王俊1, 2,,,
付鑫1,
李蓉蓉1,
赵丹丹1
1.西北大学城市与环境学院 西安 710127
2.西北大学陕西省地表系统与环境承载力重点实验室 西安 710127
基金项目: 国家自然科学基金面上项目31570440
详细信息
作者简介:毛海兰, 主要从事农田土壤碳氮研究。E-mail: maohl0414@163.com
通讯作者:王俊, 主要从事农田生态学研究。E-mail: wangj@nwu.edu.cn
中图分类号:S153.6+2计量
文章访问数:1256
HTML全文浏览量:0
PDF下载量:1057
被引次数:0
出版历程
收稿日期:2017-06-30
录用日期:2017-10-17
刊出日期:2018-03-01
Seasonal dynamics of soil organic carbon fractions under straw and plastic film mulching of spring maize
MAO Hailan1,,WANG Jun1, 2,,,
FU Xin1,
LI Rongrong1,
ZHAO Dandan1
1. College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, China
Funds: the National Natural Science Foundation of China31570440
More Information
Corresponding author:WANG Jun, E-mail: wangj@nwu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:基于黄土高原8 a的春玉米覆盖定位试验,研究了秸秆和地膜覆盖下土壤有机碳、微生物量碳、潜在可矿化碳及颗粒有机碳在作物不同生育期的季节变化特征,探讨旱作农田不同碳组分对地表覆盖的响应规律。结果表明:1)秸秆和地膜覆盖下土壤有机碳及其各组分含量在玉米生长期间总体呈苗期下降、拔节期上升、大喇叭口-抽雄期下降、灌浆和收获期回升的变化趋势。2)与不覆盖对照相比,秸秆覆盖在大部分作物生育期均显著提高了土壤有机碳各组分含量,有助于培肥地力和土壤固碳;而地膜覆盖在作物生育后期导致土壤有机碳及各组分含量显著下降。3)秸秆覆盖下表层土壤颗粒有机碳对总有机碳变化具有重要贡献,地膜覆盖后土壤有机碳变化可能主要来自于潜在可矿化碳和颗粒有机碳,而土壤微生物量碳相对含量在不同处理间差异不大。4)对照和地膜覆盖处理土壤潜在可矿化碳和颗粒有机碳的相对含量在大喇叭口-抽雄期均有显著下降,而秸秆覆盖下两种组分的相对含量则保持平稳,表明秸秆覆盖对生育后期土壤潜在可矿化碳和颗粒有机碳有重要的补给作用。总之,黄土高原的春玉米田秸秆覆盖具有明显的提升土壤有机碳及组分含量的作用,地膜覆盖则无明显效果,且在春玉米生育后期降低了土壤总有机碳及各组分的含量。
关键词:秸秆覆盖/
地膜覆盖/
土壤有机碳/
碳组分/
春玉米/
生育期
Abstract:It is important to investigate soil microbial biomass carbon, potential mineralized carbon and particulate organic carbon under different tillage patterns, mulching methods and fertilization regimes for evaluation of soil carbon pool change due to agricultural management. Based on a long-term mulching experiment in dry highland of the Losses Plateau, this study investigated dynamic changes of soil organic carbon at different crop growth stages under straw and plastic film mulching conditions. The aim of the study was to explore seasonal responses of soil organic carbon and its fractions to surface mulching and deepen the understanding of soil carbon cycle in dry farmland. The data were collected from the 8 years experiment with the treatments of straw mulching, plastic film mulching and no mulching (CK) at pre-sowing, seeding, jointing, belling-heading, filling and harvest stages of spring maize. The seasonal dynamics of soil organic carbon, microbial biomass carbon, potential mineralized carbon and particulate organic carbon in 0-10 cm, 10-20 cm and 20-40 cm layers were determined. The results showed that:1) the contents of soil organic carbon, microbial biomass carbon, potential mineralized carbon and particulate organic carbon showed a tendency of decreasing at seedling stage, increasing at jointing stage, decreasing again at belling-heading stage and recovering at filling and harvest stages. 2) Compared with the CK, straw mulching effectively increased the contents of soil organic carbon and its fractions at most growth stages of spring maize, which improved soil fertility and enhanced carbon sequestration. Plastic film mulching did not show significant effects at the early growth stages, but decreased soil organic carbon and its fractions contents at the later stages of spring maize. 3) The ratio of microbial biomass carbon to soil organic carbon did not change with growth stages among treatments. However, particulate organic carbon in 0-10 cm under straw mulching was significantly higher than that under CK and plastic film mulching treatments, indicating that it hugely contributed to the dynamics of soil organic carbon in the topsoil layer under straw mulching treatment. The dynamics of soil organic carbon under plastic film mulching were mainly attributed to changes in particulate organic carbon and potential mineralized carbon. 4) The proportions of potential mineralized carbon and particulate organic carbon decreased at belling-filling stage with plastic film mulching or without any form of mulching, but did not change throughout the growing season with straw mulching. This indicated that straw mulching recharged soil potential mineralized carbon and particulate organic carbon during later growth stages. In conclusion, straw mulching of spring maize in the Loess Plateau significantly increased soil organic carbon and its fractions contents with obvious seasonal variations, while plastic film mulching showed decreasing effect at later growth stages of spring maize.
