删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

紫花苜蓿、黑麦草和狼尾草对Cu、Pb复合污染土壤修复能力的研究

本站小编 Free考研考试/2022-01-01

朱剑飞1, 2,,
李铭红1, 2,,,
谢佩君2,
乔云蕾2
1.浙江师范大学行知学院 金华 321004
2.浙江师范大学生态研究所 金华 321004
基金项目: 浙江省重中之重学科开放基金项目ZC323016018

详细信息
作者简介:朱剑飞, 主要研究方向为植物修复重金属污染土壤。E-mail:925209134@qq.com
通讯作者:李铭红, 主要研究方向为生物多样性保护、植物修复重金属污染土壤。E-mail:sky82@zjnu.cn
中图分类号:X53

计量

文章访问数:1257
HTML全文浏览量:5
PDF下载量:1201
被引次数:0
出版历程

收稿日期:2017-04-26
录用日期:2017-07-14
刊出日期:2018-02-01

Phytoremediation of single and combined pollution of Cu and Pb by Medicago sativa, Lolium perenne, and Pennisetum alopecuroides

ZHU Jianfei1, 2,,
LI Minghong1, 2,,,
XIE Peijun2,
QIAO Yunlei2
1. Xingzhi College, Zhejiang Normal University, Jinhua 321004, China
2. Institute of Ecology, Zhejiang Normal University, Jinhua 321004, China
Funds: the Open Foundation Project of Zhejiang Provincial Top Key DisciplineZC323016018

