秦树平1,,,
袁海静1,
张玉铭2,
胡春胜2
1.福建省土壤环境健康与调控重点实验室/福建农林大学资源与环境学院 福州 350002
2.中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
基金项目: 国家自然科学基金重点项目41530859
国家自然科学基金面上项目41771331
国家自然科学基金面上项目41571291
详细信息
作者简介:张志君, 主要研究方向为好氧条件下土壤性质对乙炔抑制法测定误差的影响。E-mail:15895217170@163.com
通讯作者:秦树平, 主要从事土壤反硝化方法学及反硝化脱氮机理研究。E-mail:qinshuping@sjziam.ac.cn
中图分类号:X51;S154.1计量
文章访问数:1279
HTML全文浏览量:5
PDF下载量:1415
被引次数:0
出版历程
收稿日期:2017-11-21
录用日期:2017-12-04
刊出日期:2018-02-01
Advance in soil dinitrogen emission
ZHANG Zhijun1,,QIN Shuping1,,,
YUAN Haijing1,
ZHANG Yuming2,
HU Chunsheng2
1. Key Laboratory of Soil Environment Health and Regulation in Fujian Province/College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou 350002, China
2. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
Funds: the National Natural Science Foundation of China41530859
the National Natural Science Foundation of China41771331
the National Natural Science Foundation of China41571291
More Information
Corresponding author:QIN Shuping, E-mail: qinshuping@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:自20世纪初人类发明并掌握工业合成氨的技术以来,氮肥施用量迅速增长。在一部分国家或地区,氮肥的施入量已经超过作物对氮素的需求,导致大量氮素损失到环境中,造成氨挥发、氧化亚氮排放、地下水硝酸盐污染等环境问题。土壤在微生物的作用下可以通过反硝化、厌氧氨氧化等过程将活性氮素转化为惰性氮气,达到清除过多活性氮的目的。由于大气中氮气背景浓度太高,因此很难直接准确测定土壤的氮气排放速率,导致土壤氮气排放通量、过程与调控机制研究远远落后于土壤氮循环的其他方面。本文综述了土壤氮气排放主要途径(反硝化、厌氧氨氧化与共反硝化)及其对土壤氮气排放的贡献;测定土壤氮气排放速率的方法(乙炔抑制法、氮同位素示踪法、N2/Ar比率-膜进样质谱法、氦环境法与N2O同位素自然丰度法)及其优缺点;调控土壤氮气排放通量的主要因素(氧气、可溶性有机碳、硝酸盐、微生物群落结构与功能基因表达等)及其相关作用机制。最后指出研发新的测定原位无扰动土壤氮气通量的方法是推进本领域相关研究的关键;定量典型生态系统(如旱地农田、稻田、森林、草地与湿地)土壤氮气排放通量,阐明其中的微生物学机制,模拟并预测土壤氮气排放对全球变化的响应规律是本领域的研究热点与发展方向。
关键词:土壤/
氮气排放/
反硝化/
厌氧氨氧化/
氧化亚氮排放/
氮损失
Abstract:The amount of applied nitrogen fertilizer has increased dramatically since the invention of the industrial ammonia synthesis in the early 20th century. In some countries or regions, the amount of nitrogen fertilizer input has exceeded crop nitrogen demand. This has led to a large amount of nitrogen losses to the environment, causing environmental pollution such as ammonia volatilization, nitrous oxide emission and groundwater contamination. Soil microbes can transform active nitrogen into inert dinitrogen and consequently remove superfluous nitrogen from soil via denitrification and anammox. Direct and precise measurement of soil denitrification has been a continuous challenge due to high background concentration of atmospheric dinitrogen, which has hindered progress in research on soil dinitrogen emissions. This paper reviewed the main pathways of soil dinitrogen emission[denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and co-denitrification] and their contributions to soil dinitrogen emission. It also covered the methods of soil dinitrogen flux determination (acetylene inhibition technique, 15N tracing method, N2/Ar membrane-inlet mass spectrometry, helium environment method and natural abundance 15N2O isotopic method) and their advantages, disadvantages. The key factors regulating soil dinitrogen emission (oxygen, dissolved organic carbon, nitrate, microbial community structure and functional gene expression) and the related mechanisms were also summarized. In conclusion, it was essential to develop new methods for in situ dinitrogen flux determination in undisturbed soils. More studies were needed to quantify soil dinitrogen flux in typical ecosystems (such as dryland, farmland, forest, grassland and wetland), clarify microbial mechanism involved, and simulate and predict the responses of soil dinitrogen emission to global change.
