黄有胜3,
胡廷旭1, 2,
朱波1,,
1.中国科学院山地表生过程与生态调控重点实验室/中国科学院成都山地灾害与环境研究所 成都 610041
2.中国科学院大学 北京 100049
3.四川省农业机械化干部学校 成都 610017
基金项目: 国家自然科学基金项目41330744
国家自然科学基金项目41271321
国家重点基础研究发展计划(973计划)项目2012CB417101
详细信息
作者简介:肖乾颖, 主要研究方向为土壤氮素循环。E-mail:qianying_xiao@126.com
通讯作者:朱波, 主要研究方向为土壤养分循环及面源污染控制。E-mail:bzhu@imde.ac.cn
中图分类号:S145.6计量
文章访问数:1124
HTML全文浏览量:1
PDF下载量:1272
被引次数:0
出版历程
收稿日期:2017-12-12
录用日期:2017-12-18
刊出日期:2018-02-01
Effects of fertilization regimes on N2O and NO emissions from agro-ecosystem of purplish soil
XIAO Qianying1, 2,,HUANG Yousheng3,
HU Tingxu1, 2,
ZHU Bo1,,
1. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Sichuan Provincial College for Engineer of Agri-mechanization, Chengdu 610017, China
Funds: the National Natural Science Foundation of China41330744
the National Natural Science Foundation of China41271321
the National Basic Research Program of China (973 Program)2012CB417101
More Information
Corresponding author:ZHU Bo, E-mail: bzhu@imde.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:依托紫色土施肥方式与养分循环长期试验平台(2002年-),采用静态箱-气相色谱法开展紫色土冬小麦-夏玉米轮作周期(2013年10月至2014年10月)农田生态系统N2O和NO排放的野外原位观测试验。长期施肥方式包括单施氮肥(N)、传统猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(RSDNPK)等5种,氮肥用量相同[小麦季130 kg(N)·hm-2,玉米季150 kg(N)·hm-2],不施肥对照(CK)用于计算排放系数,对比不同施肥方式对紫色土典型农田生态系统土壤N2O和NO排放的影响,以期探寻紫色土农田生态系统N2O和NO协同减排的施肥方式。结果表明,所有施肥方式下紫色土N2O和NO排放速率波动幅度大,且均在施肥初期出现峰值;强降雨激发N2O排放,但对NO排放无明显影响。在整个小麦-玉米轮作周期,N、OM、NPK、OMNPK和RSDNPK处理的N2O年累积排放量分别为1.40 kg(N)·hm-2、4.60 kg(N)·hm-2、0.95 kg(N)·hm-2、2.16kg(N)·hm-2和1.41 kg(N)·hm-2,排放系数分别为0.41%、1.56%、0.25%、0.69%、0.42%;NO累积排放量分别为0.57 kg(N)·hm-2、0.40 kg(N)·hm-2、0.39 kg(N)·hm-2、0.46 kg(N)·hm-2和0.17 kg(N)·hm-2,排放系数分别为0.21%、0.15%、0.15%、0.17%、0.07%。施肥方式对紫色土N2O和NO累积排放量具有显著影响(P < 0.05),与NPK处理比较,OM和OMNPK处理的N2O排放分别增加384%和127%,同时NO排放分别增加3%和18%;RSDNPK处理的NO排放减少56%。表明长期施用猪厩肥显著增加N2O和NO排放,而秸秆还田有效减少NO排放。研究表明,土壤温度和水分条件均显著影响小麦季N2O和NO排放(P < 0.01),对玉米季N2O和NO排放没有显著影响(P>0.05),土壤无机氮含量则是在小麦-玉米轮作期N2O和NO排放的主要限制因子(P < 0.01)。全量秸秆还田与化肥配合施用是紫色土农田生态系统N2O和NO协同减排的优化施肥方式。
关键词:施肥方式/
紫色土/
N2O/
NO/
排放量/
排放系数
Abstract:Nitrous oxide (N2O) and nitric oxide (NO) emissions from agro-ecosystem of purplish soil were measured (starting from October 2003) in a long-term purplish soil fertilization platform (established in 2002) using closed static-chamber and gas chromatography systems. Single synthetic nitrogen fertilizer (N), pig manure (OM), regular synthetic nitrogen, phosphorus and potassium fertilizer (NPK), pig manure combined with synthetic NPK fertilizer (OMNPK) and returned crop residues combined with synthetic NPK fertilizer (RSDNPK) under the same total nitrogen rate were set, and N2O and NO emissions from croplands of