More Information
Corresponding author:LI Minghong, E-mail:sky82@zjnu.cn


摘要
HTML全文
(5)(1)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:随着经济和社会的发展,土壤重金属污染对粮食安全及人类的身体健康构成了巨大的威胁,而目前对于土壤重金属污染的治理主要以植物修复为主。为了寻找适宜修复Cu、Pb复合污染土壤的牧草,采用盆栽试验法,将试验的植物设置9组处理:1组对照组(CK),不添加任何重金属盐;4组单一污染,即单一Cu低(Cu1,200 mg·kg-1)、高浓度(Cu2 400 mg·kg-1),单一Pb低(Pb1 300 mg·kg-1)、高浓度(Pb2 800 mg·kg-1);4组Cu、Pb复合污染(Cu1Pb1、Cu1Pb2、Cu2Pb1、Cu2Pb2)。通过比较紫花苜蓿(Medicago sativa)、黑麦草(Lolium perenne)、狼尾草(Pennisetum alopecuroides)的适应能力和富集特征,研究了这3种常见牧草植物对受Cu、Pb复合污染土壤的修复效果。结果表明:1)紫花苜蓿地上部和根部生物量均在Pb1处理组时最大,显著高于其他处理组;黑麦草地上部生物量在Cu1Pb1处理组最大,根部生物量在Pb1处理组最大;狼尾草地上部生物量在Cu2Pb2处理组最大,根部生物量在Cu2处理组最大。2)Cu单一污染下,狼尾草抗性系数最大;Pb单一污染下,紫花苜蓿抗性系数最大;Cu-Pb复合污染下,狼尾草的抗性系数较大。高浓度Cu处理组3种牧草植物的地上部生物量、根部生物量和抗性系数均呈现:狼尾草>黑麦草>紫花苜蓿,且狼尾草显著大于黑麦草和紫花苜蓿。3)种植3种牧草植物后,土壤重金属Cu、Pb含量均有所降低。在一定浓度下,土壤Cu-Pb重金属间会相互促进对方在牧草植物中的吸收。4)3种牧草中紫花苜蓿地上部对Cu的富集系数在Cu2Pb2处理组最大,达1.61;黑麦草根部对Cu的富集系数在Cu2Pb2处理组最大,达3.80;3种牧草地上部和根部对Pb的富集系数只在黑麦草根部的Cu1Pb1处理组时大于1,达1.46。5)黑麦草对Pb的吸收能力较强,且主要积累在根系;紫花苜蓿对Cu-Pb复合污染综合修复效果最好。紫花苜蓿和黑麦草分别在Cu-Pb复合污染和Pb单一污染土壤中对Pb的转运系数大于1,分别为2.72和2.06,反映其对土壤中的Pb具有富集潜力。综合表明,黑麦草对重金属Pb具有较强的耐性,在Pb单一污染土壤的植物修复及尾矿废弃地的植被重建中,可优先作为选择的材料;紫花苜蓿对重金属Cu、Pb均具有较强的耐性,在重金属Cu单一或Cu-Pb复合污染土壤的植物修复及尾矿废弃地的植被重建中,可优先作为选择的材料。
关键词:紫花苜蓿/
黑麦草/
狼尾草/
重金属/
Cu/
Pb/
复合污染/
富集/
转运
Abstract:With rapid socio-economic development, the problem of heavy metal contamination of soils is increasingly threatening food security and human health. So far, phytoremediation has been the main mode of treatment of soils for heavy metal pollution. To develop pastures suitable for remediation of complex Cu and Pb contaminated soils, a pot experiment consisting of 9 treatments was set up. The control (CK) was not treated with heavy metal salts. Four other treatments had low and high pollutions of single metals including Cu (Cu1:200 mg·kg-1 Cu2+; Cu2:400 mg·kg-1 Cu2+), Pb (Pb1:300 mg·kg-1 Pb2+; Pb2:800 mg·kg-1 Pb2+). The other four treatments consisted of both Cu and Pb pollutions of Cu1Pb1, Cu1Pb2, Cu2Pb1 and Cu2Pb2. The effects of pastures (forages) plantation on the Cu and Pb contaminated soil remediation were determined by comparing the adaptability and enrichment characteristics of alfalfa (Medicago sativa), ryegrass (Lolium perenne) and pennisetum (Pennisetum alopecuroides). The results showed that:1) the aboveground and belowground biomasses of M. sativa were largest under Pb1 treatment, which were significantly larger than those for the other treatments. The aboveground biomass of L. perenne was largest under Cu1Pb1 treatment and belowground biomass of L. perenne largest under Pb1 treatment. The aboveground biomass of P. alopecuroides was largest under Cu2Pb2 treatment and belowground biomass of P. alopecuroides largest under Cu2 treatment. 2) When the soil was treated solely with Cu, the resistance coefficient of P. alopecuroides was largest among the three pasture species. Then when the soil was treated solely with Pb, the resistance coefficient of M. sativa was largest. For Cu and Pb combined treatment, the resistance coefficient of P. alopecuroides was largest. The order of aboveground biomass, belowground biomass and resistance coefficient of the three pasture plants under high Cu concentration treatments was P. alopecuroides > L. perenne > M. sativa. Then the aboveground biomass, belowground biomass and resistance coefficient of P. alopecuroides were significantly higher than those of L. perenne and M. sativa. 3) Soil contents of Cu and Pb decreased after planting the forage plants. At a certain concentration, soil Cu-Pb promoted the absorption of each other by the pasture plants. 4) The enrichment coefficient of Cu for aboveground biomass of M. sativa was highest under Cu2Pb2 treatment, which was 1.61. Then the enrichment coefficient of Cu for belowground biomass of L. perenne was highest under Cu2Pb2 treatment, which was 3.80. Only the enrichment coefficient of Pb for aboveground and belowground biomass of L. perenne exceeded 1.0, reaching 1.46. 5) The absorption ability of Pb by L. perenne was stronger and accumulated mainly in belowground biomass. M. sativa had the best comprehensive repair effect of complex Cu-Pb pollution. The transport coefficients of Pb in M. sativa and L. perenne were higher than 1.0 in complex Cu-Pb and single Pb polluted soils, respectively, and were 2.72 and 2.06, which reflected their respective potentials for enrichment of Pb in the soil. Thus L. perenne had a stronger tolerance to Pb pollution and was therefore a better remedy for Pb-polluted soils. M. sativa had a stronger tolerance to Cu and Pb and was therefore a better remedy for soils polluted with single Cu or composite Cu-Pb.
Key words:Medicago sativa/
Lolium perenne/
Pennisetum alopecuroides/
Heavy metal/
Cu/
Pb/
Combined pollution/
Enrichment/
Translocation

HTML全文


图1Cu、Pb单一及复合污染对3种牧草地上部(A)和根部(B)生物量的影响
不同大写字母表示在各重金属处理下3种牧草间差异显著(P < 0.05), 不同小写字母表示在同一牧草不同重金属处理间差异显著(P < 0.05)。
Figure1.Effects of Cu, Pb single and combined pollution on shoot (A) and root (B) biomass of three pastures
Different capital letters indicate significant differences among three pastures under the same heavy metal treatment (P < 0.05). Different lowercase letters indicate significant differences among heavy metal treatments for the same pasture (P < 0.05).