Key words:Straw mulching/
Plastic film mulching/
Soil organic carbon/
Organic carbon fractions/
Spring maize/
Growing stage
HTML全文
图12016年春玉米生育期内降水及气温分布
Figure1.Precipitation and temperature during the growing season of spring maize in the investigation year of 2016
下载: 全尺寸图片幻灯片
表1试验布设前试验地0~40 cm土壤基本化学性质
Table1.Soil chemical properties at 0-40 cm depths before the experiment
土层 Soil layer (cm) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
0~10 | 8.73 | 0.81 | 5.4 | 139.9 | 8.18 |
10~20 | 8.32 | 0.73 | 3.6 | 119.4 | 8.17 |
20~40 | 6.28 | 0.58 | 1.6 | 122.0 | 8.24 |
下载: 导出CSV
表2长期不同地表覆盖下春玉米不同生育期土壤有机碳含量动态
Table2.Soil organic carbon contents under long term different mulching treatments at different growth stages of spring maize
g·kg-1 | |||||||
土层 Soil layer (cm) | 处理 Treatment | 播前 Pre-sowing | 苗期 Seedling stage | 拔节期 Jointing stage | 大喇叭口—抽雄期 Belling-heading stage | 灌浆期 Filling stage | 收获期 Harvest stage |
0~10 | CK | 10.40±0.39bA | 10.14±0.44bA | 10.63±0.25bA | 10.00±0.02bA | 10.08±0.11bA | 10.13±0.08bA |
SM | 11.28±0.44aAB | 10.82±0.21aBC | 11.42±0.37aA | 10.52±0.15aC | 10.58±0.04aC | 11.33±0.29aAB | |
PM | 10.26±0.33bA | 9.81±0.07bA | 10.18±0.17bA | 9.86±0.20bA | 9.91±0.05cA | 10.03±0.13bA | |
10~20 | CK | 9.84±0.15bA | 9.44±0.22bA | 9.84±0.21bA | 9.46±0.04aA | 9.84±0.16bA | 9.72±0.29bA |
SM | 10.44±0.25aAB | 10.24±0.45aAB | 10.31±0.16aAB | 9.52±0.04aC | 10.16±0.05aB | 10.67±0.28aA | |
PM | 9.72±0.13bAB | 9.41±0.10bB | 9.81±0.08bA | 8.98±0.08bC | 9.48±0.11cAB | 9.62±0.43bAB | |
20~40 | CK | 8.71±0.17aA | 8.30±0.28bB | 7.55±0.12bC | 7.27±0.05bC | 7.41±0.21bC | 8.65±0.21aA |
SM | 8.74±0.41aAB | 8.52±0.47aAB | 8.10±0.14aBC | 7.69±0.21aC | 7.78±0.10aC | 8.81±0.53aA | |
PM | 8.64±0.45aA | 8.10±0.29bB | 7.53±0.11bC | 7.26±0.08bC | 7.37±0.14bC | 8.56±0.15aA | |
CK:不覆盖对照; SM: 9 000 kg·hm-2覆盖秸秆; PM:地膜覆盖。同一土层、同列数据后不同小写字母表示各处理间差异显著(P<0.05), 同一土层、同行数据后不同大写字母表示各生育期间差异显著(P<0.05)。CK: no mulching; SM: 9 000 kg·hm-2 straw mulching; PM: plastic film mulching. For the same soil layer and in the same column, different small letters mean significant differences at P<0.05 level among treatments. For the same soil layer and in the same row, different capital letters mean significant differences at P<0.05 level among growth stages. |
下载: 导出CSV
表3长期不同地表覆盖下春玉米不同生育期土壤微生物量碳含量动态
Table3.Soil microbial biomass carbon contents under long term different mulching treatments at different growth stages of spring maize
mg·kg-1 | |||||||
土层 Soil layer (cm) | 处理 Treatment | 播前 Pre-sowing | 苗期 Seedling stage | 拔节期 Jointing stage | 大喇叭口—抽雄期 Belling-heading | 灌浆期 Filling stage | 收获期 Harvest stage |
0~10 | CK | 316.59±33.51bA | 283.51±32.28bA | 317.88±15.51bA | 306.87±34.22bA | 285.55±11.28bA | 309.71±14.46bA |
SM | 339.66±26.76aAB | 288.68±32.28aC | 379.91±15.51aA | 337.01±21.75aB | 361.86±14.77aAB | 373.52±11.89aAB | |
PM | 295.12±16.10bA | 262.84±31.02bA | 292.04±23.69bA | 241.11±25.11bA | 270.78±11.28cA | 273.92±13.42bA | |
10~20 | CK | 295.12±32.20bA | 226.65±58.71bAB | 240.35±15.51bAB | 186.32±57.73aB | 246.16±11.28bAB | 287.92±8.98bA |
