于晓芳?,,
高聚林,,
胡树平,
孙继颖,
王志刚,
高鑫,
朱文新
内蒙古农业大学 呼和浩特 010019
基金项目: 国家玉米产业技术体系项目CARS-02-63
国家科技支撑计划项目2013BAD07B04
华北黄土高原地区作物栽培科学观测实验站基金25204120
国家重点研发计划项目2017YFD0300804
详细信息
作者简介:于博, 主要从事玉米生理生态和土壤肥力调控研究, E-mail:yubotougao@163.com
于晓芳, 主要从事玉米生理生态研究, E-mail:yuxiaofang75@163.com
通讯作者:高聚林, 主要从事玉米生理生态研究。E-mail:nmgaojulin@163.com
?同等贡献者中图分类号:S513
计量
文章访问数:990
HTML全文浏览量:7
PDF下载量:848
被引次数:0
出版历程
收稿日期:2017-07-24
录用日期:2017-10-26
刊出日期:2018-04-01
Effects of deep tillage and straw return on soil structure of high-yield spring maize field
YU Bo?,,YU Xiaofang?,,
GAO Julin,,
HU Shuping,
SUN Jiying,
WANG Zhigang,
GAO Xin,
ZHU Wenxin
Inner Mongolia Agricultural University, Hohhot 010019, China
Funds: the Maize Industrial Technology System Construction of Modem Agriculture of ChinaCARS-02-63
the National Key Technologies R&D Program of China2013BAD07B04
the Fund of Crop Cultivation Scientific Observation Experimental Station in North China Loess Plateau25204120
the National Key Research and Development Project of China2017YFD0300804
More Information
Corresponding author:GAO Julin, E-mail: nmgaojulin@163.com
? Equal contributors摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为达到玉米生产耕层最适深度(22 cm)和耕层最适土壤容重(1.1~1.3 g·cm-3),解决内蒙古平原灌区耕层浅、犁底层坚硬且厚的农田土壤结构问题,分别选用连续1、2、3、4年秸秆深翻还田定位试验地,秋收后玉米秸秆全量粉碎深翻还田,秸秆年均还田量为20 034.97 kg·hm-2,形成秸秆深翻还田1~4年的4个试验处理(SF1-SF4),以不深翻秸秆还田的处理为对照(CK),研究土壤容重、土壤坚实度、土壤团聚体及其稳定性、土壤肥力及pH随不同年限秸秆深翻还田的变化规律。结果表明:1)SF1-SF4处理0~40 cm土层,土壤容重和土壤坚实度比CK显著减小。2)0~20 cm土层,SF4处理>0.25 mm团聚体比例(R0.25)、几何平均直径(GWD)和平均重量直径(MWD)均比CK显著减小;SF1处理土壤团聚体破坏率(PAD)比CK显著降低9.56%,不稳定指数(SWA)随深翻年限增加而显著降低;团聚体分形维数SF4比CK显著增大7.30%。3)20~40 cm土层,SF1和SF2处理R0.25比CK分别显著增加13.69%和17.83%;SF2处理的MWD和GWD分别比CK显著增加23.92%和53.38%;SF1-SF4处理的PAD比CK显著降低,且SF2显著高于SF1和SF3;而SF1-SF4的SWA比CK显著增加,且随秸秆深翻年限的增加呈逐渐升高趋势;团聚体分形维数SF2比CK显著降低7.39%。4)土壤有机质含量SF1-SF4比CK显著增加,且SF2-SF4处理显著大于SF1;速效氮、速效磷和速效钾SF1-SF4比CK显著增加,土壤pH SF3、SF4比CK显著降低。总之,深翻秸秆还田1~4年对0~40 cm土层土壤影响显著;深翻秸秆还田2年适合土壤犁底层结构的改良,深翻秸秆还田3年和4年适合土壤耕层结构的改良。玉米秸秆全量深翻还田既能达到耕作土壤的目的,同时也增加了土壤有机质,降低土壤团聚体破坏率和土壤水稳性团聚体的不稳定系数,利于培肥耕层土壤。
关键词:春玉米/
深翻/
秸秆还田/
土壤容重/
土壤坚实度/
土壤团聚体/
分形维数/
土壤养分
Abstract:There are some structural issues of farmland soils in the irrigated Inner Mongolia Plain, such as hard (bulk density of 1.55-1.62 g·cm-3), shallow plough layer (0-16 cm) and thick plow pan (45 cm). To solve these problems and achieve optimum tillage depth of 22 cm and soil bulk density of 1.1-1.3 g·cm-3 of the topsoil layer, a test with 1, 2, 3 and 4 years of continuous straw return plus deep tillage was conducted in a high-yield spring maize field in the Science-Technology Demonstration Garden of Inner Mongolia Agricultural University. The full maize straw (20 034. 97 kg·hm-2) was crushed after autumn harvest and returned to soil combined with 40 cm deep tillage. Four treatments for 1-4 years of straw return plus deep tillage (SF1-SF4) were set and no deep tillage with maize straw return was the control (CK). The soil bulk density, hardness, aggregates and their stability, fertility and pH value were studied. The results showed that:1) in 0-40 cm layer, soil bulk density and hardness significantly decreased under SF1-SF4 treatments compared with CK. 2) In 0-20 cm soil layer, the proportion of aggregates > 0.25 mm (R0.25), mean weight diameter and geometric mean diameter of SF4 significantly dropped compared with CK. The percentage of aggregate disruption under SF1 significantly decreased