删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国夏玉米和冬小麦近年生育期变化及其与气候的关系

本站小编 Free考研考试/2022-01-01

崔耀平1,,
肖登攀2,
刘素洁1,
李楠1,
蒋琳3,
石欣瑜1,
刘小萌1,
李江苏1,
路婧琦1,
秦耀辰1,,
1.中原经济区"三化"协调发展河南省协同创新中心/河南大学黄河中下游数字地理技术教育部重点实验室 开封 475004
2.河北省科学院地理科学研究所 石家庄 050011
3.中原经济区智慧旅游河南省协同创新中心/洛阳师范学院国土与旅游学院 洛阳 471934
基金项目: 国家自然科学基金项目41401504
国家自然科学基金项目41671425
国家自然科学基金项目41401129
河南省重点科技攻关计划152102310296
河南省高校科技创新团队支持计划16IRTSTHN012

详细信息
作者简介:崔耀平, 主要研究方向为土地利用和气候变化。E-mail:cuiyp@lreis.ac.cn
通讯作者:秦耀辰, 主要研究方向为可持续发展和低碳城市模拟。E-mail:qinyc@henu.edu.cn
中图分类号:S512.1+1;S513

计量

文章访问数:1166
HTML全文浏览量:6
PDF下载量:1473
被引次数:0
出版历程

收稿日期:2017-07-29
录用日期:2017-09-08
刊出日期:2018-03-01

Growth periods variation of summer maize and winter wheat and their corre lations with hydrothermal conditions in recent years in China

CUI Yaoping1,,
XIAO Dengpan2,
LIU Sujie1,
LI Nan1,
JIANG Lin3,
SHI Xinyu1,
LIU Xiaomeng1,
LI Jiangsu1,
LU Jingqi1,
QIN Yaochen1,,
1. Collaborative Innovation Center for the "Three Modernization" and Harmonious Development of Central Plains Economic Region/Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Kaifeng 475004, China
2. Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050011, China
3. Smart Tourism Cooperative Innovation Center of Central Plains Economic Zone, Henan Province/Land and Tourism College, Luoyang Normal University, Luoyang 471934, China
Funds: the National Natural Science Foundation of China41401504
the National Natural Science Foundation of China41671425
the National Natural Science Foundation of China41401129
the Key Science and Technology Breakthrough Plan of Henan Province152102310296
the Science and Technology Innovation Team Support Project of Henan Province16IRTSTHN012

