删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北平原农田N<sub>2</sub>O排放通量的高频动态观测

本站小编 Free考研考试/2022-01-01

李发东1, 2, 3,,
杜锟1, 2, 3,
张秋英4,
古丛珂1, 2, 3,
冷佩芳1, 2, 3,
乔云峰1, 2, 3,
朱农1, 2, 3,
郝帅1, 2, 3,
黄勇彬4,
施生锦4
1.中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室 北京 100101
2.中国科学院禹城综合试验站禹城 251200
3.中国科学院大学资源与环境学院 北京 100190
4.北京雨根科技有限公司 北京 100094
基金项目: 国家自然科学基金项目41771292
国家自然科学基金项目31170414
国家重点研发计划项目2016YFD0800301

详细信息
作者简介:李发东, 主要从事生态水文与水环境研究。E-mail:lifadong@igsnrr.ac.cn
中图分类号:X51;S-3

计量

文章访问数:1065
HTML全文浏览量:3
PDF下载量:1266
被引次数:0
出版历程

收稿日期:2017-12-19
录用日期:2017-12-25
刊出日期:2018-02-01

High-frequency dynamic observation of N2O emission flux from cropland in the North China Plain

LI Fadong1, 2, 3,,
DU Kun1, 2, 3,
ZHANG Qiuying4,
GU Congke1, 2, 3,
LENG Peifang1, 2, 3,
QIAO Yunfeng1, 2, 3,
ZHU Nong1, 2, 3,
HAO Shuai1, 2, 3,
HUANG Yongbin4,
SHI Shengjin4
1. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. Yucheng Comprehensive Experiment Station, Chinese Academy of Sciences, Yucheng 251200, China
3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
4. Rainroot Scientific Limited, Beijing 100094, China
Funds: the National Natural Science Foundation of China41771292
the National Natural Science Foundation of China31170414
the National Key Research and Development Project of China2016YFD0800301



摘要
HTML全文
(6)(0)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:N2O是主要源自农田的重要温室气体之一,可破坏臭氧层而导致全球增温。目前对N2O的原位高频观测尚不多。为完善N2O的观测方法,为华北地区N2O变化研究提供参考,本研究以华北平原典型农田为研究对象,利用新型的N2O测定仪器TGA200A,进行实时、自动、昼夜连续地观测中国科学院禹城综合试验站农田大气N2O的日动态变化。本次观测自2017年6月中旬玉米播种后开始,持续至2017年9月(8月份仪器调试)。结果显示:1)晴朗天气下,农田大气N2O呈现出夜晚(0:00-6:00、18:00-24:00)高(0.618~1.171 mg·m-3)、白天(6:00-18:00)低(0.526~1.145 mg·m-3)的趋势,而白天高温又促进农田N2O排放,在午后15:00-17:00大多出现1次峰值,表明温度的促进作用存在滞后性。2)降雨天气下,农田N2O在适当的雨量下逐渐增加(3 h内增加0.033 mg·m-3),且存在累积效应,但过度淹水后N2O表现出逐渐降低的趋势。3)大风天气下,N2O的浓度产生变化,但规律并不明显。研究结果表明,利用TGA200A可以实现对温室气体N2O的实时、连续、动态的自动观测,观测结果具有较高可信度,可以反映出当前华北地区农田N2O在不同环境要素(温度、降水及大风)下的动态变化趋势。
关键词:华北平原/
农田生态系统/
N2O排放/
通量监测/
高频监测
Abstract:Nitrous oxide (N2O) is one of the primary greenhouse gases, which depletes ozone sphere and results in strong greenhouse effects. Nowadays, a series of studies on greenhouse gases emissions of vegetation-soil-atmosphere system has been carried out domestic and overseas with the measurement method of static chamber/gas chromatograph, in which gas sampling time is concentrated in a fixed period during daytime rather than around the clock. Moreover, its' sampling frequency is usually longer than one minute inducing difficulty to implement a real-time, high-frequency and continuous determination of greenhouse gas emissions in situ for a long time. As an important source of N2O emission, farmland ecosystem is a human-disturbed system with fast N recycle and large N2O emission. To improve N2O emission observation methods and provide a reference for N2O change study in the North China Plain, we chose a typical farmland ecosystem, a maize field at the Yucheng Comprehensive Experiment Station, Chinese Academy of Sciences, and monitored N2O concentration change with a new monitor instrument TGA200A (Trace Gas Analyzer 200A) to achieve a automatically real-time monitoring of N2O emission for day and night. The TGA200A was equipped with a laser launch tube simultaneously controlled by current and temperature and some related measuring devices. When sample and reference gases (with a known concentration) entered the analyzer synchronously, the target gas concentration was determined by through scanning and comparing the linear absorption wavelengths of laser energy between sample and reference gases. The monitoring was from the middle of June 2017 to September 2017. The results showed, firstly, the N2O emission was higher in night from 0:00 to 6:00 and 18:00 to 24:00 (0.618-1.171 mg·m-3) than in daytime from 6:00 to 18:00 (0.526-1.145 mg·m-3) in fine weather. N2O emission was facilitated under higher atmospheric temperature in daytime, but the emission peak appeared in 15:00 to 17:00 indicating a significant hysteresis of temperature effect. Secondly, in rainy day, maize field N2O emissions were increased by 0.033 mg·m-3 in 3 hours with a proper rainfall and presented an accumulative effect. But if the rain was too heavy for a long time, the N2O emission would be reduced. Thirdly, N2O emission was affected by strong wind, but this conclusion needed more verification because such result was not regular. This study demonstrated the data determined by the TGA200A was useful and reliable for study on dynamic change of N2O emission in different weathers. TGA200A was available in an automatically and real-time monitor of N2O emission for day and night with different environment elements (temperature, rain, wind) and made it possible to reduce human costs and errors in greenhouse gas flux observation.
Key words:North China Plain/
Farmland ecosystem/
Nitrous oxide emission/
Flux observation/
High-frequency observation

