夏玉玲1,
侯立军2,
刘敏1
1.华东师范大学地理科学学院/教育部地理信息科学重点实验室 上海 200241
2.华东师范大学河口海岸学国家重点实验室 上海 200062
基金项目:中央高校基本科研业务费专项资金、国家自然科学基金重点项目(41730646)和面上项目(41371451)资助
详细信息
通讯作者:吴电明, 从事土壤氮循环与全球变化研究。E-mail:dmwu@geo.ecnu.edu.cn
中图分类号:X511;S154.1计量
文章访问数:1379
HTML全文浏览量:29
PDF下载量:1166
被引次数:0
出版历程
收稿日期:2017-11-17
录用日期:2017-12-04
刊出日期:2018-02-01
The mechanisms of HONO emissions from soil: A review
WU Dianming1,,,XIA Yuling1,
HOU Lijun2,
LIU Min1
1. School of Geographical Sciences, East China Normal University/Key Laboratory of Geographic Information Sciences, Ministry of Education, Shanghai 200241, China
2. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Funds:This study was supported by the Fundamental Research Funds for the Central Universities of China and the National Natural Science Foundation of China (41730646, 41371451)
More Information
Corresponding author:WU Dianming, E-mail: dmwu@geo.ecnu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:气态亚硝酸(HONO)是大气中氢氧自由基(OH·)的重要来源,直接影响到大气氧化能力和空气质量。通过比较外场测定和模型计算的HONO浓度,发现白天时存在未知的大气HONO来源。研究表明,土壤可以向大气中排放HONO。其机理可能是土壤亚硝态氮和氢离子的化学平衡作用;或土壤夜间吸附和白天解吸附的动态物理化学过程;或氨氧化细菌等微生物的直接排放;也可能是硝化过程中产生的羟胺,在土壤颗粒物等表面的化学反应。因此,土壤HONO排放通量与土壤亚硝态氮浓度、pH、氨氧化细菌丰度、土壤矿物、土壤湿度及C/N值等相关。目前对于土壤HONO排放的研究尚在起步阶段,国内亦少见相关成果报道。本文综述了土壤HONO排放的研究背景、探讨了土壤HONO排放的机理及影响因素,以期为减少氮素损失、提高氮肥利用率、评估氮肥的环境效应及城市空气质量等提供理论依据和科学指导。
关键词:氮循环/
气态亚硝酸/
土壤/
pH/
硝化/
氨氧化细菌/
二氧化氮
Abstract:Nitrous acid (HONO) significantly contributes to atmospheric hydroxyl radical (OH·) and also influences atmospheric oxidation capacity and air quality. Comparison of HONO concentrations measured in a field campaign and by modeling showed a large unknown HONO source during daytime. Studies have shown that the unknown HONO source can be attributed to soil emissions, a major source of atmospheric HONO. The mechanisms may be taking the form of chemical equilibrium between soil nitrite and H+, reactive uptake and displacement by soil, emissions by ammonia-oxidizing bacteria (AOB) and other micro-organisms, or surface reaction between hydroxylamine and H2O. Therefore, HONO flux from soils is controlled by soil nitrite concentration, pH, AOB abundance, soil minerals, soil moisture and C/N ratio. The mechanism of HONO emissions from soil has remained a point of hot discussion and few results have been reported from China. Here, we introduced the background of HONO emissions from soil, reviewed studies on the mechanisms of HONO emissions from soil and the related driving factors. This review was a relevant support for research on reducing nitrogen loss, enhancing nitrogen use efficiency, and evaluating the effects of nitrogen fertilization on environmental and urban air quality.
