删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

新开垦土壤上构建玉米/蚕豆-根瘤菌高效固氮模式

本站小编 Free考研考试/2022-01-01

梅沛沛1, 2,,
王平3,
李隆1,,,
张轩1,
桂林国4,
黄建成4
1.中国农业大学资源与环境学院/植物与土壤相互作用教育部重点实验室 北京 100193
2.河南科技学院生命科技学院/现代生物育种河南省协同创新中心 新乡 453003
3.宁夏农林科学院作物研究所 银川 750105
4.宁夏农林科学院农业资源与环境研究所 银川 750002
基金项目: 国家重点研发计划项目2016YFD0300202
国家科技支撑计划项目2007BAD89B02

详细信息
作者简介:梅沛沛, 主要研究方向为生物多样性与资源高效利用。E-mail:meipeipei@126.com
通讯作者:李隆, 主要研究方向为生物多样性与资源高效利用。E-mail:lilong@cau.edu.cn
中图分类号:S344.2;S144.3

计量

文章访问数:1003
HTML全文浏览量:26
PDF下载量:860
被引次数:0
出版历程

收稿日期:2017-07-07
录用日期:2017-09-28
刊出日期:2018-01-01

Construction of efficient nitrogen-fixing cropping pattern:Maize/faba bean intercrop with rhizobium inoculation in reclaimed low-fertility soils

MEI Peipei1, 2,,
WANG Ping3,
LI Long1,,,
ZHANG Xuan1,
GUI Linguo4,
HUANG Jiancheng4
1. College of Resources and Environmental Sciences, China Agricultural University/Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
2. College of Life Science and Technology, Henan Institute of Science and Technology/Henan Collaborative Innovation Centre of Modern Biological Breeding, Xinxiang 453003, China
3. Institute of Crop Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750105, China
4. Institute of Agricultural Resources and Environmental Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
Funds: the National Key Research and Development Program of China2016YFD0300202
the National Key Technology R & D Program of China2007BAD89B02

More Information
Corresponding author:Li Long, E-mail:lilong@cau.edu.cn


摘要
HTML全文
(3)(5)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了在新开垦土壤上构建高效种植模式,本文采用温室盆栽和大田试验相结合的方法,选用4种根瘤菌接种方式(保水剂拌种、清水拌种、三叶期灌根和种子丸衣化)接种4种不同蚕豆根瘤菌(NM353、CCBAU、G254和QH258),分析接菌后新开垦土壤上玉米/蚕豆间作体系的生产潜力、地上部氮素吸收和结瘤特性以及生物固氮等方面的优势,拟为该体系筛选出高效的根瘤菌及其接种技术。结果表明:接种NM353后,玉米/蚕豆间作体系中蚕豆籽粒产量比单作平均增加152.84%,而玉米保持相对稳产;以保水剂拌种的方式接种NM353的间作蚕豆地上部氮素积累量最高,蚕豆结瘤数、瘤重、固氮比例和固氮量均高于本试验中其他3种方式接种的根瘤菌。在盛花期和盛花鼓粒期,接种NM353蚕豆的固氮比例比接种CCBAU的分别高19.1%和11.1%,在各个生育时期两者固氮量之间差异均达显著水平;接种NM353与接种其他菌种间固氮量和固氮比例差异更显著。因此,在新开垦土壤上,用保水剂拌种的方式对间作蚕豆接种NM353根瘤菌,构建玉米/蚕豆-根瘤菌高效固氮体系,为新开垦土壤合理开发利用的可持续发展模式。
Abstract:Lighe sierozem in the Ningxia Yellow River Irrigation area is characterized as newly reclaimed soil due to lower fertility and land consolidation. To rational use land resources with environmental friendly way of the soil, leguminous/non-leguminous crops intercropping plus nitrogen-fixing rhizobium is an important measure. In order to construct an efficient nitrogen-fixing cropping pattern in reclaimed lands, the efficiency of Rhizobium species and the inoculation methods were investigated aiming to the construction of a maize/faba bean-rhizobium intercropping systems through the greenhouse and field experiments with newly-reclaimed low-fertility soils. Four Rhizobium leguminosarum biovar viciae (NM353, CCBAU, G254 and QH258) and four inoculation methods (seed inoculation with water absorbent, seed inoculation with water, dip root at 3-leaf stage and seed pelleting & inoculation) were used and the relative advantages determined with respect to crop productivity, aboveground nitrogen acquisition, nodule characteristics, biological nitrogen fixation, etc. The greenhouse experiment results showed that the order of total biomass of intercropped maize and faba bean for different rhizobium was CCBAU > NM353 > G254 > QH258 > intercropping without rhizobium > sole crop without rhizobium, and for inoculation method was seed inoculation with water absorbent > seed pelleting & inoculation > seed inoculation with water > dip root at 3-leaf stage. The field experiment showed that inoculation with NM353 with seed inoculation via water absorbent method produced significant increase in yield of intercropped faba bean and maize by 79.7% and 42.8%. The intercropping system with G254 and NM353 rhizobium showed obvious yield advantage, the land equivalent ratio was >1.5. Also nitrogen content of faba bean and maize was highest among different treatments. In addition, the number of nodules, nodule biomass and nitrogen derived from air (Ndfa) and percent Ndfa (%Ndfa) were all greater in the newly-established system compared to non-inoculated faba beans. Particularly, %Ndfa of faba bean inoculated with NM353 was respectively 19.1% and 11.1% higher than that inoculated with CCBAU at peak flowering and pod-filling stages, and both had significant differences. The differences in Ndfa of faba bean were significant between rhizobium inoculation NM353 and CCBAU at each growth stage. Relatively, the difference between NM353 inoculation and the other strains was more significant for either%Ndfa or Ndfa. The inoculation with water absorbent method showed best inoculation effect with respect to nodules number, nodule biomass, %Ndfa and Ndfa. Thus an efficient cropping system was successfully set up for nitrogen fixation. The maize/faba bean-rhizobium intercropping system based on seed inoculated with Rhizobium NM353 was the most sustainable development model for rational development and utilization of the low-fertility soil.