SM | 305.85±24.59aAB | 242.16±32.28aBC | 284.28±11.84aAB | 191.79±62.24aC | 322.47±45.12aA | 350.18±23.77aA | |
PM | 267.76±13.75bA | 211.15±39.02bA | 235.18±8.95bA | 186.32±50.22bA | 228.93±14.77cA | 239.68±14.46bA | |
20~40 | CK | 257.56±12.30aA | 190.47±32.28bB | 188.66±23.69bB | 142.48±41.37bC | 224.01±8.53bAB | 254.20±11.88aA |
SM | 262.93±12.30aAB | 200.81±15.51aC | 223.81±6.26aBC | 153.44±52.84aD | 228.93±14.77aBC | 282.74±15.57aA | |
PM | 246.83±16.10aA | 180.13±23.69bB | 178.32±15.51bB | 137.00±50.23bB | 169.85±29.54bB | 189.35±15.57aB | |
CK:不覆盖对照; SM: 9 000 kg·hm-2覆盖秸秆; PM:地膜覆盖。同一土层、同列数据后不同小写字母表示各处理间差异显著(P<0.05), 同一土层、同行数据后不同大写字母表示各生育期间差异显著(P<0.05)。CK: no mulching; SM: 9 000 kg·hm-2 straw mulching; PM: plastic film mulching. For the same soil layer and in the same column, different small letters mean significant differences at P<0.05 level among treatments. For the same soil layer and in the same row, different capital letters mean significant differences at P<0.05 level among growth stages. |
下载: 导出CSV
表4长期不同地表覆盖下春玉米不同生育期土壤微生物量碳相对含量动态
Table4.Proportions of microbial biomass carbon to soil organic carbon under long term different mulching treatments at different
% | |||||||
土层 Soil layer (cm) | 处理 Treatment | 播前 Pre-sowing | 苗期 Seedling stage | 拔节期 Jointing stage | 大喇叭口—抽雄期 Belling-heading | 灌浆期 Filling stage | 收获期 Harvest stage |
0~10 | CK | 3.04±0.21aA | 2.81±0.44aA | 2.99±0.08abA | 3.07±0.34aA | 2.83±0.11bA | 3.06±0.45aA |
SM | 3.02±0.27aAB | 2.67±0.35aB | 3.33±0.24aA | 3.20±0.18aA | 3.42±0.16aA | 3.30±0.06aA | |
PM | 2.88±0.08aA | 2.68±0.32aA | 2.87±0.18bA | 2.44±0.22bA | 2.56±0.11bA | 2.73±0.10bA | |
10~20 | CK | 3.00±0.29aA | 2.41±0.67aA | 2.44±0.11bA | 1.97±0.61aA | 2.50±0.15bA | 2.96±0.10aA |
SM | 2.93±0.26aAB | 2.37±0.33aBC | 2.76±0.14aAB | 2.02±0.67aC | 3.18±0.45aA | 3.29±0.30aA | |
PM | 2.76±0.13aA | 2.24±0.39aA | 2.40±0.07bA | 2.08±0.57aA | 2.41±0.13bA | 2.49±0.07bA | |
20~40 | CK | 2.96±0.19aAB | 2.31±0.46aBC | 2.50±0.29aABC | 1.96±0.58aC | 3.02±0.05aA | 2.94±0.21aAB |
SM | 3.02±0.27aAB | 2.37±0.31aBC | 2.68±0.05aAB | 2.00±0.69aC | 2.94±0.21aAB | 3.22±0.35aA | |
PM | 2.86±0.08aA | 2.22±0.25aA | 2.37±0.23aA | 1.89±0.71aA | 2.31±0.45bA | 2.21±0.16bA | |
CK:不覆盖对照; SM: 9 000 kg·hm-2覆盖秸秆; PM:地膜覆盖。同一土层、同列数据后不同小写字母表示各处理间差异显著(P<0.05), 同一土层、同行数据后不同大写字母表示各生育期间差异显著(P<0.05)。CK: no mulching; SM: 9 000 kg·hm-2 straw mulching; PM: plastic film mulching. For the same soil layer and in the same column, different small letters mean significant differences at P<0.05 level among treatments. For the same soil layer and in the same row, different capital letters mean significant differences at P<0.05 level among growth stages. |
下载: 导出CSV
表5长期不同地表覆盖下春玉米不同生育期土壤潜在可矿化碳含量动态
Table5.Soil potential mineralized carbon contents under long term different mulching treatments at different growth stages of spring maize
mg·kg-1 | |||||||
土层 Soil layer (cm) | 处理 Treatment | 播前 Pre-sowing | 苗期 Seedling stage | 拔节期 Jointing stage | 大喇叭口—抽雄期 Belling-heading | 灌浆期 Filling stage | 收获期 Harvest stage |
0~10 | CK | 271.04±6.64bB | 257.71±9.99bB | 292.45±12.72aA | 229.17±13.48aC | 225.46±18.14bC | 225.46±6.64bC |