Key words:Soil/
Dinitrogen emission/
Denitrification/
Anaerobic ammonia oxidation/
Nitrous oxide emission/
Nitrogen loss
HTML全文
参考文献
[1] | LONG A, HEITMAN J, TOBIAS C, et al. Co-occurring anammox, denitrification, and codenitrification in agricultural soils[J]. Applied and Environmental Microbiology, 2013, 79(1): 168–176 doi: 10.1128/AEM.02520-12 |
[2] | TIEDJE J M, SEXSTONE A J, MYROLD D D, et al. Denitrification: Ecological niches, competition and survival[J]. Antonie van Leeuwenhoek, 1983, 48(6): 569–583 doi: 10.1007/BF00399542 |
[3] | PARTON W J, MOSIER A R, OJIMA D S, et al. Generalized model for N2 and N2O production from nitrification and denitrification[J]. Global Biogeochemical Cycles, 1996, 10(3): 401–412 doi: 10.1029/96GB01455 |
[4] | 李霞.微生物在氮循环中的作用[J].松辽学刊:自然科学版, 1998, 19(4): 30–31 http://www.docin.com/p-732534807.html LI X. The role of microbic in the circle of nitrogen[J]. Songliao Journal: Natural Science Edition, 1998, 19(4): 30–31 http://www.docin.com/p-732534807.html |
[5] | 阮晓红, 张瑛, 黄林楠, 等.微生物在湿地氮循环系统的效应分析[J].水资源保护, 2004, 20(6): 1–7 https://www.wenkuxiazai.com/doc/42378504a6c30c2259019e2a.html RUAN X H, ZHANG Y, HUANG L N, et al. Study on the contributions of microorganisms in nitrogen cycle of wetlands[J]. Water Resources Protection, 2004, 20(6): 1–7 https://www.wenkuxiazai.com/doc/42378504a6c30c2259019e2a.html |
[6] | BREMNER J M. Sources of nitrous oxide in soils[J]. Nutrient Cycling in Agroecosystems, 1997, 49(1/3): 7–16 doi: 10.1023/A:1009798022569 |
[7] | 陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社, 1990 CHEN W X. Soil and Environmental Microbiology[M]. Beijing: Beijing Agricultural University Press, 1990 |
[8] | 刘忠宽, 汪诗平, 韩建国, 等.放牧家畜排泄物N转化研究进展[J].生态学报, 2004, 24(4): 775–783 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stxb200404019 LIU Z K, WANG S P, HAN J G, et al. Nitrogen turnover from grazing livestock excreta: A review[J]. Acta Ecologica Sinica, 2004, 24(4): 775–783 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stxb200404019 |
[9] | 吴德礼, 傅旻瑜, 马鲁铭.生物及化学反硝化过程中N2O的产生与控制[J].化学进展, 2012, 24(10): 2054–2061 http://manu36.magtech.com.cn/Jweb_zghjkx/CN/abstract/abstract11733.shtml WU D L, FU M Y, MA L M. Nitrous oxide emission and control in biological and chemical denitrification[J]. Progress in Chemistry, 2012, 24(10): 2054–2061 http://manu36.magtech.com.cn/Jweb_zghjkx/CN/abstract/abstract11733.shtml |
[10] | RAKSHIT S, MATOCHA C J, COYNE M S. Nitrite reduction by siderite[J]. Soil Science Society of America Journal, 2008, 72(4): 1070–1077 doi: 10.2136/sssaj2007.0296 |
[11] | MULDER A, VAN DE Graaf A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177–183 doi: 10.1111/fem.1995.16.issue-3 |
[12] | VAN DER STAR W R L, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149–4163 doi: 10.1016/j.watres.2007.03.044 |
[13] | BRODA E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift für Allgemeine Mikrobiologie, 1977, 17(6): 491–493 doi: 10.1002/(ISSN)1521-4028 |
[14] | VAN DE GRAAF A A, MULDER A, DE BRUIJN P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246–1251 http://cn.bing.com/academic/profile?id=9469cc925b3f486e23fd6ffd22f604d3&encoded=0&v=paper_preview&mkt=zh-cn |
[15] | HUANG S, JAFFé P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 2015, 12(3): 769–779 doi: 10.5194/bg-12-769-2015 |
[16] | DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641–10647 doi: 10.1021/es503113s |