HTML全文


图1供试4种根瘤菌的OD值监测生长曲线
Figure1.OD value growth curves of the four tested rhizobia


下载: 全尺寸图片幻灯片


图2接种不同菌种对间作蚕豆、玉米地上部生物量和地上部氮积累量的影响(大田)
不同大写字母表示同一作物5个接菌处理间差异显著(P < 0.05); △, *, **和n.s.分别表示相同接菌方式下同一取样日期单、间作间差异在10%、5%和1%水平上显著, 在10%水平上差异不显著。
Figure2.Above-ground biomass and N acquisition of intercropped faba bean and maize affected by 4 different rhizobia (field experiment)
Different capital letters in the same column demonstrate significant differences among 5 treatments (4 rhizobia treatments and control with water) at 0.05 level; △, *, ** and n.s. refer to marginal significance at 10%, significance at 5%, 1% levels and not significant at 10% level, respectively, between sole and intercrop with the same rhizobium treatment at one growth stage.


下载: 全尺寸图片幻灯片


图3不同生育时期接种不同根瘤菌处理蚕豆的固氮比例(%Ndfa)和固氮量(Ndfa) (大田)
不同大写字母表示同一个生育时期5个接菌处理间差异显著(P < 0.05); △和*分别表示同一个生育时期同一接菌处理下单、间作间在10%和5%水平下差异显著。
Figure3.Percentage of nitrogen derived from air (%Ndfa) and nitrogen derived from air (Ndfa) of faba bean with different rhizobia treatments at different growth stages (field experiment)
Different capital letters demonstrate the significance of 5 treatments (4 rhizobia treatments and 1 control with water) at one growth stage at 0.05 level; △and * indicate the significant differences at 0.1 and 0.05 levels, respectively, of sole and intercrop with the same rhizobium treatment at one growth stage.