SM | 287.10±3.30aAB | 278.41±5.00aBC | 305.16±22.93aA | 256.13±6.70aC | 279.70±18.14aB | 289.27±4.88aAB | |
PM | 262.90±6.87bB | 251.17±9.99bB | 287.58±4.33aA | 159.52±23.68bD | 222.27±16.06bC | 205.26±9.75cC | |
10~20 | CK | 227.70±3.30bB | 205.40±9.98bC | 247.95±6.36aA | 188.73±9.98bD | 206.11±4.60bC | 207.38±6.38bC |
SM | 264.00±6.60aA | 232.64±8.22aB | 273.38±19.08aA | 233.66±8.22aB | 244.61±8.03aB | 266.51±4.10aA | |
PM | 227.04±10.80bAB | 204.31±8.65bBC | 243.71±19.42aA | 144.91±8.65cD | 201.64±3.55bBC | 192.49±9.75cC | |
20~40 | CK | 204.60±6.60aA | 136.75±2.29aC | 171.66±6.36aB | 121.32±13.48aD | 134.21±9.58aCD | 185.05±3.19bB |
SM | 210.10±6.87aB | 141.11±5.00aD | 184.37±12.72aC | 140.42±13.63aD | 142.51±12.89aD | 229.72±8.45aA | |
PM | 201.30±3.30aA | 116.05±6.54bC | 172.71±4.85aB | 114.58±13.48aC | 125.71±8.37aC | 181.86±6.38bB | |
CK:不覆盖对照; SM: 9 000 kg·hm-2覆盖秸秆; PM:地膜覆盖。同一土层、同列数据后不同小写字母表示各处理间差异显著(P<0.05), 同一土层、同行数据后不同大写字母表示各生育期间差异显著(P<0.05)。CK: no mulching; SM: 9 000 kg·hm-2 straw mulching; PM: plastic film mulching. For the same soil layer and in the same column, different small letters mean significant differences at P<0.05 level among treatments. For the same soil layer and in the same row, different capital letters mean significant differences at P<0.05 level among growth stages. |
下载: 导出CSV
表6长期不同地表覆盖下春玉米不同生育期土壤潜在可矿化碳相对含量动态
Table6.Proportions of potential mineralized carbon to soil organic carbon under long term different mulching treatments at different growth stages of spring maize
% | |||||||
土层 Soil layer (cm) | 处理 Treatment | 播前 Pre-sowing | 苗期 Seedling stage | 拔节期 Jointing stage | 大喇叭口—抽雄期 Belling-heading | 灌浆期 Filling stage | 收获期 Harvest stage |
0~10 | CK | 2.61±0.14aAB | 2.54±0.01aB | 2.75±0.08aA | 2.29±0.14aC | 2.24±0.16bC | 2.23±0.05bC |
SM | 2.55±0.13aA | 2.57±0.08aA | 2.67±0.18aA | 2.44±0.10aA | 2.64±0.16aA | 2.55±0.02aA | |
PM | 2.56±0.08aB | 2.56±0.09aB | 2.83±0.07aA | 1.61±0.21bD | 2.24±0.16bC | 2.05±0.08cC | |
10~20 | CK | 2.31±0.01bB | 2.18±0.07aBC | 2.52±0.09aA | 2.00±0.15bD | 2.09±0.02bCD | 2.14±0.13bCD |
SM | 2.53±0.04aAB | 2.28±0.16aC | 2.65±0.21aA | 2.46±0.12aABC | 2.41±0.09aBC | 2.50±0.03aABC | |
PM | 2.34±0.09bAB | 2.17±0.11aBC | 2.48±0.22aA | 1.61±0.23cD | 2.13±0.03bBC | 2.00±0.05bC | |
20~40 | CK | 2.35±0.08aAB | 1.65±0.08aC | 2.27±0.07aA | 1.67±0.18aC | 1.81±0.11aC | 2.14±0.08bB |
SM | 2.41±0.13aAB | 1.66±0.04aC | 2.28±0.17aB | 1.83±0.17aC | 1.83±0.15aC | 2.61±0.16aA | |
PM | 2.33±0.10aA | 1.44±0.13bC | 2.29±0.06aA | 1.58±0.17aBC | 1.71±0.15aB | 2.12±0.10bA | |
CK:不覆盖对照; SM: 9 000 kg·hm-2覆盖秸秆; PM:地膜覆盖。同一土层、同列数据后不同小写字母表示各处理间差异显著(P<0.05), 同一土层、同行数据后不同大写字母表示各生育期间差异显著(P<0.05)。CK: no mulching; SM: 9 000 kg·hm-2 straw mulching; PM: plastic film mulching. For the same soil layer and in the same column, different small letters mean significant differences at P<0.05 level among treatments. For the same soil layer and in the same row, different capital letters mean significant differences at P<0.05 level among growth stages. |
下载: 导出CSV