purplish soil were monitored under these fertilization regimes. No fertilizer treatment (CK) was used as control in the calculations of the emission coefficients. The results showed large fluctuations in emission rates of N2O and NO, with N2O and NO peak emissions at the early stage of fertilization. N2O emission was enhanced by heavy rainfall, but rainfall had no significant effect on NO emission. For the whole wheat-maize rotation period, cumulative annual emissions of N2O in N, OM, NPK, OMNPK and RSDNPK treatments were 1.40, 4.60, 0.95, 2.16 and 1.41 kg(N)·hm-2; and with emission coefficients of 0.41%, 1.56%, 0.25%, 0.69% and 0.42%, respectively. The cumulative emissions of NO in N, OM, NPK, OMNPK and RSDNPK treatments were 0.57, 0.40, 0.39, 0.46 and 0.17 kg(N)·hm-2; and with emission coefficients of 0.21%, 0.15%, 0.15%, 0.17% and 0.07%, respectively. Fertilizer application regimes significantly (P < 0.05) influenced cumulative N2O and NO emissions. Compared with conventional NPK fertilizer, pig manure amendment stimulated N2O and NO emissions, with increases of 384% and 3% for OM and 127% and 18% for OMNPK, respectively. Returned crop residues combined with regular synthetic NPK fertilizer decreased NO emission by 56%. The application of pig manure (OM) increased N2O and NO emissions, whereas returned crop residues plus regular synthetic NPK fertilizer (RSDNPK) decreased NO emission. The research also showed that both soil temperature and moisture conditions significantly influenced N2O and NO emissions during wheat season (P < 0.01), but not during maize season (P> 0.05). However, soil inorganic nitrogen content was the main limiting factor for N2O and NO emissions during the whole wheat-maize rotation year (P < 0.01). Returned crop residues plus regular NPK fertilizer was recommended as the optimal fertilization regime for simultaneous mitigation of N2O and NO emissions.
Key words:Fertilization regime/
Purplish soil/
N2O/
NO/
Emission flux/
Emission coefficient
HTML全文
图12013—2014年冬小麦-夏玉米轮作周期内降雨量和不同施肥方式下土壤孔隙充水率及土壤5 cm温度
OM:猪厩肥处理; NPK:氮磷钾肥处理; OMNPK:猪厩肥配施氮磷钾肥处理; RSDNPK:秸秆还田配施氮磷钾肥处理; N:氮肥处理; CK:不施肥处理。
Figure1.Rainfall and water-filled pore space (WFPS), soil temperature in the topsoil (5 cm) under different fertilization regimes during winter wheat-summer maize rotation from 2013 to 2014
OM: pig manure treatment; NPK: regular synthetic nitrogen, phosphorus and potassium fertilizer treatment; OMNPK: pig manure combined with synthetic NPK fertilizer treatment; RSDNPK: returned crop residues combined with synthetic NPK fertilizer treatment; N: synthetic N fertilizer treatment; CK: no fertilization treatment.