下载: 全尺寸图片幻灯片


图2Cu、Pb单一及复合污染中3种牧草的抗性系数
不同大写字母表示在各重金属处理下3种牧草间差异显著(P < 0.05), 不同小写字母表示在同一牧草不同重金属处理间差异显著(P < 0.05)。
Figure2.Resistance coefficients of three pastures in Cu, Pb single and combined pollutions
Different capital letters indicate significant differences among three pastures under the same heavy metal treatment (P < 0.05). Different lowercase letters indicate significant differences among heavy metal treatments for the same pasture (P < 0.05).


下载: 全尺寸图片幻灯片


图3Cu、Pb单一及复合污染中3种牧草的Cu、Pb含量
不同小写字母表示各重金属处理下3种牧草间差异显著(P < 0.05)。
Figure3.Cu and Pb contents of three pastures in Cu, Pb single and combined pollutions
Different lowercase letters indicate significant differences among three pastures under the same heavy metal treatment (P < 0.05).


下载: 全尺寸图片幻灯片


图4Cu、Pb单一及复合污染中3种牧草对Cu、Pb的富集系数
不同小写字母表示各重金属处理下3种牧草间间差异显著(P < 0.05)。
Figure4.Bioaccumulation factors of Cu and Pb of three pastures in Cu, Pb single and combined pollutions
Different lowercase letters indicate significant differences among three pastures under the same heavy metal treatment (P < 0.05).


下载: 全尺寸图片幻灯片


图5Cu、Pb单一及复合污染中3种牧草对Cu、Pb的转运系数
不同小写字母表示各重金属处理下3种牧草间间差异显著(P < 0.05)。
Figure5.Translocation factors of Cu and Pb of three pastures in Cu, Pb single and combined pollutions
Different lowercase letters indicate significant differences among three pastures under the same heavy metal treatment (P < 0.05).


下载: 全尺寸图片幻灯片

表1重金属交互浓度设计及处理代码
Table1.Design of heavy metal interaction concentration and processing code
Cu2+浓度Cu2+
concentration (mg·kg-1)
Pb2+浓度Pb2+ concentration (mg·kg-1)
0 300 800
0 CK Pb1 Pb2
200 Cu1 Cu1Pb1 Cu1Pb2
400 Cu2 Cu2Pb1 Cu2Pb2