表7长期不同地表覆盖下春玉米不同生育期土壤颗粒有机碳含量动态
Table7.Soil particulate organic carbon contents under long term different mulching treatments at different growth stages of spring maize
g·kg-1 | |||||||
土层 Soil layer (cm) | 处理 Treatment | 播前 Pre-sowing | 苗期 Seedling stage | 拔节期 Jointing stage | 大喇叭口—抽雄期 Belling-heading | 灌浆期 Filling stage | 收获期 Harvest stage |
0~10 | CK | 1.88±0.03bA | 1.77±0.04bAB | 1.81±0.04bAB | 1.31±0.12bD | 1.48±0.12bC | 1.67±0.15bB |
SM | 2.66±0.11aA | 2.31±0.10aBC | 2.44±0.09aB | 1.88±0.09aD | 2.23±0.11aC | 2.70±0.11aA | |
PM | 1.85±0.06bA | 1.71±0.06bB | 1.76±0.02bAB | 1.10±0.05cE | 1.43±0.03bD | 1.56±0.13bC | |
10~20 | CK | 1.61±0.05aA | 1.25±0.07bC | 1.50±0.10bAB | 1.04±0.15bD | 1.40±0.10bBC | 1.45±0.07bAB |
SM | 1.79±0.15aA | 1.70±0.14aA | 1.74±0.04aA | 1.65±0.04aA | 1.75±0.05aA | 1.87±0.12aA | |
PM | 1.41±0.06bA | 1.22±0.04bB | 1.39±0.08bA | 0.90±0.07bC | 1.17±0.11cB | 1.40±0.02bA | |
20~40 | CK | 1.18±0.07aA | 1.02±0.06aBC | 1.08±0.05bB | 0.72±0.06bD | 0.78±0.05bD | 0.95±0.04bC |
SM | 1.30±0.17aAB | 1.10±0.04aABC | 1.16±0.04aABC | 0.94±0.11aC | 1.04±0.13aBC | 1.36±0.27aA | |
PM | 1.16±0.11aA | 1.01±0.04aB | 0.95±0.02cB | 0.70±0.04bC | 0.75±0.11bC | 0.91±0.08bB | |
CK:不覆盖对照; SM: 9 000 kg·hm-2覆盖秸秆; PM:地膜覆盖。同一土层、同列数据后不同小写字母表示各处理间差异显著(P<0.05), 同一土层、同行数据后不同大写字母表示各生育期间差异显著(P<0.05)。CK: no mulching; SM: 9 000 kg·hm-2 straw mulching; PM: plastic film mulching. For the same soil layer and in the same column, different small letters mean significant differences at P<0.05 level among treatments. For the same soil layer and in the same row, different capital letters mean significant differences at P<0.05 level among growth stages |
下载: 导出CSV
表8长期不同地表覆盖下春玉米不同生育期土壤颗粒有机碳相对含量动态
Table8.Proportions of particulate organic carbon to soil organic carbon under long term different mulching treatments at different growth stages of spring maize
% | |||||||
土层 Soil layer (cm) | 处理 Treatment | 播前 Pre-sowing | 苗期 Seedling stage | 拔节期 Jointing stage | 大喇叭口—抽雄期 Belling-heading | 灌浆期 Filling stage | 收获期 Harvest stage |
0~10 | CK | 18.07±0.95bA | 17.45±0.46bA | 17.06±0.42bA | 13.11±1.18bC | 14.70±1.31bBC | 16.49±1.52bAB |
SM | 23.58±0.46aA | 21.32±0.67aB | 21.39±0.56aB | 17.84±0.91aC | 21.10±1.06aB | 23.81±0.61aA | |
PM | 18.08±0.96bA | 17.38±0.61bA | 17.33±0.42bA | 11.18±0.35cC | 14.41±0.20bB | 15.59±1.12bB | |
10~20 | CK | 16.38±0.21aA | 13.22±0.46bC | 15.19±0.68bAB | 10.95±1.61bD | 14.20±0.97bBC | 14.92±0.34bAB |
SM | 17.11±1.10aA | 16.58±0.72aA | 16.90±0.52aA | 17.35±0.55aA | 17.22±0.39aA | 17.53±0.68aA | |
PM | 14.55±0.41bA | 13.00±0.30bBC | 14.20±0.75bAB | 9.98±0.70bD | 12.36±1.04cC | 14.57±0.66bA | |
20~40 | CK | 13.57±0.54aA | 12.33±0.71aB | 14.33±0.48aA | 9.86±0.71bD | 10.51±0.54bCD | 10.96±0.44bC |
SM | 14.96±2.45aA | 12.88±0.49aA | 14.26±0.21aA | 12.21±1.80aA | 13.33±1.61aA | 15.39±2.12aA | |
PM | 13.48±1.79aA | 12.53±0.21aA | 12.64±0.34bA | 9.60±0.60bB | 10.20±1.27bB | 10.62±0.76bB | |