下载: 全尺寸图片幻灯片

表1播种前试验区耕层土壤(0~20 cm)基础肥力状况
Table1.Background properties of soil (0-20 cm depth) in the study area before sowing

Year
有机质
Organic matter
(g·kg-1)
总氮
Total N
(g·kg-1)
无机氮
Mineral N
(mg·kg-1)
速效磷
Olsen P
(mg·kg-1)
速效钾
Quickly available K
(mg·kg-1)
缓效钾
Slowly available K
(mg·kg-1)
pH
2009 5.69 0.27 6.14 2.35 109.25 278.14 7.41


下载: 导出CSV
表2不同接种方法接种4个根瘤菌种后间作蚕豆、玉米地上部生物量和地上部氮吸收(盆栽)
Table2.Above-ground biomass and N acquisition of intercropped faba bean and maize affected by 4 different rhizobia and 4 different inoculation methods (pot experiment)
接种方法
Inoculation method
菌株
Rhizobium
地上部生物量
Above-ground biomass (g·pot-1)
地上部氮累积量
Above-ground N accumulation (mg×pot-1)
蚕豆?Faba bean 玉米?Maize 整盆?Whole pot 蚕豆?Faba bean 玉米?Maize 整盆?Whole pot
保水剂拌种
Seed inoculation with water absorbent
CCBAU ?3.94±0.48a 5.03±1.12a 8.96±0.80a 99.2±15.5a 30.9±5.3a ?130.1±13.6a
G254 ?3.03±0.22b 6.05±0.45a 9.08±0.43a 80.1±6.6a 36.1±2.5a ?116.2±8.2a
NM353 ?3.62±0.17ab 6.04±0.45a 9.66±0.52a 93.2±4.9a 38.2±1.7a ?131.4±3.7a
QH258 ?3.51±0.13ab 6.63±0.51a 10.14±0.41a 91.0±3.8a 37.8±2.1a ?128.8±1.8a
平均值?Mean ?3.53±0.32AB 5.93±0.71A 9.46±0.58A 90.9±9.0A 35.8±3.4A ?126.6±8.2A
清水拌种
Seed inoculation with water
CCBAU ?3.29±0.13a 5.61±0.73a 8.90±0.65a 90.2±5.8a 34.1±4.9ab ?124.3±7.2a
G254 ?3.32±0.12a 5.84±0.23a 9.15±0.28a 81.8±6.7a 34.1±1.8ab ?115.9±7.2a
NM353 ?2.46±0.50b 6.55±0.91a 9.00±0.60a 71.4±16.8a 41.9±6.4a ?113.3±14.5a
QH258 ?3.32±0.12a 5.27±0.05a 8.58±0.13a 84.6±11.7a 30.5±1.0b ?115.0±12.2a
平均值?Mean ?3.09±0.33B 5.81±0.60AB 8.91±0.44AB 82.0±10.8A 35.2±4.5A ?117.1±9.9A
三叶期灌根
Dip root at 3-leaf stage
CCBAU ?3.37±0.40ab 5.12±0.21a 8.50±0.27a 88.2±11.6ab 30.4±1.3a ?118.5±10.4ab
G254 ?3.56±0.37ab 5.52±0.96a 9.08±0.61a 93.4±18.5ab 31.9±5.3a ?125.3±13.2ab
NM353 ?4.30±0.26a 4.34±0.39a 8.64±0.43a 116.1±7.4a 28.2±2.5a ?144.3±6.2a
QH258 ?3.15±0.38b 5.28±0.36a 8.43±0.43a 81.2±12.3b 30.9±2.1a ?112.1±11.3b
平均值?Mean ?3.59±0.41A 5.07±0.57B 8.66±0.43B 94.7±14.1A 30.3±2.9A ?125.1±11.9A
丸衣化
Seed pelleting & inoculation
CCBAU ?3.61±0.58a 5.55±0.87a 9.16±0.75a 90.7±17.5a 34.8±6.1a ?125.5±14.8a
G254 ?3.77±0.47a 5.65±0.71a 9.42±0.58a 99.3±11.5a 32.7±3.0a ?131.9±9.0a
NM353 ?3.39±0.51a 5.51±0.77a 8.89±0.33a 89.8±19.7a 33.9±5.0a ?123.7±15.5a
QH258 ?2.77±0.12a 5.88±0.31a 8.65±0.22a 69.9±3.1a 32.5±1.0a ?102.3±3.6a
平均值?Mean ?3.30±0.47AB 5.64±0.63AB 9.03±0.49AB 87.4±14.4A 33.5±3.9A ?120.8±12.4A
单作不接菌
CK-sole
水?Water ?3.56±0.19A 7.12±0.33C 86.0±4.9A ?172.1±9.9A
间作不接菌
CK-intercrop
水Water ?3.20±0.31C 5.20±0.56B 8.40±0.36BC 72.9±11.8A 29.40±2.2A ?102.3±11.0A
表中所列数据为平均值±标准误差(n=4)。同列不同大写字母表示4个接种方式与两个对照共6个处理间差异显著(P < 0.05);同列不同小写字母表示同一接菌方式下不同根瘤菌间差异显著(P < 0.05)。Data are means ± S.E. (n= 4). Different capital letters in the same column demonstrate significant differences among 6 treatments (4 inoculation methods and 2 non-inoculation controls) at 0.05 level; different lowercase letters indicate significant differences among 4 rhizobia treatments with the same inoculation method at 0.05 level.