下载: 导出CSV

参考文献(37)
[1]何兰兰, 角媛梅, 王李鸿, 等. Pb、Zu、Cu和Cd的超富集植物研究进展[J].环境科学与技术, 2009, 32(11):120-123 doi: 10.3969/j.issn.1003-6504.2009.11.028
HE L L, JIAO Y M, WANG L H, et al. Advance in study of Pb, Zn, Cu and Cd hyperaccumulators[J]. Environmental Science & Technology, 2009, 32(11):120-123 doi: 10.3969/j.issn.1003-6504.2009.11.028
[2]王玉婷, 吕梦园, 韩新燕.宁波地区不同规模猪场粪便中重金属含量分析[J].家畜生态学报, 2016, 37(3):55-58 http://jcst.magtech.com.cn/CN/article/showVolumnArticle.do?nian=2016&juan=37
WANG Y T, LYU M Y, HAN X Y. Content analysis of heavy metals in manure samples from different scales of pig farms in Ningbo City[J]. Acta Ecologae Animalis Domastici, 2016, 37(3):55-58 http://jcst.magtech.com.cn/CN/article/showVolumnArticle.do?nian=2016&juan=37
[3]张国军, 江虹, 郑丽芹, 等. Cu胁迫对脐橙幼苗光合特性的影响[J].中国生态农业学报, 2009, 17(1):130-134 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009125&flag=1
ZHANG G J, JIANG H, ZHENG L Q, et al. Effect of copper stress on photosynthesis of navel orange seedlings[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1):130-134 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009125&flag=1
[4]齐雪梅, 李培军, 刘宛. Cu胁迫对大麦幼苗生长及DNA损伤效应的研究[J].农业环境科学学报, 2008, 27(5):1925-1928 https://www.wenkuxiazai.com/doc/57876102d4d8d15abf234e0d-3.html
QI X M, LI P J, LIU W. Plantlets growth and DNA damage of barley (Hordeum vulgare L) under copper stress[J]. Journal of Agro-Environment Science, 2008, 27(5):1925-1928 https://www.wenkuxiazai.com/doc/57876102d4d8d15abf234e0d-3.html
[5]赵艳, 徐迎春, 吴晓丽, 等. Cu胁迫对狭叶香蒲体内元素吸收分配的影响[J].生态学杂志, 2009, 28(4):665-670 https://mall.cnki.net/qikan-A-A6-STXZ-2009-04.html
ZHAO Y, XU Y C, WU X L, et al. Element absorption and distribution in Typha angustifolia under Cu stress[J]. Chinese Journal of Ecology, 2009, 28(4):665-670 https://mall.cnki.net/qikan-A-A6-STXZ-2009-04.html
[6]张开明, 佟海英, 黄苏珍, 等. Cu胁迫对黄菖蒲和马蔺Cu富集及其他营养元素吸收的影响[J].植物资源与环境学报, 2007, 16(1):18-22 http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200904015.htm
ZHANG K M, TONG H Y, HUANG S Z, et al. Effect of Cu stress on Cu accumulation and other nutrient element absorption of Iris pseudacaorus and I. lactea var. chinensis[J]. Journal of Plant Resources and Environment, 2007, 16(1):18-22 http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200904015.htm
[7]邱栋梁, 张国军, 余东, 等. Cu胁迫对柑桔叶片膜透性及酶活性的影响[J].农业环境科学学报, 2007, 26(3):1008-1013 http://image.hanspub.org:8080/Html/3-2950033_13598.htm
QIU D L, ZHANG G J, YU D, et al. Effects of copper stress on permeability of plasma membrane and activity of enzyme in citrus leaves[J]. Journal of Agro-Environment Science, 2007, 26(3):1008-1013 http://image.hanspub.org:8080/Html/3-2950033_13598.htm
[8]吴秋玲, 王文初, 何闪英. GA3与EDTA强化黑麦草修复Pb污染土壤及其解毒机制[J].应用生态学报, 2014, 25(10):2999-3005 http://www.spkx.net.cn/CN/rss_zxly.xml
WU Q L, WANG W C, HE S Y. Enhancement of GA3 and EDTA on Lolium perenne to remediate Pb contaminated soil, and its detoxification mechanism[J]. Chinese Journal of Applied Ecology, 2014, 25(10):2999-3005 http://www.spkx.net.cn/CN/rss_zxly.xml