by 9.56% compared with CK, the sabotage water-stable aggregates decreased significantly with years of the experiment. The fractal dimension of aggregates of SF4 significantly increased by 7.30% compared to CK. 3) In 20-40 cm layer soil, the R0.25 of SF1 and SF2 were significantly increased by 13.69% and 17.83%, respectively, compared with CK; the mean weight diameter and geometric mean diameter of aggregates of SF2 were significantly increased by 23.92% and 53.38%. Then percentage of aggregate disruption of soil aggregates significantly decreased by 9.20% (SF1), 3.02% (SF2), 8.38% (SF3) and 3.16% (SF4) compared with CK. Sabotage water-stable aggregates significantly increased by 13.58% (SF1), 16.49% (SF2), 22.67% (SF3) and 25.42% (SF4) compared with CK. Fractal dimension of aggregates of SF2 significantly decreased by 7.39% compared with CK. 4) Soil organic matter content significantly increased by 16.32% (SF1), 24.78% (SF2), 25.07% (SF3) and 25.56% (SF4) compared with CK. Also, available nitrogen, phosphorus and potassium significantly increased compared with CK. Soil pH of SF3 and SF4 significantly decreased respectively by 1.95% and 1.73% compared with CK. In conclusion, the 2-year deep tillage with maize straw return was most suitable for improving the structure of soil plow pan. The 3-year and 4-year deep tillage with maize straw return were suitable for improving the structure of topsoil layer. The application of deep tillage with maize straw return not only improved soil structure of plough layer, but also increased soil organic matter, decreased the percentage of aggregate disruption of soil aggregates and the sabotage water-stable aggregates, and enhanced tillage layer fertility.
Key words:Spring maize/
Deep tillage/
Straw return/
Soil bulk density/
Soil hardness/
Soil aggregate/
Fractal dimension/
Soil nutrient
? Equal contributors
注释:
1) ?同等贡献者
HTML全文
图1不同年限深翻秸秆还田对春玉米不同生育期0~20 cm (A)和20~40 cm (B)土层容重的影响
不同小写字母表示同一时期不同处理间在0.05水平差异显著。
Figure1.Effects of deep tillage and straw return for different years on bulk density in 0-20 cm (A) and 20-40 cm (B) soil layers at different growth stages of spring maize
Different lowercase letters in the same growth stage mean significant differences among different treatments at 0.05 level.
下载: 全尺寸图片幻灯片
图2不同年限深翻秸秆还田对春玉米田春播前(a)、灌浆期(b)及籽粒收获后(c)土壤坚实度的影响
Figure2.Effects of deep tillage and straw return for different years on soil hardness in 0-40 cm layers before spring sowing (a), at filling stage (b) and after harvest (c) of spring maize
下载: 全尺寸图片幻灯片
表1深翻秸秆全量还田试验设计方案
Table1.Test design scheme of deep tillage and straw returning
处理 Treatment | 耕翻深度 Ploughing depth | 秋深翻处理年份 Autumn subsoiling year |
CK | 旋耕15 cm Rotary tillage 15 cm | — |
SF1 | 深翻40 cm Subsoiling 40 cm | 2013 |
SF2 | 深翻40 cm Subsoiling 40 cm | 2012, 2013 |
SF3 | 深翻40 cm Subsoiling 40 cm | 2011, 2012, 2013 |
SF4 | 深翻40 cm Subsoiling 40 cm | 2010, 2011, 2012, 2013 |
??所有处理均进行前茬作物秸秆全量粉碎还田。For all treatment, all straws of preceding crop are smashed and incorporated into soil. |
下载: 导出CSV
表2不同年限深翻秸秆还田下春玉米产量及构成
Table2.Yield and its components of spring maize under different treatments of deep tillage and straw return for different years
处理 Treatment | 穗数 Spike number [ear·(666.7m-2)] | 穗粒数 Grains per spike | 千粒重 1000-grain weight (g) | 产量 Yield (kg·hm-2) |
CK | 5 187.33±41.03b | 709.33±14.11a | 314.90±3.44c | 14 776.50±420.30c |