More Information
Corresponding author:QIN Yaochen, E-mail:qinyc@henu.edu.cn


摘要
HTML全文
(0)(8)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:作物物候期受气候条件和人为耕作的共同影响,而水热气候条件又直接影响着人为耕作时间。全球变暖背景下温度增加的趋势在近年来出现了停滞现象,针对这一新的气候变化特征,本研究选取作物物候观测和气象观测的站点数据,利用经典的统计学方法分析2000-2013年中国夏玉米和冬小麦主要物候期的变化趋势和空间分布,及作物生育期与对应水热条件的相关关系。研究发现:夏玉米和冬小麦各主要物候期均呈现一定程度的延后,其中64%的站点显示夏玉米成熟期延后,冬小麦成熟期延后的站点数比例达78%。研究期间,夏玉米和冬小麦的生育期历时对温度和降水变化均比较敏感,88%和64%的站点分别显示出夏玉米和冬小麦的生育期历时与平均温度之间呈负相关关系,而71%和77%的站点显示夏玉米和冬小麦生育期历时与年均降水量呈正相关关系。本研究时段内的气温变化也不同于一般性认为的单调升温,夏玉米生育期对应的平均温度呈增加和降低趋势的站点数基本相同,但显示降水量增加的站点较多,达到总站点数的68%;而冬小麦整个生育期显示冷干化趋势的站点居多,显示温度降低和降水量下降的站点数均占总站点数的60%以上。此外,本研究还用轮作站点探讨说明了可以利用年值气候数据替代生育期气候数据分析夏玉米和冬小麦轮作的物候和生育期特征。本研究通过站点数据证实了作物生长发育过程对气候变化的敏感性,新的气候条件下我国夏玉米和冬小麦的物候也对应产生了新的特征。
关键词:物候/
夏玉米/
冬小麦/
轮作/
生长期/
气温/
降雨/
增温停滞
Abstract:Crop phenology is influenced by both climatic and agronomic conditions, especially temperature and precipitation, which directly affect tillage schedule. A climatic phenomenon of warming hiatus has been noted since 2000. This phenomenon differs with the popular views of global warming. From the perspective of crop phenology, numerous studies have been conducted to assess the changes in growth periods of summer maize and winter wheat in the past decades. A relatively clear linkage of phenology and climatic conditions has been confirmed. As necessary climatic variables for crop growth, both temperature and precipitation influence the processes of crop growth, including the time of occurrence of the main phenology and length of the growth period. However, the relationship between phenology and climatic condition in recent years has been hindered by the lack of specific analysis that corresponds this relationship with the warming hiatus. For this specific period therefore, analyzing inter-annual changes of main phenological events and exploring the relationship between phenology and temperature as well as precipitation have become necessary for assessing current and future impacts of climatic conditions on crop growth and food security. Using observed phenological and meteorological data for 2000-2013, this study focused on analyzing of phenological characteristics and variations in growth periods of summer maize and winter wheat. Corresponding matches were built among hydrothermal conditions during the growth periods of the two crops and then the relationships between the length of growth period and hydrothermal conditions were analyzed. Spatial analysis method was used to find the proximal meteorological stations to phenological stations. Also, classical statistic was used to analyze the trends in phenology of the two crops and the relationships between phenology and hydrothermal conditions. The results showed delays in the main phenological events of summer maize and winter wheat. About 64% of the observed data stations showed that maturity of summer maize had delayed and the proportion of station with delayed trends in winter wheat was 78%. For the period covered in the study, the growth periods of summer maize and winter wheat were more sensitive to temperature and precipitation changes. About 88% of the stations used for summer maize and 64% of the stations used for winter wheat showed negative correlation between growth period length and temperature. While 71% of the stations used for summer maize and 77% of the stations used for winter wheat showed positive correlation between growth period length and precipitation. The reason for these tends was attributed to climate change. Different from the general understanding of global warming, average temperature during the growth period of summer maize did not show an obvious increase or decrease in trend, but precipitation obviously increased in most of the stations. The proportion of the stations with increasing trends in precipitation was more than 68%, while both cold and dry trends were observed during the whole growth period of winter wheat. The proportion of the stations with decreasing trend in temperature or precipitation all was more than 60%. In addition, analysis of the crop rotation stations revealed that annual climate data could be used in place of climate data for the growth periods to analyze for phenology and growth of rotational crops.
Key words:Phenology/
Summer maize/
Winter wheat/
Rotational crop/
Growth period/
Temperature/
Precipitation/
Warming hiatus

HTML全文

表1中国夏玉米和冬小麦物候观测站点所属农业区
Table1.The agricultural zones of observed stations of summer maize and winter wheat in China
农业区
Agricultural zone
包含的主要省份
Main province
夏玉米
Summer maize
冬小麦
Winter wheat
甘新区?Gansu and Xinjiang zone 新疆, 甘肃, 内蒙古西部
Xinjiang, Gansu, West Inner Mongolia
青藏区?Qinghai-Tibet zone 青海, 西藏
Qinghai, Tibet
内蒙古及长城沿线区
Inner Mongolia and Great Wall zone
宁夏, 内蒙古东部, 河北北部
Ningxia, East Inner Mongolia, North Hebei
黄土高原区?Loess Plateau zone 陕西, 甘肃东南部
Shaanxi, Southeast Gansu
西南区?Southwest zone 四川, 重庆, 贵州, 云南
Sichuan, Chongqing, Guizhou, Yunnan
东北区
Northeast zone
黑龙江, 吉林, 辽宁
Heilongjiang, Jilin, Liaoning
黄淮海区
Huang-Huai-Hai zone
河南, 北京, 天津, 山东, 河北南部, 安徽和江苏南部
Henan, Beijing, Tianjin, Shandong, South Hebei, South Anhui, South Jiangsu
长江中下游区
Middle and Lower Reaches of Yangtzezone
湖北, 湖南, 江西, 福建, 浙江, 上海, 广东和广西北部, 安徽和江苏南部
Hubei, Hunan, Jiangxi, Fujian, Zhejiang, Shanghai, North Guangdong, North Guangxi, South Anhui, South Jiangsu
华南区
Southern zone
海南, 台湾, 广东和广西南部
Hainan, Taiwan, South Guangdong, South Guangxi