下载: 全尺寸图片幻灯片
图22013—2014年冬小麦-夏玉米轮作周期内不同施肥方式下土壤可溶性有机碳(DOC)和无机氮(NH4+-N、NO3--N)含量变化
OM:猪厩肥处理; NPK:氮磷钾肥处理; OMNPK:猪厩肥配施氮磷钾肥处理; RSDNPK:秸秆还田配施氮磷钾肥处理; N:氮肥处理; CK:不施肥处理。
Figure2.Dynamic changes of soil dissolved organic carbon (DOC) and inorganic N (NH4+-N, NO3--N) contents under different fertilization regimes during winter wheat-summer maize rotation from 2013 to 2014
OM: pig manure treatment; NPK: regular synthetic nitrogen, phosphorus and potassium fertilizer treatment; OMNPK: pig manure combined with synthetic NPK fertilizer treatment; RSDNPK: returned crop residues combined with synthetic NPK fertilizer treatment; N: synthetic N fertilizer treatment; CK: no fertilization treatment.
下载: 全尺寸图片幻灯片
图32013—2014年冬小麦-夏玉米轮作周期内不同施肥方式下土壤N2O排放通量变化
OM:猪厩肥处理; NPK:氮磷钾肥处理; OMNPK:猪厩肥配施氮磷钾肥处理; RSDNPK:秸秆还田配施氮磷钾肥处理; N:氮肥处理; CK:不施肥处理。
Figure3.Variations of soil N2O emission fluxes under different fertilization regimes during winter wheat-summer maize rotation from 2013 to 2014
OM: pig manure treatment; NPK: regular synthetic nitrogen, phosphorus and potassium fertilizer treatment; OMNPK: pig manure combined with synthetic NPK fertilizer treatment; RSDNPK: returned crop residues combined with synthetic NPK fertilizer treatment; N: synthetic N fertilizer treatment; CK: no fertilization treatment.
下载: 全尺寸图片幻灯片
图42013—2014年冬小麦-夏玉米轮作周期内不同施肥方式下土壤NO排放通量变化
OM:猪厩肥处理; NPK:氮磷钾肥处理; OMNPK:猪厩肥配施氮磷钾肥处理; RSDNPK:秸秆还田配施氮磷钾肥处理; N:氮肥处理; CK:不施肥处理。
Figure4.Variations of soil NO emission fluxes under different fertilization regimes during winter wheat-summer maize rotation from 2013 to 2014
OM: pig manure treatment; NPK: regular synthetic nitrogen, phosphorus and potassium fertilizer treatment; OMNPK: pig manure combined with synthetic NPK fertilizer treatment; RSDNPK: returned crop residues combined with synthetic NPK fertilizer treatment; N: synthetic N fertilizer treatment; CK: no fertilization treatment.
下载: 全尺寸图片幻灯片
表1冬小麦-夏玉米轮作系统不同施肥方式下N2O和NO的累积排放量和排放系数
Table1.N2O and NO cumulative emissions and emission coefficients under different fertilization regimes in winter wheat-summer maize rotation system
处理Treatment | 累积排放量Accumulated emission (kg·hm-2) | 排放系数Emission coefficient (%) | ||||||
冬小麦季Winter wheat season | 夏玉米季Summer maize season | 轮作周期Total | 冬小麦季Winter wheat season | 夏玉米季Summer maize season | 轮作周期Total | |||
N2O | CK | 0.13±0.23d | 0.11±0.22d | 0.24±0.22e | — | — | — | |
N | 0.71±0.13bc | 0.69±0.02bc | 1.40±0.15c | 0.45 | 0.39 | 0.41 | ||
OM | 1.41±0.09a | 3.19±0.55a | 4.60±0.64a | 0.98 | 2.05 | 1.56 | ||
NPK | 0.42±0.16cd | 0.53±0.02c | 0.95±0.16d | 0.22 | 0.28 | 0.25 | ||
OMNPK | 0.87±0.11b | 1.29±0.01b | 2.16±0.12b | 0.57 | 0.79 | 0.69 | ||
RSDNPK | 0.52±0.07bcd | 0.89±0.04bc | 1.41±0.11c | 0.30 | 0.52 | 0.42 | ||
NO | CK | -0.01±0.00e | -0.01±0.00e | -0.02±0.00e | — | — | — | |
N | 0.34±0.05a | 0.23±0.01abc | 0.57±0.06a | 0.27 | 0.16 | 0.21 | ||
OM | 0.07±0.09de | 0.33±0.01a | 0.4±0.08c | 0.06 | 0.23 | 0.15 | ||