[17] | SPOTT O, RUSSOW R, STANGE C F. Formation of hybrid N2O and hybrid N2 due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation[J]. Soil Biology and Biochemistry, 2011, 43(10): 1995–2011 doi: 10.1016/j.soilbio.2011.06.014 |
[18] | STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589–596 doi: 10.1007/s002530051340 |
[19] | 沈李东, 胡宝兰, 郑平, 等.西湖底泥中厌氧氨氧化菌的分子生物学检测[J].环境科学学报, 2011, 31(8): 1609–1615 http://d.g.wanfangdata.com.cn/Periodical_hjkxxb201305016.aspx SHEN L D, HU B L, ZHENG P, et al. Molecular detection of anammox bacteria in the sediment of West Lake, Hangzhou[J]. Acta Scientiae Circumstantiae, 2011, 31(8): 1609–1615 http://d.g.wanfangdata.com.cn/Periodical_hjkxxb201305016.aspx |
[20] | GROFFMAN P M, ALTABET M A, B?HLKE J K, et al. Methods for measuring denitrification: Diverse approaches to a difficult problem[J]. Ecological Applications, 2006, 16(6): 2091–2122 doi: 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2 |
[21] | 郎漫, 李平, 蔡祖聪.反硝化测定方法的评述[J].土壤通报, 2012, 43(4): 1019–1024 http://www.wenkuxiazai.com/doc/61432f0dd15abe23492f4d9c.html LANG M, LI P, CAI Z C. The comments on methods for measuring denitrification[J]. Chinese Journal of Soil Science, 2012, 43(4): 1019–1024 http://www.wenkuxiazai.com/doc/61432f0dd15abe23492f4d9c.html |
[22] | YOSHINARI T, HYNES R, KNOWLES R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil[J]. Soil Biology and Biochemistry, 1977, 9(3): 177–183 doi: 10.1016/0038-0717(77)90072-4 |
[23] | FELBER R, CONEN F, FLECHARD C R, et al. The acetylene inhibition technique to determine total denitrification (N2+N2O) losses from soil samples: Potentials and limitations[J]. Biogeosciences Discussions, 2012, 9(3): 2851–2882 doi: 10.5194/bgd-9-2851-2012 |
[24] | MüLLER C, SHERLOCK R R, WILLIAMS P H. Field method to determine N2O emission from nitrification and denitrification[J]. Biology and Fertility of Soils, 1998, 28(1): 51–55 doi: 10.1007/s003740050462 |
[25] | 项虹艳, 朱波, 王玉英, 等.氮肥对紫色土夏玉米N2O排放和反硝化损失的影响[J].浙江大学学报:农业与生命科学版, 2007, 33(5): 574–583 http://www.plantnutrifert.org/CN/abstract/abstract4261.shtml XIANG H Y, ZHU B, WANG Y Y, et al. Effects of nitrogen fertilizer for maize on denitrification loss and N2O emission in purple soil[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2007, 33(5): 574–583 http://www.plantnutrifert.org/CN/abstract/abstract4261.shtml |
[26] | SEITZINGER S P, NIELSEN L P, CAFFREY J, et al. Denitrification measurements in aquatic sediments: A comparison of three methods[J]. Biogeochemistry, 1993, 23(3): 147–167 doi: 10.1007/BF00023750 |
[27] | KLEMEDTSSON L, HANSSON G, MOSIER A. The use of acetylene for the quantification of N2 and N2O production from biological processes in soil[M]//REVSBECH N P, S?RENSEN J. Denitrification in Soil and Sediment. Boston, MA: Springer, 1990: 167–180 |
[28] | NIELSEN T H, NIELSEN L P, REVSBECH N P. Nitrification and coupled nitrification-denitrification associated with a soil-manure interface[J]. Soil Science Society of America Journal, 1996, 60(6): 1829–1840 doi: 10.2136/sssaj1996.03615995006000060031x |
[29] | SIMARMATA T, BENCKISER G, OTTOW J C G. Effect of an increasing carbon: Nitrate-N ratio on the reliability of acetylene in blocking the N2O-reductase activity of denitrifying bacteria in soil[J]. Biology and Fertility of Soils, 1993, 15(2): 107–112 doi: 10.1007/BF00336427 |