下载: 导出CSV
表22000—2013年夏玉米播种、抽雄和成熟期(积日, DOY)变化趋势的站点数统计
Table2.The number of stations with different variation trends (day of year, DOY) in seeding, tasseling, and mature periods of summer maize from 2000 to 2013
物候期
Phenology period
变化趋势?Variation trend (DOY)
< -1.0 -1.0~-0.5 -0.5~0 0~0.5 0.5~1.0 > 1.0
播种期?Seeding period 2 7 13 30 10 12
抽雄期?Tasseling period 4 5 23 22 11 5
成熟期?Mature period 4 8 13 20 16 9


下载: 导出CSV
表32000—2013年夏玉米整个生育期水热条件变化趋势及其相互关系的站点个数统计
Table3.The number of stations with different variation trends of whole growth period (GP) and of hydrothermal factors of summer maize and their correlations from 2000 to 2013
项目
Item
变化趋势?Variation trend1) 相关系数?Correlation coefficient
< -1.0 -1.0~0 0~1.0 > 1.0 < -0.458 -0.458~0 0~0.458 > 0.458
生育期长度?Length of GP 3 26 34 5
温度?Temperature 7 27 29 5
降水?Precipitation 6 16 29 17
生育期长度与温度相关性
Relationship between GP length and temperature
29 31 8 0
生育期长度与降水相关性
Relationship between GP length and precipitation
2 18 37 11
??1) GP长度、温度和降雨的变化趋势的单位分别为积日(DOY)、℃和mm。1) Units of the variation trends of GP length, temperature and precipitation are DOY, ℃ and mm, respectively.


下载: 导出CSV
表42000—2013年夏玉米生育期历时与水热因子的多元回归分析
Table4.The multiple regression equations of the length of growth period and hydrothermal conditions of summer maize from 2000 to 2013
农业区
Agricultural zone
营养生长期
Vegetative growth period (VGP)
生殖生长期
Reproductive growth period (RGP)
总生育期
Growth period (GP)
甘新区?Gansu and Xinjiang zone y=-0.57x1-0.073x2+67.35 y=-0.62x1+0.251x2+60.93 y=-4.05x1+0.009x2+194.85
黄淮海区?Huang-Huai-Hai zone y=-0.47 x1+0.000 1x2+66.25 y=-1.04x1+0.009x2+69.50 y=-2.1x1-0.001x2+152.34
黄土高原区?Loess Plateau zone y=-0.02x1+0.013x2+57.37 y=-0.94x1+0.008x2+67.74 y=-1.9x1+0.004x2+149.19
西南区?Southwest zone y=-1.84x1+0.026x2+100.32 y=0.33x1+0.034x2+33.03 y=-5.04x1+0.009x2+229.12
全国?China y=-0.67x1-0.001x2+71.92 y=-0.75x1+0.039x2+62.01 y=-2.74x1+0.002x2+169.01
??x1x2分别表示平均气温(℃)和降水量(mm), y为积日(DOY)。站点数n≤3的华南区和长江中下游区不做回归分析。x1 and x2 represent annual temperature (℃) and precipitation (mm) respectively; y is DOY (d). Middle and Lower Reaches of Yangtze zone, and Southwest zone have not been analyzed by regression method since the number of stations in the two zones is less than three.