下载: 导出CSV
表3根瘤菌接种处理对蚕豆/玉米间作作物籽粒产量及其间作优势的影响(大田)
Table3.Grain yields of faba bean and maize and land equivalent ratios (LER) of faba bean/maize intercropping system with 4 rhizobia inoculation (field experiment)
菌种
Rhizobium
蚕豆?Faba bean 玉米?Maize 土地当量比
单作?Sole 间作?Intercrop 单作?Sole 间作?Intercrop Land equivalent ratio
CCBAU 2 975±533A 5 578±1 295AB* 7 413±315 8 536±832AB 1.39±0.13AB
G254 2 488±638A 5 438±1 685AB△ 7 413±315 7 705±329AB 1.53±0.74A
NM353 2 907±509A 5 950±990A* 7 413±315 9 029±268A** 1.65±0.08AB
QH258 2 907±756A 5 444±786AB* 7 413±315 6 095±1066B 1.28±0.33AB
Water 1 765±293A 3 311±905B△ 7 413±315 6 322±817B 1.22±0.44B
增产率Over-yield ratio1) 155.50% 1.68%
表中数据为平均值±标准误差(n=3)。不同大写字母表示同一作物相同种植方式下5个接菌处理间差异显著(P < 0.05); △, *和**分别表示同一接菌处理下同一作物单、间作间在10%、5%和1%水平下差异显著。1)表示间作蚕豆(玉米)比单作蚕豆(玉米)的平均增产率。Data in the table are means ± S.E. (n = 3). Different capital letters demonstrate significant differences among 5 treatments (4 rhizobia treatments and 1 control with water) with the same crop and same cropping system at 0.05 level; △, * and ** indicate significant differences at 0.1, 0.05, and 0.01 levels, respectively, between sole and intercrop with the same rhizobium treatment.1) The over-yield ratio is average yield increasing rate of intercropped faba bean (maize) compared to that of sole faba bean (maize).