Key words:Nitrogen cycle/
HONO/
Soil/
pH/
Nitrification/
Ammonia-oxidizing bacteria (AOB)/
Nitrogen dioxide
HTML全文
参考文献
[1] | JONES E J. Equilibrium measurements by infrared absorption for the formation of nitric acid from oxygen, water vapor and nitrogen dioxide[J]. Journal of the American Chemical Society, 1943, 65(12): 2274–2276 doi: 10.1021/ja01252a004 |
[2] | NASH T. Nitrous acid in the atmosphere and laboratory experiments on its photolysis[J]. Tellus, 1974, 26(1/2): 175–179 doi: 10.3402/tellusa.v26i1-2.9768?needAccess=true |
[3] | AMMANN M, KALBERER M, JOST D T, et al. Heterogeneous production of nitrous acid on soot in polluted air masses[J]. Nature, 1998, 395(6698): 157–160 doi: 10.1038/25965 |
[4] | STEMMLER K, AMMANN M, DONDERS C, et al. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid[J]. Nature, 2006, 440(7081): 195–198 doi: 10.1038/nature04603 |
[5] | SAKAMAKI F, HATAKEYAMA S, AKIMOTO H. Formation of nitrous acid and nitric oxide in the heterogeneous dark reaction of nitrogen dioxide and water vapor in a smog chamber[J]. International Journal of Chemical Kinetics, 1983, 15(10): 1013–1029 doi: 10.1002/(ISSN)1097-4601 |
[6] | ALICKE B, GEYER A, HOFZUMAHAUS A, et al. OH formation by HONO photolysis during the BERLIOZ experiment[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D4): 8247 doi: 10.1029/2001JD000579 |
[7] | STUTZ J, KIM E S, PLATT U, et al. UV-visible absorption cross sections of nitrous acid[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D11): 14585–14592 doi: 10.1029/2000JD900003 |
[8] | ALICKE B, PLATT U, STUTZ J. Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D22): 8196 doi: 10.1029/2000JD000075 |
[9] | ACKER K, M?LLER D, WIEPRECHT W, et al. Strong daytime production of OH from HNO2 at a rural mountain site[J]. Geophysical Research Letters, 2006, 33(2): L02809 doi: 10.1007/s11426-013-5044-0 |
[10] | ELSHORBANY Y F, KLEFFMANN J, KURTENBACH R, et al. Seasonal dependence of the oxidation capacity of the city of Santiago de Chile[J]. Atmospheric Environment, 2010, 44(40): 5383–5394 doi: 10.1016/j.atmosenv.2009.08.036 |
[11] | PERNER D, PLATT U. Detection of nitrous acid in the atmosphere by differential optical absorption[J]. Geophysical Research Letters, 1979, 6(12): 917–920 doi: 10.1029/GL006i012p00917 |
[12] | PLATT U, PERNER D, HARRIS G W, et al. Observations of nitrous acid in an urban atmosphere by differential optical absorption[J]. Nature, 1980, 285(5763): 312–314 doi: 10.1038/285312a0 |
[13] | KLEFFMANN J, GAVRILOAIEI T, HOFZUMAHAUS A, et al. Daytime formation of nitrous acid: A major source of OH radicals in a forest[J]. Geophysical Research Letters, 2005, 32(5): L05818 http://cn.bing.com/academic/profile?id=557fbfc7cc24f89e406d3c0ce61231a8&encoded=0&v=paper_preview&mkt=zh-cn |
[14] | SEINFELD J H, PANDIS S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change[M]. 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2006: 205–275 |
[15] | SLEIMAN M, GUNDEL L A, PANKOW J F, et al. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6576–6581 doi: 10.1073/pnas.0912820107 |
[16] | PAGSBERG P, BJERGBAKKE E, RATAJCZAK E, et al. Kinetics of the gas phase reaction OH+NO(+M)→HONO(+M) and the determination of the UV absorption cross sections of HONO[J]. Chemical Physics Letters, 1997, 272(5/6): 383–390 https://www.sciencedirect.com/science/article/pii/S0009261497005769 |
[17] | LI S P, MATTHEWS J, SINHA A. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O[J]. Science, 2008, 319(5870): 1657–1660 doi: 10.1126/science.1151443 |
[18] | JENKIN M E, COX R A, WILLIAMS D J. Laboratory studies of the kinetics of formation of nitrous acid from the thermal reaction of nitrogen dioxide and water vapour[J]. Atmospheric Environment (1967), 1988, 22(3): 487–498 doi: 10.1016/0004-6981(88)90194-1 |
[19] | LI X, ROHRER F, HOFZUMAHAUS A, et al. Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere[J]. Science, 2014, 344(6181): 292–296 doi: 10.1126/science.1248999 |