NPK | 0.25±0.05ab | 0.14±0.03cd | 0.39±0.08c | 0.20 | 0.10 | 0.15 | ||
OMNPK | 0.18±0.04bc | 0.28±0.04ab | 0.46±0.08b | 0.15 | 0.19 | 0.17 | ||
RSDNPK | 0.11±0.02cd | 0.06±0.01d | 0.17±0.03d | 0.09 | 0.05 | 0.07 | ||
??CK:不施肥处理; N:氮肥处理; OM:猪厩肥处理; NPK:氮磷钾肥处理; OMNPK:猪厩肥配施氮磷钾肥处理; RSDNPK:秸秆还田配施氮磷钾肥处理。“—”表示不施肥作为对照计算排放系数, 同列不同字母表示处理间在0.05水平差异显著(Duncan多重比较)。表中数据为平均值±标准误差。CK: no fertilization treatment; N: synthetic N fertilizer treatment; OM: pig manure treatment; NPK: regular synthetic nitrogen, phosphorus and potassium fertilizer treatment; OMNPK: pig manure combined with synthetic NPK fertilizer treatment; RSDNPK: returned crop residues combined with synthetic NPK fertilizer treatment. “—” represents no fertilizer(CK) as control for calculation of emission coefficient. Different small letters in the same column indicate significant differences (P < 0.05, Duncan) among fertilization regimes. The values in the table are mean ± S.E. |
下载: 导出CSV
表2冬小麦-夏玉米轮作系统不同施肥方式下土壤N2O和NO排放通量与环境因子的相关分析
Table2.Correlation coefficients between environment factors and N2O and NO emission fluxes under different fertilization regimes in winter wheat-summer maize rotation system
处理Treatment | 作物生长季Crop growing season | 土温(5 cm) Soil temperature (5 cm) | WFPS | DOC | NH4+-N | NO3--N | |
N2O | CK | 冬小麦Winter wheat | 0.114 | 0.245 | -0.303 | -0.143 | -0.005 |
夏玉米Summer maize | 0.143 | 0.345 | 0.102 | 0.013 | 0.025 | ||
N | 冬小麦Winter wheat | 0.266 | 0.473** | 0.540 | 0.117 | 0.311* | |
夏玉米Summer maize | 0.183 | 0.140 | -0.118 | 0.182 | -0.185 | ||
OM | 冬小麦Winter wheat | 0.392** | 0.599** | 0.005 | 0.117 | 0.426** | |
夏玉米Summer maize | -0.115 | -0.168 | -0.098 | -0.080 | 0.545** | ||
NPK | 冬小麦Winter wheat | 0.236 | 0.499** | 0.018 | 0.083 | 0.498** | |
夏玉米Summer maize | -0.115 | 0.079 | -0.058 | 0.073 | 0.112 | ||
OMNPK | 冬小麦Winter wheat | 0.318* | 0.593** | 0.104 | 0.445** | 0.527** | |
夏玉米Summer maize | -0.193 | 0.004 | 0.109 | -0.191 | 0.522** | ||
RSDNPK | 冬小麦Winter wheat | 0.322* | 0.462** | -0.027 | 0.010 | 0.518** | |
夏玉米Summer maize | -0.150 | -0.097 | 0.027 | 0.347 | 0.161 | ||
NO | CK | 冬小麦Winter wheat | 0.184 | 0.162 | 0.019 | 0.152 | -0.106 |
夏玉米Summer maize | 0.234 | 0.153 | 0.013 | 0.136 | 0.177 | ||
N | 冬小麦Winter wheat | 0.319* | 0.483** | 0.071 | 0.263 | 0.267 | |
夏玉米Summer maize | 0.252 | -0.295 | -0.043 | 0.531** | 0.366 | ||
OM | 冬小麦Winter wheat | 0.312* | 0.309** | 0.080 | 0.136 | 0.412** | |
夏玉米Summer maize | -0.145 | -0.378* | -0.084 | -0.081 | 0.527** | ||
NPK | 冬小麦Winter wheat | 0.354* | 0.529** | 0.066 | 0.162 | 0.493** | |
夏玉米Summer maize | -0.068 | -0.350 | -0.104 | 0.395* | 0.593** | ||
OMNPK | 冬小麦Winter wheat | 0.327* | 0.501** | 0.119 | 0.527** | 0.522** | |
夏玉米Summer maize | -0.150 | -0.124 | -0.097 | 0.045 | 0.670** | ||
RSDNPK | 冬小麦Winter wheat | 0.327* | 0.360* | -0.014 | -0.025 | 0.528** | |
夏玉米Summer maize | -0.098 | -0.153 | 0.113 | 0.337 | 0.196 | ||