下载: 导出CSV
表4根瘤菌接种方法和根瘤菌菌种对间作蚕豆结瘤特性和生物固氮的影响(盆栽)
Table4.Nodule traits and biological N2 fixation of intercropped faba bean affected by different rhizobia with different inoculation methods (pot experiment)
接种方法
Inoculation method
菌株
Rhizobium
根瘤数
Nodule number (No×plant-1)
根瘤干重
Nodule dry weight (g·plant-1)
单瘤干重
Nodule size [mg(DW)×nodule-1]
固氮比例
Percentage of nitrogen derived from air (%)
固氮量
Nitrogen derived from air (mg·plant-1)
保水剂拌种
Seed inoculation with water absorbent
CCBAU 96.0±23.9a 0.273±0.027a 3.88±1.96a 51.64±5.72b 49.63±4.38ab
G254 69.5±18.8b 0.218±0.022a 3.75±1.05a 51.62±2.17b 41.16±2.54b
NM353 102.0±14.9a 0.280±0.036a 2.78±0.30ab 65.21±2.33a 60.82±3.56a
QH258 105.5±17.0a 0.210±0.021a 2.12±0.39b 55.70±3.45ab 51.02±4.82ab
平均值?Mean 93.3±18.9A 0.245±0.036A 3.13±1.10BC 56.04±3.42AB 50.66±3.83BC
清水拌种
Seed inoculation with water
CCBAU 85.0±11.3a 0.230±0.007a 2.85±0.52ab 65.14±8.35a 57.49±4.16a
G254 94.8±25.6a 0.213±0.018a 2.52±0.55b 68.10±6.66a 56.19±8.55a
NM353 71.5±21.8a 0.228±0.029a 3.85±0.99a 67.85±2.60a 63.33±4.71a
QH258 95.8±7.7a 0.223±0.026a 2.35±0.33b 64.22±1.32a 54.30±6.73a
平均值 ?Mean 86.8±17.2A 0.223±0.040AB 2.89±0.67BC 66.33±4.73A 57.83±6.04A
三叶期灌根
Dip root at 3-leaf stage
CCBAU 55.3±8.0a 0.210±0.031a 3.82±0.50b 64.38±1.42a 56.78±6.80a
G254 31.5±7.1b 0.180±0.053a 5.26±1.10a 58.25±3.85a 53.45±8.75a
NM353 50.3±7.6a 0.238±0.021a 4.81±0.27ab 58.85±1.74a 61.04±2.45a
QH258 52.8±4.0a 0.190±0.019a 3.65±0.46b 58.43±4.55a 46.17±3.16a
平均值 ?Mean 47.4±8.3BC 0.204±0.043B 4.38±0.71AB 59.98±2.89A 54.36±5.29B
丸衣化
Seed pelleting & inoculation
CCBAU 40.5±14.0ab 0.200±0.046a 6.65±2.98a 47.97±0.53a 38.73±3.03b
G254 64.8±19.6ab 0.245±0.039a 4.04±0.38b 54.37±6.93a 54.86±10.67a
NM353 69.5±10.0a 0.240±0.041a 3.71±0.94b 50.85±1.64a 46.00±9.26b
QH258 32.3±5.3b 0.160±0.018b 5.43±1.49a 59.31±2.45a 41.53±2.82b
平均值 ?Mean 51.8±15.2B 0.211±0.026AB 4.96±1.71A 53.13±2.89B 45.28±6.45C
单作不接菌
CK-sole
水Water 26.8±2.4C 0.125±0.017C 2.34±0.27C 31.07±0.59C 26.86±4.04E
间作不接菌
CK-intercrop
水 ?Water 38.5±14.6BC 0.090±0.031C 2.89±0.86BC 42.11±1.37C 30.55±2.32D
表中所列数据为平均值±标准误差(n=4)。同列不同大写字母表示4个接种方式与两个对照共6个处理间差异显著(P < 0.05);同列不同小写字母表示同一接菌方式下不同根瘤菌间差异显著(P < 0.05)。Data are means ± S.E. (n = 4). Different capital letters in the same column demonstrate significant differences among 6 treatments (4 inoculation methods and 2 non-inoculation controls) at 0.05 level; different lowercase letters indicate significant differences among 4 rhizobia treatments with the same inoculation method at 0.05 level.


