学报, 2015, 35(3):826-835 http://d.wanfangdata.com.cn/Periodical_hjkxxb201503029.aspx WANG P, QI S H, YUAN R Q. Investigation of the impacts of land use on inorganic nitrogen in the Ganjiang River[J]. Acta Scientiae Circumstantiae, 2015, 35(3):826-835 http://d.wanfangdata.com.cn/Periodical_hjkxxb201503029.aspx |
[31] | 刘倩纯, 余潮, 张杰, 等.鄱阳湖水体水质变化特征分析[J].农业环境科学学报, 2013, 32(6):1232-1237 https://www.wenkuxiazai.com/doc/a2e6072069dc5022aaea00a8-3.html LIU Q C, YU C, ZHANG J, et al. Water quality variations in Poyang Lake[J]. Journal of Agro-Environment Science, 2013, 32(6):1232-1237 https://www.wenkuxiazai.com/doc/a2e6072069dc5022aaea00a8-3.html |
[32] | 邓建才, 陈桥, 翟水晶, 等.太湖水体中氮、磷空间分布特征及环境效应[J].环境科学, 2008, 29(12):3382-3386 doi: 10.3321/j.issn:0250-3301.2008.12.015 DENG J C, CHEN Q, ZHAI S J, et al. Spatial distribution characteristics and environmental effect of N and P in water body of Taihu Lake[J]. Environmental Science, 2008, 29(12):3382-3386 doi: 10.3321/j.issn:0250-3301.2008.12.015 |
[33] | 王书航, 王雯雯, 姜霞, 等.丹江口水库水体氮的时空分布及入库通量[J].环境科学研究, 2016, 29(7):995-1005 doi: 10.3969/j.issn.1003-6482.2008.02.017 WANG S H, WANG W W, JIANG X, et al. Spatial and tem-poral distribution and flux of nitrogen in water of Danjiang-kou Reservoir[J]. Research of Environmental Sciences, 2016, 29(7):995-1005 doi: 10.3969/j.issn.1003-6482.2008.02.017 |
[34] | 赵钰, 单保庆, 张文强, 等.子牙河水系河流氮素组成及空间分布特征[J].环境科学, 2014, 35(1):143-149 http://mall.cnki.net/magazine/magadetail/HJKZ201401.htm ZHAO Y, SHAN B Q, ZHANG W Q, et al. Forms and spatial distribution characteristics of nitrogen in Ziya River Basin[J]. Environmental Science, 2014, 35(1):143-149 http://mall.cnki.net/magazine/magadetail/HJKZ201401.htm |
[35] | 荣楠, 单保庆, 林超, 等.海河流域河流氮污染特征及其演变趋势[J].环境科学学报, 2016, 36(2):420-427 http://d.g.wanfangdata.com.cn/Periodical_hjkxxb201602006.aspx RONG N, SHAN B Q, LIN C, et al. Evolution of the nitrogen pollution in the Hai River Basin[J]. Acta Scientiae Circum-stantiae, 2016, 36(2):420-427 http://d.g.wanfangdata.com.cn/Periodical_hjkxxb201602006.aspx |
[36] | 吴红宝, 秦晓波, 吕成文, 等.脱甲河流域水体溶解有机碳时空分布特征[J].农业环境科学学报, 2016, 35(10):1968-1976 doi: 10.11654/jaes.2016-0495 WU H B, QIN X B, LYU C W, et al. Spatial and temporal distribution of dissolved organic carbon in Tuojia River wa-tershed[J]. Journal of Agro-Environment Science, 2016, 35(10):1968-1976 doi: 10.11654/jaes.2016-0495 |
[37] | 宋立芳, 王毅, 吴金水, 等.水稻种植对中亚热带红壤丘陵区小流域氮磷养分输出的影响[J].环境科学, 2014, 35(1):150-156 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjkz201401023&dbname=CJFD&dbcode=CJFQ SONG L F, WANG Y, WU J S, et al. Impact of rice agriculture on nitrogen and phosphorus exports in streams in hilly red soil Earth region of central subtropics[J]. Environmental Science, 2014, 35(1):150-156 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjkz201401023&dbname=CJFD&dbcode=CJFQ |