[9]美英, 杨晓华, 张鹏.植物滞留系统草本植物对人工雨水中铜的富集及去除效果研究[J].内蒙古大学学报:自然科学版, 2015, 46(2):204-210 doi: 10.13484/j.nmgdxxbzk.20150214.html
MEI Y, YANG X H, ZHANG P. Study on bioaccumulation and removal of copper by grasses in bioretention system[J]. Journal of Inner Mongolia University:Natural Science Edition, 2015, 46(2):204-210 doi: 10.13484/j.nmgdxxbzk.20150214.html
[10]闵九康.土壤酶活性及其意义[M].北京:中国农业科学院土壤肥料研究所, 1987:48-63
MIN J K. Soil Enzyme Activity and Its Significance[M]. Beijing:Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences, 1987:48-63
[11]CHINO M. Uptake-transport of toxic metals in rice plants[M]//KITAGISHI K, YAMANE I. Heavy Metal Pollution in Soils of Japan. Tokyo: Japan Scientific Press, 1981: 1141-1146
[12]WITZEL B. The influence of zinc on the uptake and loss of cadmium and lead in the woodlouse, Porcellio scaber (Isopoda, Oniscidea)[J]. Ecotoxicology and Environmental Safety, 2000, 47(1):43-53 doi: 10.1006/eesa.2000.1940
[13]KIM D S. The removal by crab shell of mixed heavy metal ions in aqueous solution[J]. Bioresource Technology, 2003, 87(3):355-357 doi: 10.1016/S0960-8524(02)00259-6
[14]李华娟, 汤洁, 张楠, 等.不同植物对煤矿废弃地土壤重金属富集转化规律[J].湖北农业科学, 2014, 53(16):3784-3787 doi: 10.3969/j.issn.0439-8114.2014.16.015
LI H J, TANG J, ZHANG N, et al. Accumulation and transformation of soil heavy metals in different plants of abandon coal mine[J]. Hubei Agricultural Sciences, 2014, 53(16):3784-3787 doi: 10.3969/j.issn.0439-8114.2014.16.015
[15]李红霞, 马伟芳, 赵新华.浅述利用植物对受污染土壤中重金属的修复[J].吉林农业科学, 2007, 32(1):35-39 http://www.cqvip.com/QK/96566X/200701/24016930.html
LI H X, MA W F, ZHAO X H. The prospect of studies on the phytoremediation of heavy metal contamination in soil[J]. Journal of Jilin Agricultural Sciences, 2007, 32(1):35-39 http://www.cqvip.com/QK/96566X/200701/24016930.html
[16]李松克, 张春林, 李克勤, 等.多年生黑麦草对黄壤重金属污染的修复[J].贵州农业科学, 2014, 42(11):147-151 doi: 10.3969/j.issn.1001-3601.2014.11.038
LI S K, ZHANG C L, LI K Q, et al. Repairation of Lolium perenne on yellow soil heavy metal pollution[J]. Guizhou Agricultural Sciences, 2014, 42(11):147-151 doi: 10.3969/j.issn.1001-3601.2014.11.038
[17]杨海菊.农作物富集土壤重金属的规律及其运用[J].绿色科技, 2011, (4):162-164 https://www.wenkuxiazai.com/doc/cad6a921915f804d2b16c11b.html
YANG H J. Regularity and application of heavy metal enriched by crops from soil[J]. Journal of Green Science and Technology, 2011, (4):162-164 https://www.wenkuxiazai.com/doc/cad6a921915f804d2b16c11b.html
[18]黄永东, 黄永川, 于官平, 等.蔬菜对重金属元素的吸收和积累研究进展[J].长江蔬菜, 2011, (10):1-6 doi: 10.3865/j.issn.1001-3547.2011.10.001
HUANG Y D, HUANG Y C, YU G P, et al. Progress of absorption and accumulation of heavy metal in vegetables[J]. Journal of Changjiang Vegetables, 2011, (10):1-6 doi: 10.3865/j.issn.1001-3547.2011.10.001
[19]铁柏清, 袁敏, 唐美珍, 等. Cd、Pb、Cu、Zn、As复合污染对龙须草生长的影响[J].土壤通报, 2005, 36(2):286-288 http://www.cjae.net/CN/abstract/abstract13034.shtml
TIE B Q, YUAN M, TANG M Z, et al. Effects of compound pollution of Cd, Pb, Cu, Zn and As on the growth of Eulaliopsis binata[J]. Chinese Journal of Soil Science, 2005, 36(2):286-288 http://www.cjae.net/CN/abstract/abstract13034.shtml