下载: 导出CSV
表5接种根瘤菌对间作蚕豆结瘤特性的影响(大田)
Table5.Dynamic characteristics of intercropped faba bean nodule traits affected by different rhizobia inoculation (field experiment)
菌株
Rhizobium
初花期?Initial flowering stage 盛花期?Peak flowering stage 盛花鼓粒期?Pod-filling stage 成熟期?Maturity
单作
Sole
间作
Intercrop
单作
Sole
间作
Intercrop
单作
Sole
间作
Intercrop
单作
Sole
间作
Intercrop
根瘤数Nodule number (No·plant -1)
CCBAU 147.3±42.9A 136.8±33.0A 145.6±16.0AB 188.0±51.4A 143.7±46.5A 156.1±38.2A 159.8±33.2A 119.6±41.8A
G254 181.1±49.4A 140.3±11.0A 162.4±36.6AB 156.9±15.1A 125.7±29.7A 127.2±24.0A 158.1±16.7A 164.7±72.9A
NM353 185.7±18.7A 123.6±17.2A△ 231.8±35.9A 193.7±7.6A 191.1±15.7A 147.8±22.0A 115.2±14.1A 158.2±22.6A
QH258 194.0±16.2A 181.2±30.5A 172.0±6.3AB 168.2±34.1A 142.7±11.6A 149.2±16.1A 185.3±71.7A 165.3±44.8A
Water 124.7±48.1A 165.7±41.5A 112.4±29.5B 115.1±22.5A 124.1±26.0A 190.2±33.2A 155.0±5.2A 134.8±18.9A
根瘤干重Nodule biomass (g·plant -1)
CCBAU 0.251±0.128A 0.264±0.054B 0.944±0.040AB 1.367±0.107A* 1.300±0.268A 1.674±0.435AB 1.733±0.564A 1.371±0.427A
G254 0.402±0.021A 0.298±0.084AB 0.867±0.120B 0.944±0.022A 1.318±0.233A 1.032±0.183B 1.650±0.196A 2.464±0.712A
NM353 0.457±0.055A 0.448±0.014A 1.267±0.058A 1.386±0.062A 1.931±0.360A 2.054±0.185A 1.557±0.183A 1.459±0.177A
QH258 0.362±0.122A 0.415±0.064AB 0.978±0.239AB 1.200±0.366A 1.399±0.272A 1.773±0.023AB 2.113±0.680A 1.548±0.174A
Water 0.229±0.055A 0.328±0.040AB 0.978±0.044AB 0.978±0.308A 1.342±0.467A 1.884±0.349AB 1.308±0.200A 1.533±0.094A
单瘤干重Nodule size [mg(DW)·nodule -1]
CCBAU 1.3±0.7A 2.0±0.1B 6.7±1.0A 8.5±2.3A 10.8±2.8A 10.7±0.2A 10.5±2.9A 12.7±2.0A
G254 2.5±0.5A 2.1±0.5B 6.6±2.9A 6.1±0.5A 11.0±1.4A 8.2±0.1A△ 10.7±1.7A 17.0±2.9A
NM353 2.5±0.3A△ 3.8±0.6A 5.7±0.7A 7.0±0.3A 9.9±1.2A 14.8±3.3A△ 9.9±3.8A 14.4±2.7A
QH258 1.9±0.6A 2.3±0.4B 5.6±1.2A 7.7±2.7A 9.6±1.2A 12.1±1.1A 12.2±3.0A 11.1±3.4A
Water 2.4±0.8A 2.2±0.5B 9.8±2.2A 8.0±1.2A 10.0±2.2A 11.0±3.3A 8.4±1.2A 11.8±1.5A
同列不同大写字母表示同一作物相同种植方式下5个接菌处理间差异显著(P < 0.05); △和*分别表示同一个生育时期同一接菌处理下单、间作间在10%和5%水平下差异显著。Different capital letters demonstrate significant differences among 5 treatments (4 rhizobia treatments and 1 control with water) with the same crop and same cropping system at 0.05 level; △ and * indicate significant differences at 0.1 and 0.05 levels, respectively, between sole and intercrop with the same rhizobium treatment.