CK:不覆盖对照; SM: 9 000 kg·hm-2覆盖秸秆; PM:地膜覆盖。同一土层、同列数据后不同小写字母表示各处理间差异显著(P<0.05), 同一土层、同行数据后不同大写字母表示各生育期间差异显著(P<0.05)。CK: no mulching; SM: 9 000 kg·hm-2 straw mulching; PM: plastic film mulching. For the same soil layer and in the same column, different small letters mean significant differences at P<0.05 level among treatments. For the same soil layer and in the same row, different capital letters mean significant differences at P<0.05 level among growth stages. |
下载: 导出CSV
参考文献
[1] | LAL R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123(1/2):1-22 https://www.sciencedirect.com/science/article/pii/S0016706104000266 |
[2] | LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677):1623-1627 doi: 10.1126/science.1097396 |
[3] | SAINJU U M, CAESAR-TONTHAT T, JABRO J D. Carbon and nitrogen fractions in dryland soil aggregates affected by long-term tillage and cropping sequence[J]. Soil Science So-ciety of America Journal, 2009, 73(5):1488-1495 doi: 10.2136/sssaj2008.0405 |
[4] | SAINJU U M, SCHOMBERG H H, SINGH B P, et al. Cover crop effect on soil carbon fractions under conservation tillage cotton[J]. Soil and Tillage Research, 2007, 96(1/2):205-218 https://www.sciencedirect.com/science/article/pii/S0167198707001109 |
[5] | 梁贻仓, 王俊, 刘全全, 等.地表覆盖对黄土高原土壤有机碳及其组分的影响[J].干旱地区农业研究, 2014, 32(5):161-167 doi: 10.7606/j.issn.1000-7601.2014.05.028 LIANG Y C, WANG J, LIU Q Q, et al. Effects of soil surface mulching on soil organic carbon and its fractions in a wheat field in loess plateau, China[J]. Agricultural Research in the Arid Areas, 2014, 32(5):161-167 doi: 10.7606/j.issn.1000-7601.2014.05.028 |
[6] | 王缠军, 郝明德, 折凤霞, 等.黄土区保护性耕作对春玉米产量和土壤肥力的影响[J].干旱地区农业研究, 2011, 29(4):193-198 http://www.irgrid.ac.cn/handle/1471x/447995 WANG C J, HAO M D, SHE F X, et al. Effects of different conservation tillage measures on spring maize yield and soil fertility in the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2011, 29(4):193-198 http://www.irgrid.ac.cn/handle/1471x/447995 |
[7] | 付鑫, 王俊, 刘全全, 等.秸秆和地膜覆盖对旱作玉米田土壤团聚体及有机碳的影响[J].土壤通报, 2016, 47(2):405-413 http://cqvip.com/qk/91157X/201602/669060396.html FU X, WANG J, LIU Q Q, et al. Effect of straw and plastic film mulching on aggregate size distribution and organic carbon contents in a rainfed corn field[J]. Chinese Journal of Soil Science, 2016, 47(2):405-413 http://cqvip.com/qk/91157X/201602/669060396.html |
[8] | 李世清, 李东方, 李凤民, 等.半干旱农田生态系统地膜覆盖的土壤生态效应[J].西北农林科技大学学报:自然科学版, 2003, 31(5):21-29 http://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200305006.htm LI S Q, LI D F, LI F M, et al. Soil ecological effects of plastic film mulching in semiarid agro-ecological system[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry:Natural Science Edition, 2003, 31(5):21-29 http://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200305006.htm |
[9] | 卜玉山, 邵海林, 王建程, 等.秸秆与地膜覆盖春玉米和春小麦耕层土壤碳氮动态[J].中国生态农业学报, 2010, 18(2):322-326 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2010221&flag=1 BU Y S, SHAO H L, WANG J C, et al. Dynamics of soil carbon and nitrogen in plowed layer of spring corn and spring wheat fields mulched with straw and plastic film[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2):322-326 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2010221&flag=1 |