下载: 导出CSV
表52000—2013年冬小麦播种、抽雄和成熟期(积日, DOY)变化趋势的站点个数统计
Table5.The number of stations with different variation trends (day of year, DOY) of seeding, tasseling, and mature periods of winter wheat from 2000 to 2013
物候期
Phenology period
变化趋势?Variation trend (DOY)
< -1.0 -1.0~-0.5 -0.5~0.0 0.0~0.5 0.5~1.0 > 1.0
播种期?Seeding period 12 18 66 60 21 25
抽雄期?Tasseling period 7 9 27 33 88 36
成熟期?Mature period 3 6 35 84 57 14


下载: 导出CSV
表62000—2013年冬小麦整个生育期水热条件变化趋势及其相互关系的站点个数统计
Table6.The number of stations with different variation trends of whole growth period (GP) and of hydrothermal factors of winter wheat and their correlations from 2000 to 2013
生育期
Growth period (GP)
变化趋势?Variation trend1) 相关系数?Correlation coefficient
< -1.0 -1.0~0 0~1.0 > 1.0 < -0.458 -0.458~0 0~0.458 > 0.458
GP长度?Length of GP 11 65 84 33
温度?Temperature 15 102 67 9
降水?Precipitation 23 93 74 3
GP长度与温度相关性
Relationship between GP length and temperature
22 44 90 37
GP长度与降水相关性
Relationship between GP length and precipitation
2 43 95 53
??1) GP长度、温度和降雨的变化趋势的单位分别为积日(DOY)、℃和mm。1) Units of the variation trends of GP length, temperature and precipitation are DOY, ℃ and mm, respectively.


下载: 导出CSV
表72000—2013年冬小麦生育期历时与水热条件的拟合方程
Table7.The multiple regression equations of length of growth period and hydrothermal conditions of winter wheat from 2000 to 2013
农业区
Agricultural zone
营养生长期
Vegetative growth period (VGP)
生殖生长期
Reproductive growth period (RGP)
总生育期
Growth period (GP)
长江中下游区
Middle and Lower Reaches of Yangtze one
y=-0.17x1+0.003x2+163.86 y=-2.11x1+0.072x2+77.33 y=1.29x1+0.032x2+184.77
甘新区?Gansu and Xinjiang zone y=3.94x1+0.137x2+238.72 y=-0.71x1+0.185x2+56.6 y=4.52x1+0.091x2+231.4
黄淮海区?Huang-Huai-Hai zone y=0.85x1+0.020x2+190.6 y=-2.09x1+0.013x2+78.65 y=0.33x1+0.012x2+235.48
黄土高原区?Loess Plateau zone y=2.68x1-0.038x2+199.75 y=-1.45x1+0.141x2+61.18 y=2.7x1+0.026x2+234.64
西南区?Southwest zone y=0.02x1+0.094x2+137.15 y=-2.76x1+0.128x2+81.74 y=-1.24x1+0.035x2+201.82
全国?China y=1.28x1+0.050x2+182.04 y=-1.93x1+0.100x2+71.65 y=1.11x1+0.031x2+220.86
??x1x2分别表示平均气温(℃)和降水量(mm), y为积日(DOY)。站点数n ≤ 3的华南区和青藏区不做回归分析。x1 and x2 represent annual temperature (℃) and precipitation (mm) respectively; y is DOY (d). Qinghai-Tibet and Southwest zones have not been analyzed by regression method since the number of station in the two zones are less than three.