下载: 导出CSV

参考文献(34)
[1]LI L, YANG S C, LI X L, et al. Interspecific complementary and competitive interactions between intercropped maize and faba bean[J]. Plant and Soil, 1999, 212(2): 105–114 doi: 10.1023/A:1004656205144
[2]LI L, SUN J H, ZHANG F S, et al. Wheat/maize or wheat/soybean strip intercropping. I. Yield advantage and interspecific interactions on nutrients[J]. Field Crops Research, 2001, 71(2): 123–137 doi: 10.1016/S0378-4290(01)00156-3
[3]LI L, ZHANG F S, LI X L, et al. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean[J]. Nutrient Cycling in Agroecosystems, 2003, 65(1): 61–71 doi: 10.1023/A:1021885032241
[4]LI L, SUN J H, ZHANG F S, et al. Root distribution and interactions between intercropped species[J]. Oecologia, 2006, 147(2): 280–290 doi: 10.1007/s00442-005-0256-4
[5]LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192–11196 doi: 10.1073/pnas.0704591104
[6]FAN F L, ZHANG F S, SONG Y N, et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems[J]. Plant and Soil, 2006, 283(1/2): 275–286
[7]李玉英, 余常兵, 孙建好, 等.蚕豆/玉米间作系统经济生态施氮量及对氮素环境承受力[J].农业工程学报, 2008, 24(3): 223–227 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_nygcxb200803045
LI Y Y, YU C B, SUN J H, et al. Nitrogen environmental endurance and economically-ecologically appropriate amount of nitrogen fertilizer in faba bean/maize intercropping system[J]. Transactions of the CSAE, 2008, 24(3): 223–227 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_nygcxb200803045
[8]BARGAZ A, ISAAC M E, JENSEN E S, et al. Intercropping of faba bean with wheat under low water availability promotes faba bean nodulation and root growth in deeper soil layers[J]. Procedia Environmental Sciences, 2015, 29: 111–112 doi: 10.1016/j.proenv.2015.07.188
[9]LIU Y C, QIN X M, XIAO J X, et al. Intercropping influences component and content change of flavonoids in root exudates and nodulation of faba bean[J]. Journal of Plant Interactions, 2017, 12(1): 187–192 doi: 10.1080/17429145.2017.1308569
[10]MEI P P, GUI L G, WANG P, et al. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil[J]. Field Crops Research, 2012, 130: 19–27 doi: 10.1016/j.fcr.2012.02.007
[11]LATATI M, BARGAZ A, BELARBI B, et al. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability[J]. European Journal of Agronomy, 2016, 72: 80–90 doi: 10.1016/j.eja.2015.09.015
[12]LI B, LI Y Y, WU H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496–6501 doi: 10.1073/pnas.1523580113
[13]陈文新, 汪恩涛, 陈文峰.根瘤菌-豆科植物共生多样性与地理环境的关系[J].中国农业科学, 2004, 37(1): 81–86 http://www.docin.com/p-680066544.html
CHEN W X, WANG E T, CHEN W F. The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments[J]. Scientia Agricultura Sinica, 2004, 37(1): 81–86 http://www.docin.com/p-680066544.html
[14]李淑敏, 武帆.大豆/玉米间作体系中接种AM真菌和根瘤菌对氮素吸收的促进作用[J].植物营养与肥料学报, 2011, 17(1): 110–116 doi: 10.11674/zwyf.2011.0115
LI S M, WU F. Nitrogen uptake facilitation in soybean/maize intercropping system inoculated with rhizobium and arbuscular mycorrhizal fungi[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1): 110–116 doi: 10.11674/zwyf.2011.0115
[15]汤东生, 朱有勇.蚕豆/小麦间作对结瘤效应研究初探[J].云南农业大学学报, 2005, 20(3): 331–334 http://www.cqvip.com/QK/94499X/200503/15988420.html
TANG D S, ZHU Y Y. The effect on diverse planting of fababean on its nodulation[J]. Journal of Yunnan Agricultural University, 2005, 20(3): 331–334 http://www.cqvip.com/QK/94499X/200503/15988420.html
[16]肖焱波, 李隆, 张福锁.根瘤菌菌株NM353对小麦/蚕豆间作体系中作物生长及养分吸收的影响[J].植物营养与肥料学报, 2006, 12(1): 89–96 doi: 10.11674/zwyf.2006.0115
XIAO Y B, LI L, ZHANG F S. The enhancement of growth and nutrients uptake by crops with inoculating rhizobium strain NM353 in wheat and faba bean intercropping system[J]. Plant Nutrition and Fertilizer Science, 2006, 12(1): 89–96 doi: 10.11674/zwyf.2006.0115
[17]房增国, 赵秀芬, 孙建好, 等.接种根瘤菌对蚕豆/玉米间作系统氮营养的影响[J].华北农学报, 2009, 24(4): 124–128 doi: 10.7668/hbnxb.2009.04.025