[10] | 李富翠. 旱地夏闲期覆盖秸秆和种植绿肥协调土壤水肥供应的效应与机制[D]. 杨凌: 西北农林科技大学, 2015: 18 LI F C. Soil water and nutrient supply affected by straw re-tention and planting green manure during summer fallow and its mechanism in dryland[D]. Yangling: Northwest A&F University, 2015: 18 |
[11] | 宋淑亚, 刘文兆, 王俊, 等.覆盖方式对玉米农田土壤水分、作物产量及水分利用效率的影响[J].水土保持研究, 2012, 19(2):210-212 SONG S Y, LIU W Z, Wang J, et al. Effects of different mulching modes on soil moisture, grain yield and water use efficiency in a corn field[J]. Research of Soil and Water Conservation, 2012, 19(2):210-212 |
[12] | 沈亚婷. EDXRF测定土壤元素含量及其在有机碳垂直分布特征研究中的应用[J].光谱学与光谱分析, 2012, 32(11):3117-3122 doi: 10.3964/j.issn.1000-0593(2012)11-3117-06 SHEN Y T. Determination of major, minor and trace elements in soils by polarized energy X-ray fluorescence spectrometry and the application to vertical distribution characteristics of soil organic carbon[J]. Spectroscopy and Spectral Analysis, 2012, 32(11):3117-3122 doi: 10.3964/j.issn.1000-0593(2012)11-3117-06 |
[13] | JENKINSON D S, POWLSON D S. The effects of biocidal treatments on metabolism in soil-Ⅴ:A method for meas-uring soil biomass[J]. Soil Biology and Biochemistry, 1976, 8(3):209-213 doi: 10.1016/0038-0717(76)90005-5 |
[14] | GOYAL S, CHANDER K, MUNDRA M C, et al. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical condi-tions[J]. Biology and Fertility of Soils, 1999, 29(2):196-200 doi: 10.1007/s003740050544 |
[15] | CAMBARDELLA C A, ELLIOTT E T. Particulate soil or-ganic-matter changes across a grassland cultivation se-quence[J]. Soil Science Society of America Journal, 1992, 56(3):777-783 doi: 10.2136/sssaj1992.03615995005600030017x |
[16] | 崔凤娟, 刘景辉, 李立军, 等.免耕秸秆覆盖对土壤活性有机碳库的影响[J].西北农业学报, 2012, 21(9):195-200 https://www.wenkuxiazai.com/doc/dbcb05de59eef8c75ebfb36f.html CUI F J, LIU J H, LI L J, et al. Effect of zero tillage with mulching on active soil organic carbon[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(9):195-200 https://www.wenkuxiazai.com/doc/dbcb05de59eef8c75ebfb36f.html |
[17] | 刘慧镯.夏玉米施肥技术[J].河南农业, 2011, (11):21 doi: 10.3969/j.issn.1006-950X.2011.11.016 LIU H Z. Fertilization technique of summer maize[J]. Agri-culture of Henan, 2011, (11):21 doi: 10.3969/j.issn.1006-950X.2011.11.016 |
[18] | 李成芳, 曹凑贵, 徐拥华, 等.稻鸭与稻鱼生态系统土壤微生物量N和土壤酶活性动态[J].生态学报, 2008, 28(8):3905-3912 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200808051.htm LI C F, CAO C G, XU Y H, et al. Dynamics of soil microbial biomass N and soil enzymes activities in rice-duck and rice-fish ecosystems[J]. Acta Ecologica Sinica, 2008, 28(8):3905-3912 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200808051.htm |
[19] | 蔡太义. 渭北旱原不同量秸秆覆盖对农田环境及春玉米生理生态的影响[D]. 杨凌: 西北农林科技大学, 2011: 50-51 CAI T Y. Effects of different rates of straw mulch on farmland environment and physiological ecology of spring maize (Zea Mays L. ) in Weibei highland area, China[D]. Yangling: Northwest A&F University, 2011: 50-51 |