[20] | PRATHER M J, JACOB D J. A persistent imbalance in HOx and NOx photochemistry of the upper troposphere driven by deep tropical convection[J]. Geophysical Research Letters, 1997, 24(24): 3189–3192 doi: 10.1029/97GL03027 |
[21] | TYNDALL G S, ORLANDO J J, CALVERT J G. Upper limit for the rate coefficient for the reaction HO2 + NO2.fwdarw. HONO + O2[J]. Environmental Science & Technology, 1995, 29(1): 202–206 https://arizona.pure.elsevier.com/en/publications/atmospheric-chemistry-of-hydrazoic-acid-hnsub3sub-uv-absorption-s |
[22] | ATKINSON R, BAULCH D L, COX R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume Ⅰ— Gas phase reactions of Ox, HOx, NOx and SOx species[J]. Atmospheric Chemistry and Physics, 2004, 4(6): 1461–1738 doi: 10.5194/acp-4-1461-2004 |
[23] | CHAN W H, NORDSTROM R J, CALVERT J G, et al. Kinetic study of nitrous acid formation and decay reactions in gaseous mixtures of nitrous acid, nitrogen oxide (NO), nitrogen oxide (NO2), water, and nitrogen[J]. Environmental Science & Technology, 1976, 10(7): 674–682 https://www.sciencedirect.com/science/article/pii/0004698184902701 |
[24] | SVENSSON R, LJUNGSTR?M E, LINDQVIST O. Kinetics of the reaction between nitrogen dioxide and water vapour[J]. Atmospheric Environment (1967), 1987, 21(7): 1529–1539 doi: 10.1016/0004-6981(87)90315-5 |
[25] | SCHIMANG R, FOLKERS A, KLEFFMANN J, et al. Uptake of gaseous nitrous acid (HONO) by several plant species[J]. Atmospheric Environment, 2006, 40(7): 1324–1335 doi: 10.1016/j.atmosenv.2005.10.028 |
[26] | VANDENBOER T C, BROWN S S, MURPHY J G, et al. Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTT-11[J]. Journal of Geophysical Research: Atmospheres, 2013, 118, 10, 155– 10, 171 doi: 10.1002/jgrd.50721 |
[27] | VANDENBOER T C, YOUNG C J, TALUKDAR R K, et al. Nocturnal loss and daytime source of nitrous acid through reactive uptake and displacement[J]. Nature Geoscience, 2015, 8(1): 55–60 doi: 10.1038/ngeo2298 |
[28] | S?RGEL M, REGELIN E, BOZEM H, et al. Quantification of the unknown HONO daytime source and its relation to NO2[J]. Atmospheric Chemistry and Physics, 2011, 11(20): 10433–10447 doi: 10.5194/acp-11-10433-2011 |
[29] | HARRISON R M, KITTO A M N. Evidence for a surface source of atmospheric nitrous acid[J]. Atmospheric Environment, 1994, 28(6): 1089–1094 https://www.sciencedirect.com/science/article/pii/1352231094902860 |
[30] | STUTZ J, ALICKE B, NEFTEL A. Nitrous acid formation in the urban atmosphere: Gradient measurements of NO2 and HONO over grass in Milan, Italy[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D22): 8192 doi: 10.1029/2001JD000390 |
[31] | SU H, CHENG Y F, CHENG P, et al. Observation of nighttime nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in China[J]. Atmospheric Environment, 2008, 42(25): 6219–6232 doi: 10.1016/j.atmosenv.2008.04.006 |
[32] | S?RGEL M, TREBS I, WU D, et al. A comparison of measured HONO uptake and release with calculated source strengths in a heterogeneous forest environment[J]. Atmospheric Chemistry and Physics, 2015, 15: 9237–9251 doi: 10.5194/acp-15-9237-2015 |
[33] | ZHAO X, MIN J, WANG S Q, et al. Further understanding of nitrous oxide emission from paddy fields under rice/wheat rotation in south China[J]. Journal Of Geophysical Research: Biogeosciences, 2011, 116(G2): G02016 http://cn.bing.com/academic/profile?id=ec1ec33ee021969862fecb9ec59d0f1a&encoded=0&v=paper_preview&mkt=zh-cn |
[34] | KLEFFMANN J, KURTENBACH R, L?RZER J, et al. Measured and simulated vertical profiles of nitrous acid — Part Ⅰ: Field measurements[J]. Atmospheric Environment, 2003, 37(21): 2949–2955 doi: 10.1016/S1352-2310(03)00242-5 |
[35] | ZHANG N, ZHOU X L, SHEPSON P B, et al. Aircraft measurement of HONO vertical profiles over a forested region[J]. Geophysical Research Letters, 2009, 36(15): L15820 http://cn.bing.com/academic/profile?id=cdf8c194bbe29d00c533e652438ca1fb&encoded=0&v=paper_preview&mkt=zh-cn |
[36] | WONG K W, TSAI C, LEFER B, et al. Daytime HONO vertical gradients during SHARP 2009 in Houston, TX[J]. Atmospheric Chemistry and Physics, 2012, 12(2): 635–652 doi: 10.5194/acp-12-635-2012 |