下载: 导出CSV
表8冬小麦夏玉米轮作站点年值气候与生育期气候的相关性统计表
Table8.The relationship between annual values and growth period (GP) values of hydrothermal factors of stations with winter wheat and summer maize rotation
项目
Item
站点数?Stations number
气温(年值与生育期)
Temperature (annual and GP values)
降水(年值与生育期)
Precipitation (annual and GP values)
0.01显著水平正相关?Significant positive correlation (P < 0.01) 43 36
0.1显著水平正相关?Significant positive correlation (P < 0.1) 7 4
正相关?Positive correlation 6 10
负相关?Negative correlation 0 6


下载: 导出CSV

参考文献(34)
[1]XIAO D P, MOIWO J P, TAO F L, et al. Spatiotemporal var-iability of winter wheat phenology in response to weather and climate variability in China[J]. Mitigation and Adaptation Strategies for Global Change, 2015, 20(7):1191-1202 doi: 10.1007/s11027-013-9531-6
[2]路婧琦. 气候变化对我国小麦和玉米物候的影响研究[D]. 开封: 河南大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10475-1016207631.htm
LU J Q. Climate change impacts on wheat and maize phenology in China[D]. Kaifeng: Henan University, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10475-1016207631.htm
[3]ESTRELLA N, SPARKS T H, MENZEL A. Trends and tem-perature response in the phenology of crops in Germany[J]. Global Change Biology, 2007, 13(8):1737-1747 doi: 10.1111/gcb.2007.13.issue-8
[4]CUI Y P. Preliminary estimation of the realistic optimum temperature for vegetation growth in China[J]. Environmental Management, 2013, 52(1):151-162 doi: 10.1007/s00267-013-0065-1
[5]XIAO D P, TAO F L. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades[J]. European Journal of Agronomy, 2014, 52:112-122 doi: 10.1016/j.eja.2013.09.020
[6]DISKIN E, PROCTOR H, JEBB M, et al. The phenology of Rubus fruticosus in Ireland:herbarium specimens provide evidence for the response of phenophases to temperature, with implications for climate warming[J]. International Journal of Biometeorology, 2012, 56(6):1103-1111 doi: 10.1007/s00484-012-0524-z
[7]CUI Y P, XIAO X M, ZHANG Y, et al. Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years[J]. Scientific Reports, 2017, 7:14963 doi: 10.1038/s41598-017-13783-5
[8]TAO F, YOKOZAWA M, XU Y L, et al. Climate changes and trends in phenology and yields of field crops in China, 1981-2000[J]. Agricultural and Forest Meteorology, 2006, 138(1/4):82-92 https://www.researchgate.net/publication/222197393_Climate_changes_and_trends_in_phenology_and_yields_of_field_crops_in_China_1981-2000
[9]CRAUFURD P Q, WHEELER T R. Climate change and the flowering time of annual crops[J]. Journal of Experimental Botany, 2009, 60(9):2529-2539 doi: 10.1093/jxb/erp196
[10]莫非, 赵鸿, 王建永, 等.全球变化下植物物候研究的关键问题[J].生态学报, 2011, 31(9):2593-2601 https://www.wenkuxiazai.com/doc/b2093e2150e2524de4187e16.html
MO F, ZHAO H, WANG J Y, et al. The key issues on plant phenology under global change[J]. Acta Ecologica Sinica, 2011, 31(9):2593-2601 https://www.wenkuxiazai.com/doc/b2093e2150e2524de4187e16.html
[11]车少静, 智利辉, 冯立辉.气候变暖对石家庄冬小麦主要生育期的影响及对策[J].中国农业气象, 2005, 26(3):180-183 doi: 10.3969/j.issn.0517-6611.2015.07.073
CHE S J, ZHI L H, FENG L H. Impact of warmer climate on main growing periods of winter wheat and response strat-egy[J]. Chinese Journal of Agrometeorology, 2005, 26(3):180-183 doi: 10.3969/j.issn.0517-6611.2015.07.073
[12]徐玲玲, 吕厚荃, 方利.气候变化对黄淮海地区夏玉米气候适宜度的影响[J].资源科学, 2014, 36(4):782-787 http://geoscien.neigae.ac.cn/CN/abstract/abstract17992.shtml