[38] | 李永梅, 杜彩琼, 林春苗, 等.铵态氮肥施入土壤中的转化[J].云南农业大学学报, 2003, 18(1):26-29 http://www.cqvip.com/QK/96132X/200810/28343345.html LI Y M, DU C Q, LIN C M, et al. The transformation of am-monium-nitrogen in the soil after fertilizer application[J]. Journal of Yunnan Agricultural University, 2003, 18(1):26-29 http://www.cqvip.com/QK/96132X/200810/28343345.html |
[39] | 国家环境保护总局, 国家质量监督检验检疫总局. GB 3838-2002地表水环境质量标准[S]. 北京: 中国环境科学出版社, 2002 State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB 3838-2002 Environmental Quality Standards for Surface Water[S]. Bei-jing:China Environmental Science Press, 2002 |
[40] | 高懋芳. 小清河流域农业面源氮素污染模拟研究[D]. 北京: 中国农业科学院, 2011 http://cdmd.cnki.com.cn/article/cdmd-82101-1011158936.htm GAO M F. Simulation study on nitrogen pollution of agricultural facial source in Xiaoqing River watershed[D]. Beijing:Chinese Academy of Agricultural Sciences, 2011 http://cdmd.cnki.com.cn/article/cdmd-82101-1011158936.htm |
[41] | WANG Y, LI Y, LIU X L, et al. Relating land use patterns to stream nutrient levels in red soil agricultural catchments in subtropical central China[J]. Environmental Science and Pollution Research, 2014, 21(17):10481-10492 doi: 10.1007/s11356-014-2921-9 |
[42] | ONGLEY E D, ZHANG X L, TAO Y. Current status of agri-cultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5):1159-1168 doi: 10.1016/j.envpol.2009.10.047 |
[43] | 林杉, 冯明磊, 胡荣桂, 等.三峡库区小流域农户氮循环和排放特征[J].环境科学, 2010, 31(3):632-638 http://www.cqvip.com/QK/91181X/201003/33163265.html LIN S, FENG M L, HU R G, et al. Characteristics of nitrogen cycling in farm systems in a small watershed of Three Gorges Reservoir area, China[J]. Environmental Sciences, 2010, 31(3):632-638 http://www.cqvip.com/QK/91181X/201003/33163265.html |
[44] | FENG Y W, YOSHINAGA I, SHIRATANI E, et al. Charac-teristics and behavior of nutrients in a paddy field area equipped with a recycling irrigation system[J]. Agricultural Water Management, 2004, 68(1):47-60 doi: 10.1016/j.agwat.2004.02.012 |
[45] | 冯明磊. 三峡地区小流域氮循环及其对水体氮含量的影响[D]. 武汉: 华中农业大学, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10504-2010271760.htm FENG M L. Nitrogen cycling and its influence on nitrogen in water of small watersheds in the three gorges area[D]. Wuhan:Huazhong Agricultural University, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10504-2010271760.htm |
[46] | SALEH-LAKHA S, SHANNON K E, HENDERSON S L, et al. Effect of pH and temperature on denitrification gene ex-pression and activity in Pseudomonas mandelii[J]. Applied and Environmental Microbiology, 2009, 75(12):3903-3911 doi: 10.1128/AEM.00080-09 |
[47] | 邢萌, 刘卫国, 胡婧.浐河、涝河河水硝酸盐氮污染来源的氮同位素示踪[J].环境科学, 2010, 31(10):2305-2310 http://www.doc88.com/p-9738134492521.html XING M, LIU W G, HU J. Using nitrate isotope to trace the nitrogen pollution in Chanhe and Laohe river[J]. Environ-mental Science, 2010, 31(10):2305-2310 http://www.doc88.com/p-9738134492521.html |
[48] | ZHANG J B, ZHU T B, CAI Z C, et al. Nitrogen cycling in forest soils across climate gradients in Eastern China[J]. Plant and Soil, 2011, 342(1/2):419-432 doi: 10.1007/s11104-010-0706-6 |