[20] | 高玉红, 郭丽琢, 牛俊义, 等.栽培方式对玉米根系生长及水分利用效率的影响[J].中国生态农业学报, 2012, 20(2):210-216 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012213&flag=1 GAO Y H, GUO L Z, NIU J Y, et al. Effect of cultivation patterns on growth of maize root and water use efficiency[J]. Chinese Journal of Eco-Agriculture, 2012, 20(2):210-216 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012213&flag=1 |
[21] | POWLSON D S, PROOKES P C, CHRISTENSEN B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology and Biochemistry, 1987, 19(2):159-164 doi: 10.1016/0038-0717(87)90076-9 |
[22] | 贾会娟. 西南丘陵区保护性耕作下旱作农田土壤有机碳、氮相关组分的研究[D]. 重庆: 西南大学, 2015: 22-24, 40-41 JIA H J. Study on soil organic carbon and nitrogen compo-nents under conservation tillage on dryland in hilly areas of southwest China[D]. Chongqing: Southwest University, 2015: 22-24, 40-41 |
[23] | 吴荣美, 王永鹏, 李凤民, 等.秸秆还田与全膜双垄集雨沟播耦合对半干旱黄土高原玉米产量和土壤有机碳库的影响[J].生态学报, 2012, 32(9):2855-2862 http://d.wanfangdata.com.cn/Periodical_stxb201209024.aspx WU R M, WANG Y P, LI F M, et al. Effects of coupling film-mulched furrow-ridge cropping with maize straw soil-incorporation on maize yields and soil organic carbon pool at a semiarid loess site of China[J]. Acta Ecologica Sinica, 2012, 32(9):2855-2862 http://d.wanfangdata.com.cn/Periodical_stxb201209024.aspx |
[24] | LIESACK W, SCHNELL S, REVSBECH N P. Microbiology of flooded rice paddies[J]. FEMS Microbiology Reviews, 2000, 24(5):625-645 doi: 10.1111/j.1574-6976.2000.tb00563.x |
[25] | 张成娥, 梁银丽, 贺秀斌.地膜覆盖玉米对土壤微生物量的影响[J].生态学报, 2002, 22(4):508-512 http://www.wenkuxiazai.com/doc/b0b1f49ef01dc281e43af03d.html ZHANG C E, LIANG Y L, HE X B. Effects of plastic cover cultivation on soil microbial biomass[J]. Acta Ecologica Sinica, 2002, 22(4):508-512 http://www.wenkuxiazai.com/doc/b0b1f49ef01dc281e43af03d.html |
[26] | 陈吉, 赵炳梓, 张佳宝, 等.长期施肥潮土在玉米季施肥初期的有机碳矿化过程研究[J].土壤, 2009, 41(5):719-725 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200905007.htm CHEN J, ZHAO B Z, ZHANG J B, et al. Research on process of fluvo-aquic soil organic carbon mineralization in initial stage of maize growth under long-term different fertiliza-tion[J]. Soils, 2009, 41(5):719-725 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200905007.htm |
[27] | 于建光, 李辉信, 陈小云, 等.秸秆施用及蚯蚓活动对土壤活性有机碳的影响[J].应用生态学报, 2007, 18(4):818-824 http://www.cjae.net/CN/abstract/abstract9817.shtml YU J G, LI H X, CHEN X Y, et al. Effects of straw application and earthworm inoculation on soil labile organic carbon[J]. Chinese Journal of Applied Ecology, 2007, 18(4):818-824 http://www.cjae.net/CN/abstract/abstract9817.shtml |
[28] | 张赛, 王龙昌, 黄召存, 等.土壤活性有机碳不同组分对保护性耕作的响应[J].水土保持学报, 2015, 29(2):226-231 http://www.wenkuxiazai.com/doc/0fcba31c7f1922791788e893.html ZHANG S, WANG L C, HUANG Z C, et al. Effects of con-servation tillage on active soil organic carbon composition[J]. Journal of Soil and Water Conservation, 2015, 29(2):226-231 http://www.wenkuxiazai.com/doc/0fcba31c7f1922791788e893.html |
[29] | SAINJU U M, SENWO Z N, NYAKATAWA E Z, et al. Tillage, cropping systems, and nitrogen fertilizer source effects on soil carbon sequestration and fractions[J]. Journal of En-vironmental Quality, 2008, 37(3):880-888 doi: 10.2134/jeq2007.0241 |