XU L L, LYU H Q, FANG L. Effect of climate change on the climate suitability of summer maize on the Huang-Huai-Hai Plain[J]. Resources Science, 2014, 36(4):782-787 http://geoscien.neigae.ac.cn/CN/abstract/abstract17992.shtml
[13]陈博, 欧阳竹, 程维新, 等.近50a华北平原冬小麦-夏玉米耗水规律研究[J].自然资源学报, 2012, 27(7):1186-1199 doi: 10.11849/zrzyxb.2012.07.010
CHEN B, OUYANG Z, CHENG W X, et al. Water consump-tion for winter wheat and summer maize in the North China Plain in recent 50 years[J]. Journal of Natural Resources, 2012, 27(7):1186-1199 doi: 10.11849/zrzyxb.2012.07.010
[14]KNIGHT J, KENNEDY J J, FOLLAND C, et al. Do global temperature trends over the last decade falsify climate predictions? In state of the climate in 2008[J]. Bulletin of the American Meteorological Society, 2009, 90(8):S22-S23 https://www.researchgate.net/profile/Adam_Scaife/publication/249334298_Do_global_temperature_trends_over_the_last_decade_falsify_climate_predictions_in_State_of_the_Climate_in_2008/links/00b49525d2cc713c71000000/Do-global-temperature-trends-over-the-last-decade-falsify-climate-predictions-in-State-of-the-Climate-in-2008.pdf
[15]UK Met Office. The recent pause in global warming (1): What do observations of the climate system tell us?[R]. Met Office Report. Met Office, Devon, United Kingdom, 2013: 1-29
[16]UK Met Office. The recent pause in global warming (2): What are the potential causes?[R]. Met Office Report. Met Office, Devon, United Kingdom, 2013: 1-24
[17]UK Met Office. The recent pause in global warming (3): What are the implications for projections of future warming?[R]. Met Office Report. Met Office, Devon, United Kingdom, 2013: 1-21
[18]王绍武, 罗勇, 赵宗慈, 等.全球变暖的停滞还能持续多久?[J].气候变化研究进展, 2014, 10(6):465-468 https://www.cnki.com.cn/qikan-DQXK201606004.html
WANG S W, LUO Y, ZHAO Z C, et al. How long will the pause of global warming stay again?[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(6):465-468 https://www.cnki.com.cn/qikan-DQXK201606004.html
[19]苏京志, 温敏, 丁一汇, 等.全球变暖趋缓研究进展[J].大气科学, 2016, 40(6):1143-1153 http://www.doc88.com/p-6981376189735.html
SU J Z, WEN M, DING Y H, et al. Hiatus of global warming:A review[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(6):1143-1153 http://www.doc88.com/p-6981376189735.html
[20]KNUTSON T R, ZHANG R, HOROWITZ L W. Prospects for a prolonged slowdown in global warming in the early 21st century[J]. Nature Communications, 2016, 7:13676 doi: 10.1038/ncomms13676
[21]FYFE J C, MEEHL G A, ENGLAND M H, et al. Making sense of the early-2000s warming slowdown[J]. Nature Climate Change, 2016, 6(3):224-228 doi: 10.1038/nclimate2938
[22]CUI Y P, NING X J, QIN Y C, et al. Spatio-temporal changes in agricultural hydrothermal conditions in China from 1951 to 2010[J]. Journal of Geographical Sciences, 2016, 26(6):643-657 doi: 10.1007/s11442-016-1290-3
[23]丁一汇, 任国玉, 石广玉, 等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展, 2006, 2(1):3-8 http://d.wanfangdata.com.cn/Periodical_qhbhyjjz200601001.aspx?f=datatang
DING Y H, REN G Y, SHI G Y, et al. National assessment report of climate change (Ⅰ):Climate change in China and its future trend[J]. Advances in Climate Change Research, 2006, 2(1):3-8 http://d.wanfangdata.com.cn/Periodical_qhbhyjjz200601001.aspx?f=datatang
[24]全国农业区划委员会《中国综合农业区划》编写组.中国综合农业区划[M].北京:农业出版社, 1981