HTML全文


图1测定农田生态系统N2O浓度的TGA200A测定系统示意图
Figure1.Sketch map of measuring system of TGA200A for N2O concentration measurement of farmland system


下载: 全尺寸图片幻灯片


图2玉米出苗期农田N2O浓度及环境要素的日动态变化
NC: N2O浓度; AMC:大气含水量; T:温度; WS:风速。
Figure2.Dynamic changes of N2O emission and environment elements of farmland system at maize seeding stage
NC: nitrous oxide concentration; AMC: atmospheric water content; T: temperature; WS: wind speed.


下载: 全尺寸图片幻灯片


图3玉米三叶期农田N2O浓度及环境要素日动态变化
NC: N2O浓度; AMC:大气含水量; T:温度; WS:风速。
Figure3.Dynamic changes of N2O concentration and environment elements of farmland system at maize trefoil stage
NC: nitrous oxide concentration; AMC: atmospheric water content; T: temperature “WS: wind speed”.


下载: 全尺寸图片幻灯片


图4玉米花粒期农田N2O浓度及环境要素日动态变化
NC: N2O浓度; AMC:大气含水量; T:温度; WS:风速。
Figure4.Dynamic changes of N2O concentration and environment elements of farmland system at maize anthesis and kernel stage
NC: nitrous oxide concentration; AMC: atmospheric water content; T: temperature; WS: wind speed.


下载: 全尺寸图片幻灯片


图5雨天玉米农田N2O浓度及环境要素日动态变化
NC: N2O浓度; AMC:大气含水量; T:温度; WS:风速。
Figure5.Dynamic changes of N2O concentration and environment elements of maize field in rainy day
NC: nitrous oxide concentration; AMC: atmospheric water content; T: temperature; WS: wind speed.


下载: 全尺寸图片幻灯片


图6晴朗弱风天气玉米农田N2O浓度及其环境要素日动态变化
NC: N2O浓度; AMC:大气含水量; T:温度; WS:风速。
Figure6.Dynamic changes of N2O concentration and environment elements of maize field in weak-wind sunny days
NC: nitrous oxide concentration; AMC: atmospheric water content; T: temperature; WS: wind speed.