[30] | ZHONG J C, FAN C X, LIU G F, et al. Seasonal variation of potential denitrification rates of surface sediment from Meiliang Bay, Taihu Lake, China[J]. Journal of Environmental Sciences, 2010, 22(7): 961–967 doi: 10.1016/S1001-0742(09)60205-9 |
[31] | JORDAN T E, WELLER D E, CORRELL D L. Denitrification in surface soils of a riparian forest: Effects of water, nitrate and sucrose additions[J]. Soil Biology and Biochemistry, 1998, 30(7): 833–843 doi: 10.1016/S0038-0717(98)00013-3 |
[32] | WOODWARD K B, FELLOWS C S, CONWAY C L, et al. Nitrate removal, denitrification and nitrous oxide production in the riparian zone of an ephemeral stream[J]. Soil Biology and Biochemistry, 2009, 41(4): 671–680 doi: 10.1016/j.soilbio.2009.01.002 |
[33] | BOLLMANN A, CONRAD R. Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide[J]. Soil Biology and Biochemistry, 1997, 29(7): 1067–1077 doi: 10.1016/S0038-0717(97)00007-2 |
[34] | BOLLMANN A, CONRAD R. Enhancement by acetylene of the decomposition of nitric oxide in soil[J]. Soil Biology and Biochemistry, 1997, 29(7): 1057–1066 doi: 10.1016/S0038-0717(97)00006-0 |
[35] | SGOURIDIS F, ULLAH S, STOTT A. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique[J]. Biogeosciences, 2016, 13(6): 1821–1835 doi: 10.5194/bg-13-1821-2016 |
[36] | QIN S P, HU C S, OENEMA O. Quantifying the underestimation of soil denitrification potential as determined by the acetylene inhibition method[J]. Soil Biology and Biochemistry, 2012, 47: 14–17 doi: 10.1016/j.soilbio.2011.12.019 |
[37] | TIEDJE J M, SIMKINS S, GROFFMAN P M. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods[J]. Plant and Soil, 1989, 115(2): 261–284 doi: 10.1007/BF02202594 |
[38] | QIN S P, YUAN H J, DONG W X, et al. Relationship between soil properties and the bias of N2O reduction by acetylene inhibition technique for analyzing soil denitrification potential[J]. Soil Biology and Biochemistry, 2013, 66: 182–187 doi: 10.1016/j.soilbio.2013.07.016 |
[39] | 邹国元, 赵紫娟, 张福锁, 等.运用乙炔抑制-静态土柱培养法测定旱地土壤氮素反硝化损失[J].土壤通报, 2002, 33(5): 381–384 http://www.oalib.com/paper/4677637 ZOU G Y, ZHAO Z J, ZHANG F S, et al. Measurement of denitrification in upland field using acetylene inhibition-static soil core incubation system[J]. Chinese Journal of Soil Science, 2002, 33(5): 381–384 http://www.oalib.com/paper/4677637 |
[40] | HAUCK R D, MELSTED S W. Some aspects of the problem of evaluating denitrification in soils[J]. Soil Science Society of America Journal, 1956, 20(3): 361–364 doi: 10.2136/sssaj1956.03615995002000030017x |
[41] | HAUCK R D, BOULDIN D R. Distribution of isotopic nitrogen in nitrogen gas during denitrification[J]. Nature, 1961, 191(4791): 871–872 doi: 10.1038/191871a0 |
[42] | HAUCK R D, MELSTED S W, YANKWICH P E. Use of N-isotope distribution in nitrogen gas in the study of denitrification[J]. Soil Science, 1958, 86(5): 287 doi: 10.1097/00010694-195811000-00011 |
[43] | SIEGEL R S, HAUCK R D, KURTZ L T. Determination of 30N2 and application to measurement of N2 evolution during denitrification[J]. Soil Science Society of America Journal, 1982, 46(1): 68–74 doi: 10.2136/sssaj1982.03615995004600010013x |
[44] | MULVANEY R L, KURTZ L T. A new method for determination of 15N-labeled nitrous oxide[J]. Soil Science Society of America Journal, 1982, 46(6): 1178–1184 doi: 10.2136/sssaj1982.03615995004600060012x |