[37] | HE Y, ZHOU X L, HOU J, et al. Importance of dew in controlling the air-surface exchange of HONO in rural forested environments[J]. Geophysical Research Letters, 2006, 33(2): L02813 https://wmich.pure.elsevier.com/en/publications/importance-of-dew-in-controlling-the-air-surface-exchange-of-hono-3 |
[38] | KUBOTA M, ASAMI T. Source of nitrous acid volatilized from upland soils[J]. Soil Science and Plant Nutrition, 1985, 31(1): 35–42 doi: 10.1080/17470765.1985.10555215 |
[39] | SU H, CHENG Y F, OSWALD R, et al. Soil nitrite as a source of atmospheric HONO and OH radicals[J]. Science, 2011, 333(6049): 1616–1618 doi: 10.1126/science.1207687 |
[40] | WONG K W, OH H J, LEFER B L, et al. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX[J]. Atmospheric Chemistry and Physics, 2011, 11(8): 3595–3609 doi: 10.5194/acp-11-3595-2011 |
[41] | VANDENBOER T C, MARKOVIC M Z, SANDERS J E, et al. Evidence for a nitrous acid (HONO) reservoir at the ground surface in Bakersfield, CA, during CalNex 2010[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(14): 9093– 9106 doi: 10.1002/2013JD020971 |
[42] | S?RGEL M, TREBS I, WU D, et al. A comparison of measured HONO uptake and release with calculated source strengths in a heterogeneous forest environment[J]. Atmospheric Chemistry and Physics, 2015, 15(16): 9237–9251 doi: 10.5194/acp-15-9237-2015 |
[43] | MEUSEL H, TAMM A, KUHN U, et al. Emission of nitrous acid from soil and biological soil crusts represents a dominant source of HONO in the remote atmosphere in Cyprus[J]. Atmospheric Chemistry and Physics, 2017, doi: 10.5194/acp-2017-356 |
[44] | WEBER B, WU D M, TAMM A, et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50): 15384–15389 doi: 10.1073/pnas.1515818112 |
[45] | KULMALA M, PET?J? T. Soil nitrites influence atmospheric chemistry[J]. Science, 2011, 333(6049): 1586–1587 doi: 10.1126/science.1211872 |
[46] | MAMTIMIN B, MEIXNER F X, BEHRENDT T, et al. The contribution of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season[J]. Atmospheric Chemistry and Physics, 2016, 16(15): 10175–10194 doi: 10.5194/acp-16-10175-2016 |
[47] | LAUFS S, CAZAUNAU M, STELLA P, et al. Diurnal fluxes of HONO above a crop rotation[J]. Atmospheric Chemistry and Physics, 2017, 17(11): 6907–6923 doi: 10.5194/acp-17-6907-2017 |
[48] | DONALDSON M A, BISH D L, RAFF J D. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18472–18477 doi: 10.1073/pnas.1418545112 |
[49] | OSWALD R, BEHRENDT T, ERMEL M, et al. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen[J]. Science, 2013, 341(6151): 1233–1235 doi: 10.1126/science.1242266 |
[50] | SCHARKO N K, SCHüTTE U M E, BERKE A E, et al. Combined flux chamber and genomics approach links nitrous acid emissions to ammonia oxidizing bacteria and archaea in urban and agricultural soil[J]. Environmental Science & Technology, 2015, 49(23): 13825–13834 doi: 10.1080/17470765.1985.10555215 |
[51] | WU D M, KAMPF C J, P?SCHL U, et al. Novel tracer method to measure isotopic labeled gas-phase nitrous acid (HO15NO) in biogeochemical studies[J]. Environmental Science & Technology, 2014, 48(14): 8021–8027 doi: 10.1021/ac061598h |
[52] | ERMEL M. Microbial formation of nitrous acid and its exchange processes between soils and atmosphere[D]. Mainz: Johannes Gutenberg-Universit?t, 2014 |
[53] | MALJANEN M, YLI-PIRIL? P, HYT?NEN J, et al. Acidic northern soils as sources of atmospheric nitrous acid (HONO)[J]. Soil Biology and Biochemistry, 2013, 67: 94–97 doi: 10.1016/j.soilbio.2013.08.013 |
[54] | KEBEDE M A, BISH D L, LOSOVYJ Y, et al. The role of Iron-bearing minerals in NO2 to HONO conversion on soil surfaces[J]. Environmental Science & Technology, 2016, 50(16): 8649–8660 https://www.osti.gov/scitech/search/author:"Engelhard, Mark H." |
[55] | SCHARKO N K, MARTIN E T, LOSOVYJ Y, et al. Evidence for quinone redox chemistry mediating daytime and nighttime NO2-to-HONO conversion on soil surfaces[J]. Environmental Science & Technology, 2017, 51(17): 9633–9643 http://nerm.sites.acs.org/PACS OUTPUT/RM_NERM_Separates.doc |