SF1 | 5 084.33±26.56b | 723.33±72.73a | 344.20±2.68b | 16 160.40±610.70c |
SF2 | 5 229.67±90.80b | 693.33±60.58a | 346.57±1.14b | 16 432.20±564.75c |
SF3 | 5 241.00±70.06a | 720.67±17.01a | 354.77±1.84a | 17 495.40±304.20b |
SF4 | 5 428.00±28.88a | 707.20±15.65a | 363.43±4.06a | 18 615.15±386.55a |
??同列不同小写字母表示不同处理间在0.05水平差异显著。Different lowercase letters in the same column mean significant differences among different treatments at 0.05 level. |
下载: 导出CSV
表3深翻秸秆还田对0~40 cm土层土壤团聚体特征的影响
Table3.Effects of deep tillage and straw return for different years on characteristics of soil aggregates in 0-40 cm soil layer
土层深度 Soil depth (cm) | 处理 Treatment | > 0.25 mm团聚体比例 Proportion of aggregates > 0.25 mm | 平均重量直径 Mean weight diameter | 几何平均直径 Geometric mean diameter |
0~20 | CK | 0.812±0.01a | 2.91±0.05a | 1.47±0.04a |
SF1 | 0.789±0.02a | 3.04±0.04a | 1.50±0.03a | |
SF2 | 0.807±0.03a | 2.97±0.09a | 1.49±0.09a | |
SF3 | 0.808±0.02a | 2.67±0.08b | 1.34±0.06a | |
SF4 | 0.700±0.02b | 2.34±0.05c | 1.07±0.03b | |
20~40 | CK | 0.774±0.02c | 3.01±0.16b | 1.48±0.10b |
SF1 | 0.880±0.03b | 3.20±0.15b | 1.80±0.16ab | |
SF2 | 0.912±0.03a | 3.73±0.10a | 2.27±0.14a | |
SF3 | 0.807±0.01bc | 2.91±0.03b | 1.45±0.02b | |
SF4 | 0.818±0.01bc | 2.75±0.01b | 1.41±0.01b | |
??同列同一土层深度不同小写字母表示不同处理间在0.05水平差异显著。Different lowercase letters in the same column and the same soil depth mean significant differences among different treatments at 0.05 level. |
下载: 导出CSV
表4深翻秸秆还田对0~40 cm土层土壤团聚体破坏率(PAD)的影响
Table4.Effects of deep tillage and straw return on percentage of aggregate disruption (PAD) in 0-40 cm soil layer
处理 Treatment | 0~20 cm | 20~40 cm |
CK | 80.85±0.26a | 78.47±0.96a |
SF1 | 74.02±0.74b | 71.25±0.86c |
SF2 | 77.75±0.51ab | 76.10±0.29b |
SF3 | 80.06±0.40a | 71.89±0.22c |
SF4 | 76.99±2.47ab | 75.99±0.34bc |
??同列不同小写字母表示不同处理间在0.05水平差异显著。Different lowercase letters in the same column mean significant differences among different treatments at 0.05 level. |
下载: 导出CSV
表5深翻秸秆还田对0~40 cm土层土壤水稳性团聚体不稳定系数(SWA)的影响
Table5.Effects of deep tillage and straw return on soil sabotage of water-stable aggregates (SWA) in 0-40 cm soil layer
处理 Treatment | 0~20 cm | 20~40 cm |
CK | 17.64±0.32a | 18.31±0.14c |
SF1 | 16.75±0.09c | 20.57±0.12b |
SF2 | 17.13±0.21b | 21.76±0.56a |
SF3 | 15.27±0.08d | 21.86±0.37a |
SF4 | 14.75±0.11e | 21.35±0.22a |
??同列不同小写字母表示不同处理间在0.05水平差异显著。Different lowercase letters in the same column mean significant differences among different treatments at 0.05 level. |
下载: 导出CSV
表6深翻秸秆还田对0~40 cm土层土壤团聚体分形维数(D)的影响
Table6.Effects of deep tillage and straw return on fractal dimension of aggregates (D) in 0-40 cm soil layer
处理 Treatment | 0~20 cm | 20~40 cm |
CK | 2.33±0.03c | 2.26±0.01ab |
SF1 | 2.28±0.02bc | 2.24±0.03ab |
SF2 | 2.30±0.04bc | 2.18±0.01b |
SF3 | 2.40±0.02b | 2.31±0.01a |
SF4 | 2.50±0.02a | 2.36±0.01a |
??同列不同小写字母表示不同处理间在0.05水平差异显著。Different lowercase letters in the same column mean significant differences among different treatments at 0.05 level. |
下载: 导出CSV
表7深翻秸秆还田对土壤有机质、速效养分和pH的影响
Table7.Effects of deep tillage and straw return on contents of organic matter and available nutrients and pH
处理 Treatment | 有机质含量 Organic matter content (g·kg-1) | 速效养分含量Available nutrient content (mg·kg-1) | pH | ||
速效氮 Available N | 速效磷 Available P | 速效钾 Available K | |||
CK | 10.29±0.41c | 48.61±1.06b | 5.88±0.11c | 50.81±0.91c | 8.22±0.01a |