[45] | MULVANEY R L, BOAST C W. Equations for determination of nitrogen-15 labeled dinitrogen and nitrous oxide by mass spectrometry[J]. Soil Science Society of America Journal, 1986, 50(2): 360–363 doi: 10.2136/sssaj1986.03615995005000020021x |
[46] | RISGAARD-PETERSEN N, NIELSEN L P, RYSGAARD S, et al. Application of the isotope pairing technique in sediments where anammox and denitrification coexist[J]. Limnology and Oceanography: Methods, 2003, 1(1): 63–73 doi: 10.4319/lom.2003.1.63 |
[47] | STEINGRUBER S M, FRIEDRICH J, G?CHTER R, et al. Measurement of denitrification in sediments with the 15N isotope pairing technique[J]. Applied and Environmental Microbiology, 2001, 67(9): 3771–3778 doi: 10.1128/AEM.67.9.3771-3778.2001 |
[48] | MOSIER A R, SCHIMEL D S. Nitrification and denitrification[M]//KNOWLES R, PAUL E A, MELILLO J, et al. Nitrogen Isotope Techniques. Amsterdam: Elsevier, 1993: 181–208 |
[49] | 罗绪强, 王世杰, 刘秀明.稳定氮同位素在环境污染示踪中的应用进展[J].矿物岩石地球化学通报, 2007, 26(3): 295–299 http://www.wenkuxiazai.com/doc/6c6866020b4e767f5acfce3f.html LUO X Q, WANG S J, LIU X M. Advances in the research on stable nitrogen isotope for tracing environmental pollutions[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(3): 295–299 http://www.wenkuxiazai.com/doc/6c6866020b4e767f5acfce3f.html |
[50] | KUNU T M, SULLIVAN M B, CORNWELL J C, et al. Denitrification in estuarine sediments determined by membrane inlet mass spectrometry[J]. Limnology and Oceanography, 1998, 43(2): 334–339 doi: 10.4319/lo.1998.43.2.0334 |
[51] | SMITH L K, VOYTEK M A, B?HLKE J K, et al. Denitrification in nitrate-rich streams: Application of N2:Ar and 15N-tracer methods in intact cores[J]. Ecological Applications, 2006, 16(6): 2191–2207 doi: 10.1890/1051-0761(2006)016[2191:DINSAO]2.0.CO;2 |
[52] | PRIBYL A L, MCCUTCHAN J H, LEWIS W M, et al. Whole-system estimation of denitrification in a plains river: A comparison of two methods[J]. Biogeochemistry, 2005, 73(3): 439–455 doi: 10.1007/s10533-004-0565-4 |
[53] | LI X B, XIA L L, YAN X Y. Application of membrane inlet mass spectrometry to directly quantify denitrification in flooded rice paddy soil[J]. Biology and Fertility of Soils, 2014, 50(6): 891–900 doi: 10.1007/s00374-014-0910-2 |
[54] | N?MMIK H. Investigations on denitrification in soil[J]. Acta Agriculturae Scandinavica, 1956, 6(2): 195–228 doi: 10.1080/00015125609433269 |
[55] | SCHOLEFIELD D, HAWKINS J M B, JACKSON S M. Development of a helium atmosphere soil incubation technique for direct measurement of nitrous oxide and dinitrogen fluxes during denitrification[J]. Soil Biology and Biochemistry, 1997, 29(9/10): 1345–1352 https://www.sciencedirect.com/science/article/pii/S0038071797000217 |
[56] | BUTTERBACH-BAHL K, WILLIBALD G, PAPEN H. Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils[J]. Plant and Soil, 2002, 240(1): 105–116 doi: 10.1023/A:1015870518723 |
[57] | CáRDENAS L M, HAWKINS J M B, CHADWICK D, et al. Biogenic gas emissions from soils measured using a new automated laboratory incubation system[J]. Soil Biology and Biochemistry, 2003, 35(6): 867–870 doi: 10.1016/S0038-0717(03)00092-0 |
[58] | MOLSTAD L, D?RSCH P, BAKKEN L R. Robotized incubation system for monitoring gases (O2, NO, N2O, N2) in denitrifying cultures[J]. Journal of Microbiological Methods, 2007, 71(3): 202–211 doi: 10.1016/j.mimet.2007.08.011 |
[59] | WICKRAMASINGHE K N, TALJBUDEEN O, WITTY J F. A gas flow-through system for studying denitrification in soil[J]. European Journal of Soil Science, 1978, 29(4): 527–536 doi: 10.1111/ejs.1978.29.issue-4 |