??CK:不施肥处理; N:氮肥处理; OM:猪厩肥处理; NPK:氮磷钾肥处理; OMNPK:猪厩肥配施氮磷钾肥处理; RSDNPK:秸秆还田配施氮磷钾肥处理。*和**分别代表在0.05和0.01水平极显著相关, 表中数值为皮尔森相关系数。CK: no fertilization treatment; N: synthetic N fertilizer treatment; OM: pig manure treatment; NPK: regular synthetic nitrogen, phosphorus and potassium fertilizer treatment; OMNPK: pig manure combined with synthetic NPK fertilizer treatment; RSDNPK: returned crop residues combined with synthetic NPK fertilizer treatment. “*” and “**” indicate significant correlation at P < 0.05 and P < 0.01, respectively. The values in the table are Pearson correlation coefficients. |
下载: 导出CSV
参考文献
[1] | ZHU X, BURGER M, DOANE T A, et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6328–6333 doi: 10.1073/pnas.1219993110 |
[2] | KRAUSE H M, THONAR C, ESCHENBACH W, et al. Long term farming systems affect soils potential for N2O production and reduction processes under denitrifying conditions[J]. Soil Biology and Biochemistry, 2017, 114: 31–41 doi: 10.1016/j.soilbio.2017.06.025 |
[3] | KANTER D, MAUZERALL D L, RAVISHANKARA A R, et al. A post-Kyoto partner: Considering the stratospheric ozone regime as a tool to manage nitrous oxide[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2013, 110(12): 4451–4457 doi: 10.1073/pnas.1222231110 |
[4] | STOCKER T F, QIN D, PLATTNER G K, et al. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013: 465–570 |
[5] | SLEMR F, SEILER W. Field study of environmental variables controlling the NO emissions from soil and the NO compensation point[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D7): 13017–13031 doi: 10.1029/91JD01028 |
[6] | CRUTZEN P J. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide[M]//DELWICHE C C. Denitrification, Nitrification and Atmospheric N2O. Chichester: John Wiley & Sons, 1981 |
[7] | 蔡延江, 丁维新, 项剑.农田土壤N2O和NO排放的影响因素及其作用机制[J].土壤, 2012, 44(6): 881–887 doi: 10.11674/zwyf.16324 CAI Y J, DING W X, XIANG J. Factors controlling N2O and NO emissions from agricultural soils and their influencing mechanisms: A review[J]. Soils, 2012, 44(6): 881–887 doi: 10.11674/zwyf.16324 |
[8] | MOSIER A, KROEZE C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands[J]. Chemosphere-Global Change Science, 2000, 2(3/4): 465–473 doi: 10.1023/A:1021179605327 |
[9] | BRUINSMA J. World Agriculture: Towards 2015/2030: An FAO Perspective[M]. London: Earthscan, 2003 |
[10] | STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207–228 doi: 10.1007/s10705-006-9000-7 |
[11] | 曾泽彬, 朱波, 朱雪梅, 等.施肥对夏玉米季紫色土N2O排放及反硝化作用的影响[J].土壤学报, 2013, 50(1): 130–137 doi: 10.11766/trxb201203010055 ZENG Z B, ZHU B, ZHU X M, et al. Effects of fertilization on N2O emission and denitrification in purple soil during summer maize season in the Sichuan Basin[J]. Acta Pedologica Sinica, 2013, 50(1): 130–137 doi: 10.11766/trxb201203010055 |
[12] | RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123–125 doi: 10.1126/science.1176985 |
[13] | ROBERTSON G P, GROFFMAN P M. Nitrogen Transformations[M]//PAUL E A. Soil Microbiology, Ecology and Biochemistry. San Diego: Academic Press, 2015: 421–446 |