[20]张杏锋, 夏汉平, 李志安, 等.牧草对重金属污染土壤的植物修复综述[J].生态学杂志, 2009, 28(8):1640-1646 https://www.wenkuxiazai.com/doc/cdffa9366bd97f192379e921.html
ZHANG X F, XIA H P, LI Z A, et al. Forage grass in phytoremediation of heavy metals-contaminated soils:A review[J]. Chinese Journal of Ecology, 2009, 28(8):1640-1646 https://www.wenkuxiazai.com/doc/cdffa9366bd97f192379e921.html
[21]叶春和.紫花苜蓿对铅污染土壤修复能力及其机理的研究[J].土壤与环境, 2002, 11(4):331-334 doi: 10.3969/j.issn.1674-5906.2002.04.001
YE C H. Phytoremediation of Pb-contaminated soil with alfalfa:Capacity and mechanisms[J]. Soil and Environmental Sciences, 2002, 11(4):331-334 doi: 10.3969/j.issn.1674-5906.2002.04.001
[22]徐卫红, 王宏信, 王正银, 等.重金属富集植物黑麦草对锌、镉复合污染的响应[J].中国农学通报, 2006, 22(6):365-368 https://www.wenkuxiazai.com/doc/f0885ed010661ed9ac51f388.html
XU W H, WANG H X, WANG Z Y, et al. Response of hyperaccumulator ryegrass (Loliurn perenne L.) to cadmium, zinc and their combined pollution[J]. Chinese Agricultural Science Bulletin, 2006, 22(6):365-368 https://www.wenkuxiazai.com/doc/f0885ed010661ed9ac51f388.html
[23]杨强, 林琦, 王兆炜, 等.重金属污染土壤H2O2预处理的植物修复技术研究[J].浙江大学学报:农业与生命科学版, 2005, 31(3):315-320 http://wuxizazhi.cnki.net/Sub/hjzy/a/HJJZ201402062.html
YANG Q, LIN Q, WANG Z W, et al. Study on phytoremediation with H2O2 pretreatment in heavy metal contaminated soils[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2005, 31(3):315-320 http://wuxizazhi.cnki.net/Sub/hjzy/a/HJJZ201402062.html
[24]胡金朝. 重金属污染对不同生境水生植物的毒害机理研究[D]. 南京: 南京师范大学, 2006: 27-30
HU J C. The toxic mechanism study of heavy metal pollution on aquatic plant under different growth conditions[D]. Nanjing: Nanjing Normal University, 2006: 27-30
[25]高伟, 归静, 刘娟, 等.重金属Cd、Cu以及干旱胁迫对柳枝稷的影响分析[J].家畜生态学报, 2016, 37(9):65-70 http://jcst.magtech.com.cn/CN/abstract/abstract953.shtml
GAO W, GUI J, LIU J, et al. Effects of Cd, Cu and drought on switchgrass (Panicum virgatum L.)[J]. Acta Ecologae Animalis Domastici, 2016, 37(9):65-70 http://jcst.magtech.com.cn/CN/abstract/abstract953.shtml
[26]侯新村, 范希峰, 武菊英, 等.草本能源植物修复重金属污染土壤的潜力[J].中国草地学报, 2012, 34(1):59-64 http://www.cqvip.com/QK/94283A/201201/40834111.html
HOU X C, FAN X F, WU J Y, et al. Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metals[J]. Chinese Journal of Grassland, 2012, 34(1):59-64 http://www.cqvip.com/QK/94283A/201201/40834111.html
[27]黄淑萍, 陈爱侠, 常亚飞, 等.皂河湿地植物对多种重金属污染湿地的修复研究[J].环境工程, 2016, 34(6):177-181 http://www.cqvip.com/QK/93897X/201606/669244382.html
HUANG S P, CHEN A X, CHANG Y F, et al. Phytoremediation on wetland in Zaohe river watershed contaminated with multi heavy metals[J]. Environmental Engineering, 2016, 34(6):177-181 http://www.cqvip.com/QK/93897X/201606/669244382.html
[28]MATTINA M I, LANNUCCI-BERGER W, MUSANTE C, et al. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil[J]. Environmental Pollution, 2003, 124(3):375-378 doi: 10.1016/S0269-7491(03)00060-5
[29]林云青, 章钢娅, 许敏, 等.添加凹凸棒土和钠基蒙脱石对铜锌镉污染红壤的改良效应研究[J].土壤, 2009, 41(6):892-896 http://mall.cnki.net/magazine/Article/TURA200906023.htm