[60] | 李晓波, 夏永秋, 郎漫, 等. N2:Ar法直接测定淹水环境反硝化产物N2的产生速率[J].农业环境科学学报, 2013, 32(6): 1284–1288 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nhbh201306030&dbname=CJFD&dbcode=CJFQ LI X B, XIA Y Q, LANG M, et al. N2:Ar technique for direct determination of denitrification rate of aquatic ecosystems using membrane inlet mass spectrometry[J]. Journal of Agro-Environment Science, 2013, 32(6): 1284–1288 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nhbh201306030&dbname=CJFD&dbcode=CJFQ |
[61] | 秦树平, 胡春胜, 张玉铭, 等. 气体排放测定装置及使用其测定微量氮气排放通量的方法: 中国, CN201410750734. 1[P]. 2015-03-25 QIN S P, HU C S, ZHANG Y M, et al. Gas emission determinator and method for determining trace nitrogen emission flux using same: CN, CN201410750734. 1[P]. 2015-03-25 |
[62] | QIN S P, CLOUGH T, LUO J F, et al. Perturbation-free measurement of in situ di-nitrogen emissions from denitrification in nitrate-rich aquatic ecosystems[J]. Water Research, 2017, 109: 94–101 doi: 10.1016/j.watres.2016.11.035 |
[63] | 李平, 张山, 刘德立.细菌好氧反硝化研究进展[J].微生物学杂志, 2005, 25(1): 60–64 https://mall.cnki.net/qikan-GYSC201702003.html LI P, ZHANG S, LIU D L. Study progress of bacterial aerobic denitrification[J]. Journal of Microbiology, 2005, 25(1): 60–64 https://mall.cnki.net/qikan-GYSC201702003.html |
[64] | WILSON L P, BOUWER E J. Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: A review[J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18(2/3): 116–130 doi: 10.1038/sj.jim.2900288.pdf |
[65] | CHEN F, XIA Q, JU L K. Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD(P)H fluorescence[J]. Applied and Environmental Microbiology, 2003, 69(11): 6715–6722 doi: 10.1128/AEM.69.11.6715-6722.2003 |
[66] | LI C N, YANG J S, WANG X, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24[J]. Bioresource Technology, 2015, 182: 18–25 doi: 10.1016/j.biortech.2015.01.100 |
[67] | SU J F, ZHANG K, HUANG T L, et al. Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium, Acinetobacter sp. SYF26[J]. Microbiology, 2015, 161: 829–837 doi: 10.1099/mic.0.000047 |
[68] | ROBERTSON L A, KUENEN J G. Aerobic denitrification: A controversy revived[J]. Archives of Microbiology, 1984, 139(4): 351–354 doi: 10.1007/BF00408378 |
[69] | REDDY K R, DELAUNE R D. Biogeochemistry of Wetlands: Science and Applications[M]. Boca Raton: CRC Press, 2008: 1779 |
[70] | PATUREAU D, BERNET N, DELGEN S J P, et al. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium[J]. Applied Microbiology and Biotechnology, 2000, 54(4): 535–542 doi: 10.1007/s002530000386 |
[71] | PAI S L, CHONG N M, CHEN C H. Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment[J]. Bioresource Technology, 1999, 68(2): 179–185 doi: 10.1016/S0960-8524(98)00140-0 |
[72] | PATUREAU D, ZUMSTEIN E, DELGENES J P, et al. Aerobic denitrifiers isolated from diverse natural and managed ecosystems[J]. Microbial Ecology, 2000, 39(2): 145–152 doi: 10.1007/s002480000009 |
[73] | KIM Y J, YOSHIZAWA M, TAKENAKA S, et al. Isolation and culture conditions of a Klebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously with controlled iron and molybdate ion concentrations[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66(5): 996–1001 doi: 10.1271/bbb.66.996 |