[14] | JU X T, LU X, GAO Z L, et al. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions[J]. Environmental Pollution, 2011, 159(4): 1007–1016 doi: 10.1016/j.envpol.2010.10.040 |
[15] | CUI F, YAN G X, ZHOU Z X, et al. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain[J]. Soil Biology and Biochemistry, 2012, 48: 10–19 doi: 10.1016/j.soilbio.2012.01.007 |
[16] | 薛建福, 濮超, 张冉, 等.农作措施对中国稻田氧化亚氮排放影响的研究进展[J].农业工程学报, 2015, 31(11): 1–9 doi: 10.11975/j.issn.1002-6819.2015.11.001 XUE J F, PU C, ZHANG R, et al. Review on management-induced nitrous oxide emissions from paddy ecosystems[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 1–9 doi: 10.11975/j.issn.1002-6819.2015.11.001 |
[17] | BOUWMAN A F, BOUMANS L J M, BATJES N H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data[J]. Global Biogeochemical Cycles, 2002, 16(4): 6-1–6-13 http://cn.bing.com/academic/profile?id=771b9ad3712a2fac8f7b2d4213a37fd0&encoded=0&v=paper_preview&mkt=zh-cn |
[18] | ZHAI L M, LIU H B, ZHANG J Z, et al. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China[J]. Agricultural Sciences in China, 2011, 10(11): 1748–1757 doi: 10.1016/S1671-2927(11)60174-0 |
[19] | 董玉红, 欧阳竹, 李运生, 等.不同施肥方式对农田土壤CO2和N2O排放的影响[J].中国土壤与肥料, 2007, (4): 34–39 doi: 10.11838/sfsc.20070408 DONG Y H, OUYANG Z, LI Y S, et al. Influence of different fertilization on CO2 and N2O fluxes from agricultural soil[J]. Soil and Fertilizer Sciences in China, 2007, (4): 34–39 doi: 10.11838/sfsc.20070408 |
[20] | 李燕青, 唐继伟, 车升国, 等.长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响[J].中国农业科学, 2015, 48(21): 4381–4389 doi: 10.3864/j.issn.0578-1752.2015.21.018 LI Y Q, TANG J W, CHE S G, et al. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China Plain[J]. Scientia Agricultura Sinica, 2015, 48(21): 4381–4389 doi: 10.3864/j.issn.0578-1752.2015.21.018 |
[21] | LI H, QIU J J, WANG L G, et al. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China[J]. Agriculture, Ecosystems & Environment, 2010, 135(1/2): 24–33 http://cn.bing.com/academic/profile?id=0a0d60618868fc2c796e704d8bc4348a&encoded=0&v=paper_preview&mkt=zh-cn |
[22] | MENG L, DING W X, CAI Z C. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil[J]. Soil Biology and Biochemistry, 2005, 37(11): 2037–2045 doi: 10.1016/j.soilbio.2005.03.007 |
[23] | ZHENG X H, WANG M X, WANG Y S, et al. Mitigation options for methane, nitrous oxide and nitric oxide emissions from agricultural ecosystems[J]. Advances in Atmospheric Sciences, 2000, 17(1): 83–92 doi: 10.1007/s00376-000-0045-2 |
[24] | DAS S, ADHYA T K. Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice[J]. Geoderma, 2014, 213: 185–192 doi: 10.1016/j.geoderma.2013.08.011 |
[25] | VALLEJO A, SKIBA U M, GARCíA-TORRES L, et al. Nitrogen oxides emission from soils bearing a potato crop as influenced by fertilization with treated pig slurries and composts[J]. Soil Biology and Biochemistry, 2006, 38(9): 2782–2793 doi: 10.1016/j.soilbio.2006.04.040 |