下载: 全尺寸图片幻灯片


参考文献(32)
[1]Climate Change 2014: Synthesis Report. Contribution of working groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva, Switzerland: IPCC, 2014
[2]IPCC. Climate Change 2007: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2007
[3]MELILLO J M, STEUDLER P A, ABER J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601): 2173–2176 doi: 10.1126/science.1074153
[4]GIL J, PéREZ T, BOERING K, et al. Mechanisms responsible for high N2O emissions from subarctic permafrost peatlands studied via stable isotope techniques[J]. Global Biogeochemical Cycles, 2017, 31(1): 172–189 doi: 10.1002/2015GB005370
[5]赵光影, 刘景双, 王洋.陆地生态系统N2O排放源研究进展[J].土壤通报, 2008, 39(5): 1192–1197 http://www.cjae.net/CN/abstract/abstract12970.shtml
ZHAO G Y, LIU J S, WANG Y. Research progresses on nitrous oxide emission in terrestrial ecosystem[J]. Journal of Soil Science, 2008, 39(5): 1192–1197 http://www.cjae.net/CN/abstract/abstract12970.shtml
[6]韩琳, 王鸽, 王伟, 等.全球森林土壤N2O排放通量的影响因子[J].生态学杂志, 2012, 31(2): 446–452 http://www.cjae.net/CN/abstract/abstract21221.shtml
HAN L, WANG G, WANG W, et al. Factors affecting global forest soil N2O emission flux[J]. Chinese Journal of Ecology, 2012, 31(2): 446–452 http://www.cjae.net/CN/abstract/abstract21221.shtml
[7]LENKA N K, LAL R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system[J]. Soil and Tillage Research, 2013, 126: 78–89 doi: 10.1016/j.still.2012.08.011
[8]阎佩云, 刘建亮, 沈玉芳, 等.黄土旱塬旱作覆膜春玉米农田N2O排放通量及影响因素研究[J].农业环境科学学报, 2013, 32(11): 2278–2285 doi: 10.11654/jaes.2013.11.025
YAN P Y, LIU J L, SHEN Y F, et al. Nitrous oxide emissions and its influencing factors in spring corn fields mulched with plastic film on the Loess Plateau[J]. Journal of Agriculture Environment Science, 2013, 32(11): 2278–2285 doi: 10.11654/jaes.2013.11.025
[9]花莉, 唐志刚, 解井坤, 等.生物质炭对农田温室气体排放的作用效应及其影响因素探讨[J].生态环境学报, 2013, 22(6): 1068–1073 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201502001.htm
HUA L, TANG Z G, XIE J K, et al. Effect and its influencing factors of biochar on agricultural greenhouse gases emissions[J]. Ecology and Environmental Sciences, 2013, 22(6): 1068–1073 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201502001.htm
[10]KROEZE C, MOSIER A, BOUWMAN L. Closing the global N2O budget: a retrospective analysis 1500-1994[J]. Global Biogeochemical Cycles, 1999, 13(1): 1–8 doi: 10.1029/1998GB900020
[11]闫翠萍, 张玉铭, 胡春胜, 等.不同耕作措施下小麦–玉米轮作农田温室气体交换及其综合增温潜势[J].中国生态农业学报, 2016, 24(6): 704–715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016602&flag=1
YAN C P, ZHANG Y M, HU C S, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 704–715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016602&flag=1
[12]王玉英, 胡春胜.施氮水平对太行山前平原冬小麦-夏玉米轮作体系土壤温室气体通量的影响[J].中国生态农业学报, 2011, 19(5): 1122–1128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110522&flag=1
WANG Y Y, HU C S. Soil greenhouse gas emission in winter wheat/summer maize rotation ecosystem as affected by nitrogen fertilization in the Piedmont Plain of Mount Taihang, China[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1122–1128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110522&flag=1
[13]TU C, LI F D. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields[J]. Journal of Environmental Sciences, 2017, 54(4): 314–327 http://www.jesc.ac.cn/jesc_en/ch/reader/view_abstract.aspx?file_no=S1001074216309883
[14]BOWLING D R, SARGENT S D, TANNER B D, et al. Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange[J]. Agricultural & Forest Meteorology, 2003, 118(1/2): 1–19 https://www.sciencedirect.com/science/article/pii/S135044950700059X
[15]于贵瑞, 孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社, 2006: 205–206
YU G R, SUN X M. Principle of Flux Measurement in Terrestrial Ecosystem[M]. Beijing: Higher Education Press, 2014, 119: 205–206
[16]CAMPBELL Scientific, Inc. Open Path Eddy Covariance System Operator's Manual Csat, Li7500, and KH20[G]. Campbell Scientific, Inc, 2009
[17]BURBA G G, MCDERMITT D K, GRELLE A, et al. Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers[J]. Global Change Biology, 2010, 14(8): 1854–1876 https://www.sciencedirect.com/science/article/pii/S0167880909003727