[74] | TAKAYA N, CATALAN-SAKAIRI M A B, SAKAGUCHI Y, et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide[J]. Applied and Environmental Microbiology, 2003, 69(6): 3152–3157 doi: 10.1128/AEM.69.6.3152-3157.2003 |
[75] | SU J J, LIU B Y, LIU C Y. Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system[J]. Journal of Applied Microbiology, 2001, 90(3): 457–462 doi: 10.1046/j.1365-2672.2001.01265.x |
[76] | QIN S P, PANG Y X, CLOUGH T, et al. N2 production via aerobic pathways may play a significant role in nitrogen cycling in upland soils[J]. Soil Biology and Biochemistry, 2017, 108: 36–40 doi: 10.1016/j.soilbio.2017.01.019 |
[77] | 蔡祖聪.氮形态转化途径研究的新进展——厌气铵氧化及其应用前景[J].应用生态学报, 2001, 12(5): 795–798 http://www.cjae.net/CN/abstract/abstract17989.shtml CAI Z C. A research progress in nitrogen conversion-anammox and prospects of its application[J]. Chinese Journal of Applied Ecology, 2001, 12(5): 795–798 http://www.cjae.net/CN/abstract/abstract17989.shtml |
[78] | ZHU G B, WANG S Y, WANG Y, et al. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. The ISME Journal, 2011, 5(12): 1905–1912 doi: 10.1038/ismej.2011.63 |
[79] | SHAN J, ZHAO X, SHENG R, et al. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: Rates, relative contributions, and influencing factors[J]. Environmental Science & Technology, 2016, 50(18): 9972–9980 doi: 10.1021/acs.est.6b01765 |
[80] | 张振贤, 华珞, 尹逊霄, 等.农田土壤N2O的发生机制及其主要影响因素[J].首都师范大学学报:自然科学版, 2005, 26(3): 114–120 https://www.wenkuxiazai.com/doc/93ed84c95fbfc77da269b117-3.html ZHANG Z X, HUA L, YIN X X, et al. Nitrous oxide emission from agricultural soil and some influence factors[J]. Journal of Capital Normal University: Natural Sciences Edition, 2005, 26(3): 114–120 https://www.wenkuxiazai.com/doc/93ed84c95fbfc77da269b117-3.html |
[81] | QIN S P, YUAN H J, HU C S, et al. Determination of potential N2O-reductase activity in soil[J]. Soil Biology and Biochemistry, 2014, 70(1): 205–210 http://www.sciencedirect.com/science/article/pii/S0038071713004719 |
[82] | QIN S P, HU C S, CLOUGH T J, et al. Irrigation of DOC-rich liquid promotes potential denitrification rate and decreases N2O/(N2O+N2) product ratio in a 0–2 m soil profile[J]. Soil Biology and Biochemistry, 2017, 106: 1–8 doi: 10.1016/j.soilbio.2016.12.001 |
[83] | QIN S P, ZHANG Z J, YU L P, et al. Enhancement of subsoil denitrification using an electrode as an electron donor[J]. Soil Biology and Biochemistry, 2017, 115: 511–515 doi: 10.1016/j.soilbio.2017.09.020 |
[84] | RUSER R, FLESSA H, RUSSOW R, et al. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry, 2006, 38(2): 263–274 doi: 10.1016/j.soilbio.2005.05.005 |
[85] | SPEIR T W, KETTLES H A, MORE R D. Aerobic emissions of N2O and N2 from soil cores: Measurement procedures using 13N-labelled NO3– and NH4+[J]. Soil Biology and Biochemistry, 1995, 27(10): 1289–1298 doi: 10.1016/0038-0717(95)00051-F |
[86] | BLACKMER A M, BREMNER J M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms[J]. Soil Biology and Biochemistry, 1978, 10(3): 187–191 doi: 10.1016/0038-0717(78)90095-0 |
[87] | ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 533–616 http://www.doc88.com/p-1156630897554.html |
[88] | SANFORD R A, WAGNER D D, WU Q Z, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19709–19714 doi: 10.1073/pnas.1211238109 |
[89] | JONES C M, SPOR A, BRENNAN F P, et al. Recently identified microbial guild mediates soil N2O sink capacity[J]. Nature Climate Change, 2014, 4(9): 801–805 doi: 10.1038/nclimate2301 |