FANG Z G, ZHAO X F, SUN J H, et al. Effects of rhizobium inoculation on nitrogen nutrition in faba bean/maize intercropping system[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(4): 124–128 doi: 10.7668/hbnxb.2009.04.025
[18]ZHANG N N, SUN Y M, LI L, et al. Effects of intercropping and Rhizobium inoculation on yield and rhizosphere bacterial community of faba bean (Vicia faba L.)[J]. Biology and Fertility of Soils, 2010, 46(6): 625–639 doi: 10.1007/s00374-010-0469-5
[19]方中达.植病研究法[M].第3版.北京:中国农业出版社, 2001
FANG Z D. Plant Disease Research[M]. 3rd ed. Beijing: China Agricultural Press, 2001
[20]王宏, 姚桂荣, 李忠平, 等.豆科牧草丸衣化接种根瘤菌试验研究[J].内蒙古草业, 1997, (2/3): 42–46 http://www.cqvip.com/QK/85023X/199702/5558936.html
WANG H, YAO G R, LI Z P, et al. Experimental research on inoculation of rhizobium to legume forage by pill clothing[J]. Inner Mongolia Prataculture, 1997, (2/3): 42–46 http://www.cqvip.com/QK/85023X/199702/5558936.html
[21]WILLEY R W. Intercropping—its importance and research needs: Part 1. Competition and yield advantages[J]. Field Crops Research, 1979, 32: 1–10 http://www.sciepub.com/reference/91148
[22]PEOPLES M B, BODDEY R M, HERRIDGE D F. Quantification of Nitrogen Fixation[M]//LEIGH G J. Nitrogen Fixation at the Millennium. Brighton: Elsevier, 2002: 357–389
[23]SHEARER G, KOHL D H. N2-fixation in field settings: Estimations based on natural 15N abundance[J]. Australian Journal of Plant Physiology, 1986, 13(6): 699–756 http://www.biogeosciences.net/10/8269/2013/bg-10-8269-2013.xml
[24]SAS Institute. SAS User's Guide: Statistics[M]. Cary, NC, United States: SAS Institute, 2001
[25]SHANTHARAM S, MATTOO A K. Enhancing biological nitrogen fixation: An appraisal of current and alternative technologies for N input into plants[J]. Plant and Soil, 1997, 194(1/2): 205–216 doi: 10.1023/A:1004234315999
[26]CHU G X, SHEN Q R, CAO J L. Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility[J]. Plant and Soil, 2004, 263(1): 17–27 doi: 10.1023/B:PLSO.0000047722.49160.9e
[27]CORRE-HELLOU G, FUSTEC J, CROZAT Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops[J]. Plant and Soil, 2006, 282(1/2): 195–208 https://www.sciencedirect.com/science/article/pii/S1161030113001792
[28]ADU-GYAMFI J J, MYAKA F A, SAKALA W D, et al. Biological nitrogen fixation and nitrogen and phosphorus budgets in farmer-managed intercrops of maize-pigeonpea in semi-arid southern and eastern Africa[J]. Plant and Soil, 2007, 295(1/2): 127–136 doi: 10.1007/s11104-007-9270-0
[29]NEUMANN A, SCHMIDTKE K, RAUBER R. Effects of crop density and tillage system on grain yield and N uptake from soil and atmosphere of sole and intercropped pea and oat[J]. Field Crops Research, 2007, 100(2/3): 285–293 https://www.sciencedirect.com/science/article/pii/S0378429006001572
[30]CHALK P M, ALVES B J R, BODDEY R M, et al. Integrated effects of abiotic stresses on inoculants performance, legume growth and symbiotic dependence estimated by 15N dilution[J]. Plant and Soil, 2010, 328(1/2): 1–16 doi: 10.1007/s13593-011-0020-6
[31]Zahran H H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate[J]. Microbiology and Molecular Biology Reviews, 1999, 63(4): 968–969 doi: 10.1007/s00374-010-0503-7
[32]贾瑞宗. 高效根瘤菌-紫花苜蓿-无芒雀麦农田耕作系统的建立和生物学效应评估[D]. 北京: 中国农业大学, 2009: 205–210
JIA R Z. An evaluation of best practices for a highly effective rhizobia-alfafa-bromus intercropping system in agriculture[D]. Beijing: China Agricultural University, 2009: 205–210
[33]HAUGGAARD-NIELSEN H, JENSEN E S. Facilitative root interactions in intercrops[J]. Plant and Soil, 2005, 274(1/2): 237–250 doi: 10.1007/s11104-004-1305-1
[34]孙艳梅. 高效根瘤菌-紫花苜蓿-无芒雀麦农田耕作系统的建立和生物学效应评估[D]. 北京: 中国农业大学, 2010: 45–81
SUN Y M. Influence of rhizobia inoculation of alfalfa (Medicago sativa L.) and intercropping with siberian wildrye (Elymus sibiricus L.) on rhizosphere soil microbial activity and community composition[D]. Beijing: China Agricultural University, 2010: 45–81

相关话题/作物 土壤 生育 比例 资源