"Chinese Synthetic Agricultural Regional Planning" Writing Committee. Chinese Synthetic Agricultural Regional Plan-ning[M]. Beijing:Agriculture Press, 1981
[25]邓静中.全国综合农业区划的若干问题[J].地理研究, 1982, 1(1):9-18 https://www.wenkuxiazai.com/doc/655d27051eb91a37f1115c8d-2.html
DENG J Z. Some problems on the comprehensive agricultural regionalization of China[J]. Geographical Research, 1982, 1(1):9-18 https://www.wenkuxiazai.com/doc/655d27051eb91a37f1115c8d-2.html
[26]《第三次气候变化国家评估报告》编写委员会.第三次气候变化国家评估报告[M].北京:科学出版社, 2015
"The Third National Assessment Report of Climate Change" Writing Committee. The Third National Assessment Report of Climate Change[M]. Beijing:Science Press, 2015
[27]杜国明, 张露洋, 徐新良, 等.近50年气候驱动下东北地区玉米生产潜力时空演变分析[J].地理研究, 2016, 35(5):864-874 https://mall.cnki.net/huiyi-ZGQX201611014069.html
DU G M, ZHANG L Y, XU X L, et al. Spatial-temporal characteristics of maize production potential change under the background of climate change in Northeast China over the past 50 years[J]. Geographical Research, 2016, 35(5):864-874 https://mall.cnki.net/huiyi-ZGQX201611014069.html
[28]DONG J, XIAO X, ZHANG G, et al. Northward expansion of paddy rice in northeastern Asia during 2000-2014[J]. Geo-physical Research Letters, 2016, 43(8):3754-3761 doi: 10.1002/2016GL068191
[29]胡洵, 王靖, 冯利平.华北平原冬小麦各生育阶段农业气候要素变化特征分析[J].中国农业气象, 2013, 34(3):317-323 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ghdqnyyj201504038
HU X, WANG J, FENG L P. Analysis on agro-climatic ele-ments variation during winter wheat growing season in North China Plain[J]. Chinese Journal of Agrometeorology, 2013, 34(3):317-323 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ghdqnyyj201504038
[30]肖登攀, 陶福禄, 沈彦俊, 等.华北平原冬小麦对过去30年气候变化响应的敏感性研究[J].中国生态农业学报, 2014, 22(4):430-438 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014408&flag=1
XIAO D P, TAO F L, SHEN Y J, et al. Sensitivity of response of winter wheat to climate change in the North China Plain in the last three decades[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4):430-438 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014408&flag=1
[31]肖登攀, 齐永青, 王仁德, 等. 1981-2009年新疆小麦和玉米物候期与气候条件变化研究[J].干旱地区农业研究, 2015, 33(6):189-194 doi: 10.7606/j.issn.1000-7601.2015.06.32
XIAO D P, QI Y Q, WANG R D, et al. Changes in phenology and climatic conditions of wheat and maize in Xinjiang during 1981-2009[J]. Agricultural Research in the Arid Areas, 2015, 33(6):189-194 doi: 10.7606/j.issn.1000-7601.2015.06.32
[32]LI Z G, YANG P, TANG H J, et al. Response of maize phe-nology to climate warming in Northeast China between 1990 and 2012[J]. Regional Environmental Change, 2014, 14(1):39-48 doi: 10.1007/s10113-013-0503-x
[33]成林, 李彤霄, 刘荣花.主要生育期气候变化对河南省冬小麦生长及产量的影响[J].中国生态农业学报, 2017, 25(6):931-940 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170617&flag=1
CHENG L, LI T X, LIU R H. Effect of climate change on growth and yield of winter wheat in Henan Province[J]. Chi-nese Journal of Eco-Agriculture, 2017, 25(6):931-940 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170617&flag=1
[34]XIAO D P, TAO F L. Contributions of cultivar shift, man-agement practice and climate change to maize yield in North China Plain in 1981-2009[J]. International Journal of Bio-meteorology, 2016, 60(7):1111-1122 http://or.nsfc.gov.cn/handle/00001903-5/253721

相关话题/生育 农业 统计 作物 数据