[18]OECHEL W C, LLAKOWSKI C A, BURBA G, et al. Annual patterns and budget of CO2 flux in an arctic tussock tundra ecosystem[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119: 323–339 doi: 10.1002/2013JG002431
[19]叶欣, 李俊, 王迎红, 等.华北平原典型农田土壤氧化亚氮的排放特征[J].农业环境科学学报, 2005, 24(6): 1186–1191 http://plantnutrifert.org/CN/abstract/abstract3941.shtml
YE X, LI J, WANG Y H. Characterization of emissions of nitrous oxide from soils of typical crop fields in North China Plain[J]. Journal of Agriculture Environment Science, 2005, 24(6): 1186-1191 http://plantnutrifert.org/CN/abstract/abstract3941.shtml
[20]郑循华, 王明星, 王跃思, 等.温度对农田N2O产生与排放的影响[J].环境科学, 1997, 18(5): 1–6 doi: 10.11674/zwyf.16324
ZHENG X H, WANG M X, WANG Y S, et al. Impacts of temperature on N2O production and emission[J]. Environmental Science, 1997, 18(5): 1–6 doi: 10.11674/zwyf.16324
[21]杜睿, 吕达仁, 王庚辰, 等.内蒙古典型草原土壤N2O排放的影响[J].自然科学进展, 2003, 13(1): 64–68 http://www.cjae.net/CN/abstract/abstract21275.shtml
DU R, LYU D R, WANG G C. Study on the mechanism of N2O production in typical grassland soils of Inner Mongolia[J]. Progress in Natural Science, 2003, 13(1): 64–68 http://www.cjae.net/CN/abstract/abstract21275.shtml
[22]刘艳. 模拟增温对农田土壤呼吸、硝化及反硝化作用的影响[D]. 南京: 南京信息工程大学, 2013
LIU Y. Effects of simulated warming on soil nitrification and denitrification in a farmland[D]. Nanjing: Nanjing University of Information Science and Technology, 2013
[23]胡立峰. 不同耕法对麦玉两熟及双季稻农田温室气体排放的影响[D]. 北京: 中国农业大学, 2006
HU L F. Effects of different tillage on greenhouse gas emissions of wheat-maize double cropping and double rice cropping system[D]. Beijing: China Agricultural University, 2006
[24]AZAM F, MüLLER C, WEISKE A, et al. Nitrification and denitrification as sources of atmospheric nitrous oxide — Role of oxidizable carbon and applied nitrogen[J]. Biology & Fertility of Soils, 2002, 35(1): 54–61 doi: 10.1007/s00374-001-0441-5.pdf
[25]孙志强, 郝庆菊, 江长胜, 等.农田土壤N2O的产生机制及其影响因素研究进展[J].土壤通报, 2010, 41(6): 1524–1530 http://www.wenkuxiazai.com/doc/93ed84c95fbfc77da269b117-3.html
SUN Z Q, HAO Q J, JIANG C S. Advances in the study of nitrous oxide production mechanism and its influencing factors in agricultural soils[J]. Journal of Soil Science, 2010, 41(6): 1524–1530 http://www.wenkuxiazai.com/doc/93ed84c95fbfc77da269b117-3.html
[26]LAURA S M, ANA M, LOURDES G T, et al. Combination of drip irrigation and organic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate[J]. Agriculture Ecosystems & Environment, 2010, 137(1): 99–107 https://www.sciencedirect.com/science/article/pii/S0167880910000095
[27]裴淑玮, 张圆圆, 刘俊锋, 等.华北平原玉米-小麦轮作农田N2O交换通量的研究[J].环境科学, 2012, 33(10): 3641–3646 http://www.ecologica.cn/stxb/ch/html/2014/14/stxb201306091534.htm
PEI S W, ZHANG Y Y, LIU J F. N2O exchange fluxes from wheat-maize crop rotation system in the North China Plain[J]. Environmental Science, 2012, 33(10): 3641–3646 http://www.ecologica.cn/stxb/ch/html/2014/14/stxb201306091534.htm
[28]FIERER N, SCHIMEL J P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J]. Soil Biology & Biochemistry, 2002, 34(6): 777–787 https://www.sciencedirect.com/science/article/pii/S003807170200007X
[29]郝再彬.植物生理生化[M].哈尔滨:哈尔滨出版社, 2002: 207–208
HAO Z B. Plant Physiology and Biochemistry[M]. Harbin: Harbin Press, 2002: 207–208
[30]BARBOUR M M, EVANS J R, SIMONIN K A, et al. Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants[J]. New Phytologist, 2016, 210(3): 875–889 doi: 10.1111/nph.13830
[31]LAURILA T, TUOVINEN J P, LOHILA A, et al. Measuring methane emissions from a landfill using a cost-effective micrometeorological method[J]. Geophysical Research Letters, 2005, 32(19): 312–321 http://cn.bing.com/academic/profile?id=551b03bb25cceeda492de40d3bf8454a&encoded=0&v=paper_preview&mkt=zh-cn
[32]RINNE J, PIHLATIE M, LOHILA A, et al. Nitrous oxide emissions from a municipal landfill[J]. Environmental Science & Technology, 2005, 39(20): 7790–7793 http://cn.bing.com/academic/profile?id=d90251c97ecb9fa33c63d53a5cf74022&encoded=0&v=paper_preview&mkt=zh-cn

相关话题/农田 土壤 观测 大气 北京