LIN Y Q, ZHANG G Y, XU M, et al. Studies on modified effects of attapulgite and Na-montmorillonite on Cu-Zn-Cd contaminated red soil[J]. Soils, 2009, 41(6):892-896 http://mall.cnki.net/magazine/Article/TURA200906023.htm
[30]夏汉平, 束文圣.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究[J].生态学报, 2001, 21(7):1121-1129 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_stxb200107013
XIA H P, SHU W S. Resistance to and uptake of heavy metals by Vetiveria zizanioides and Paspalum notatum from lead/zinc mine tailings[J]. Acta Ecologica Sinica, 2001, 21(7):1121-1129 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_stxb200107013
[31]赵杨迪, 潘远智, 刘碧英, 等. Cd、Pb单一及复合污染对花叶冷水花生长的影响及其积累特性研究[J].农业环境科学学报, 2012, 31(1):48-53 http://www.wenkuxiazai.com/doc/25f0807fa417866fb84a8eed.html
ZHAO Y D, PAN Y Z, LIU B Y, et al. Pilea cadierei Gagnep. et Guill's growth and accumulation under single and combined pollution of Cd and Pb[J]. Journal of Agro-Environment Science, 2012, 31(1):48-53 http://www.wenkuxiazai.com/doc/25f0807fa417866fb84a8eed.html
[32]潘瑞炽, 董愚得.植物生理学[M].第3版.北京:高等教育出版社, 1995:31-34
PAN R C, DONG Y D. Plant Physiology[M]. 3rd ed. Beijing:Higher Education Press, 1995:31-34
[33]刘秀梅, 聂俊华, 王庆仁. 6种植物对Pb的吸收与耐性研究[J].植物生态学报, 2002, 26(5):533-537 https://www.wenkuxiazai.com/doc/115c7f13a216147917112866.html
LIU X M, NIE J H, WANG Q R. Research on lead uptake and tolerance in six plants[J]. Acta Phytoecologica Sinica, 2002, 26(5):533-537 https://www.wenkuxiazai.com/doc/115c7f13a216147917112866.html
[34]贾玉华, 朱建雯, 钱翌, 等.天竺葵对土壤中铅的吸收和耐性研究[J].新疆农业大学学报, 2008, 31(4):38-40 http://www.cjae.net/CN/article/downloadArticleFile.do?attachType=PDF&id=19405
JIA Y H, ZHU J W, QIAN Y, et al. Studies on accumulation and tolerance of Pelargonium horlarum to Pb in the Soil[J]. Journal of Xinjiang Agricultural University, 2008, 31(4):38-40 http://www.cjae.net/CN/article/downloadArticleFile.do?attachType=PDF&id=19405
[35]寇士伟, 吴锦标, 谢素, 等.红薯对Pb、Cd的吸收累积特征及根际土壤Pb、Cd形态分布研究[J].农业环境科学学报, 2011, 30(4):677-683 http://mall.cnki.net/magazine/Article/SNYK201701031.htm
KOU S W, WU J B, XIE S, et al. Absorption and accumulation of Pb and Cd in sweet potato and species distribution of Pb and Cd in rhizosphere soil[J]. Journal of Agro-Environment Science, 2011, 30(4):677-683 http://mall.cnki.net/magazine/Article/SNYK201701031.htm
[36]李凡, 张义贤.单一及复合污染下铅铜在玉米幼苗体内积累与迁移的动态变化[J].农业环境科学学报, 2010, 29(1):19-24 http://www.cqvip.com/qk/92252A/201001/32763293.html
LI F, ZHANG Y X. Dynamics of accumulation and distribution of Cu, Pb in Zea mays L. seedlings under single or combined pollution of Cu and Pb[J]. Journal of Agro-Environment Science, 2010, 29(1):19-24 http://www.cqvip.com/qk/92252A/201001/32763293.html
[37]林大松, 徐应明, 孙国红, 等.土壤重金属污染复合效应对小白菜生长及重金属累积的影响[J].农业环境科学学报, 2006, 25(S1):72-75
LIN D S, XU Y M, SUN G H, et al. Combined effects and bioaccumulation of heavy metals in pakchoi grown in polluted soil[J]. Journal of Agro-Environment Science, 2006, 25(S1):72-75

相关话题/污染 土壤 植物 农业 环境科学