[26] | LIU C Y, WANG K, MENG S X, et al. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 226–233 https://www.sciencedirect.com/science/article/pii/S0167880910003245 |
[27] | YAO Z S, ZHENG X H, XIE B H, et al. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation[J]. Soil Biology and Biochemistry, 2009, 41(10): 2131–2140 doi: 10.1016/j.soilbio.2009.07.025 |
[28] | 柳文丽, 李锡鹏, 沈茜, 等.施肥方式对冬小麦季紫色土N2O排放特征的影响[J].中国生态农业学报, 2014, 22(9): 1029–1037 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014905&flag=1 LIU W L, LI X P, SHEN X, et al. Effects of fertilizer application regimes on soil N2O emissions in the croplands of purple soil in the Sichuan Basin during wheat season[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1029–1037 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014905&flag=1 |
[29] | G?DDE M, CONRAD R. Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture[J]. Biology and Fertility of Soils, 2000, 32(2): 120–128 doi: 10.1007/s003740000247 |
[30] | 李涛, 王小国, 胡廷旭.生物炭对紫色土农田土壤NO排放的影响[J].土壤, 2016, 48(5): 879–886 http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201711002.htm LI T, WANG X G, HU T X. Impact of biochar on NO emission from copland of purple soil[J]. Soils, 2016, 48(5): 879–886 http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201711002.htm |
[31] | HOYLE F C, MURPHY D V, FILLERY I R P. Temperature and stubble management influence microbial CO2-C evolution and gross N transformation rates[J]. Soil Biology and Biochemistry, 2006, 38(1): 71–80 doi: 10.1016/j.soilbio.2005.04.020 |
[32] | 李春越, 白红英, 党廷辉, 等.农田土壤磷酸酶活性与土壤N2O排放通量的相关性[J].中国环境科学, 2007, 27(2): 231–234 http://www.cje.net.cn/CN/abstract/abstract6190.shtml LI C Y, BAI H Y, DANG T H, et al. Relationship of field soil phosphatase activity and soil N2O emission flux[J]. China Environmental Science, 2007, 27(2): 231–234 http://www.cje.net.cn/CN/abstract/abstract6190.shtml |
[33] | 王继红, 刘景双, 于君宝, 等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响[J].水土保持学报, 2004, 18(1): 35–38 https://www.wenkuxiazai.com/doc/3ae04fb79b89680203d825cc-4.html WANG J H, LIU J S, YU J B, et al. Effect of fertilizing N and P on soil microbial biomass carbon and nitrogen of black soil corn agroecosystem[J]. Journal of Soil and Water Conservation, 2004, 18(1): 35–38 https://www.wenkuxiazai.com/doc/3ae04fb79b89680203d825cc-4.html |
[34] | FLEISHER D H, CAVAZZONI J, GIACOMELLI G A, et al. Adaptation of substor for controlled-environment potato production with elevated carbon dioxide[J]. Transactions of the ASAE, 2003, 46(2): 531–538 https://arizona.pure.elsevier.com/en/publications/adaptation-of-substor-for-controlled-environment-potato-productio |
[35] | 胡磊, 刘韵, 朱波.不同施肥方式下紫色土N2O与NOx的排放特征[J].环境科学, 2017, 38(8): 3442–3450 HU L, LIU Y, ZHU B. Characteristics of N2O and NOx emissions from purple soil under different fertilization regimes[J]. Environmental Science, 2017, 38(8): 3442–3450 |