SF1 | 11.87±0.34b | 58.47±0.60a | 6.28±0.08bc | 59.75±0.05b | 8.23±0.02a |
SF2 | 12.84±0.17a | 55.64±2.16a | 6.59±0.23b | 59.11±1.26b | 8.13±0.02a |
SF3 | 12.87±0.08a | 56.97±4.51a | 6.93±0.03ab | 61.22±1.40b | 8.06±0.04b |
SF4 | 12.92±0.06a | 59.28±0.84a | 7.25±0.26a | 65.98±2.46a | 8.08±0.06b |
??同列不同小写字母表示不同处理间在0.05水平差异显著。Different lowercase letters in the same column mean significant differences among different treatments at 0.05 level. |
下载: 导出CSV
参考文献
[1] | BRONICK C J, LAL R. Soil structure and management:A review[J]. Geoderma, 2005, 124(1/2):3-22 https://www.sciencedirect.com/science/article/pii/S0016706104000898 |
[2] | 周虎, 吕贻忠, 李保国.土壤结构定量化研究进展[J].土壤学报, 2009, 46(3):501-506 doi: 10.11766/trxb200710300318 ZHOU H, Lü Y Z, LI B G. Advancement in the study on quantification of soil structure[J]. Acta Pedologica Sinica, 2009, 46(3):501-506 doi: 10.11766/trxb200710300318 |
[3] | MADARI B, MACHADO P L O A, TORRES E, et al. No tillage and crop rotation effects on soil aggregation and or-ganic carbon in a Rhodic Ferralsol from southern Brazil[J]. Soil and Tillage Research, 2005, 80(1/2):185-200 https://www.sciencedirect.com/science/article/pii/S0167198704000765 |
[4] | LETEY J. Relationship between soil physical properties and crop production[M]//Stewart B A. Advances in Soil Science. New York: Springer, 1985: 277-294 |
[5] | SHOUSE P J, GERIK T J, RUSSELL W B, et al. Spatial dis-tribution of soil particle size and aggregate stability index in a clay soil[J]. Soil Science, 1990, 149(6):351-360 doi: 10.1097/00010694-199006000-00006 |
[6] | 丁启朔. 耕作力学研究的土壤结构及其评价方法[D]. 南京: 南京农业大学, 2006: 1-5 http://cdmd.cnki.com.cn/Article/CDMD-10307-2007125646.htm DING Q S. Soil structure and its assessment for soil tillage research[D]. Nanjing: Nanjing Agricultural University, 2006: 1-5 http://cdmd.cnki.com.cn/Article/CDMD-10307-2007125646.htm |
[7] | 侯贤清, 贾志宽, 韩清芳, 等.不同轮耕模式对旱地土壤结构及入渗蓄水特性的影响[J].农业工程学报, 2012, 28(5):85-94 doi: 10.3969/j.issn.1002-6819.2012.05.015 HOU X Q, JIA Z K, HAN Q F, et al. Effects of different rotational tillage patterns on soil structure, infiltration and water storage characteristics in dryland[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5):85-94 doi: 10.3969/j.issn.1002-6819.2012.05.015 |
[8] | 朱红霞, 姚贤良.有机物料在稻作制中的物理作用[J].土壤学报, 1993, 30(2):137-145 http://www.irgrid.ac.cn/handle/1471x/110604?mode=full&submit_simple=Show+full+item+record ZHU H X, YAO X L. Physical effect of organic material on rice-based cropping system[J]. Acta Pedologica Sinica, 1993, 30(2):137-145 http://www.irgrid.ac.cn/handle/1471x/110604?mode=full&submit_simple=Show+full+item+record |
[9] | DOU S, CHEN E F, XU X C, et al. Effect of organic manure application on physical properties and humus characteristics of paddy soil[J]. Pedosphere, 1994, 4(2):127-135 http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQY402.003.htm |
[10] | 刘巽浩, 王爱玲, 高旺盛.实行作物秸秆还田促进农业可持续发展[J].作物杂志, 1998, (5):1-5 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zwzz805.000&dbname=CJFD&dbcode=CJFQ LIU X H, WANG A L, GAO W S. The crop straw returned to promote agricultural sustainable development[J]. Crops, 1998, (5):1-5 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zwzz805.000&dbname=CJFD&dbcode=CJFQ |
[11] | 高明, 魏朝富, 陈世正.稻草还田对土壤性状及水稻产量的影响[J].西南农业大学学报, 1995, 17(5):436-439 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnnd505.015&dbname=CJFD&dbcode=CJFQ GAO M, WEI C F, CHEN S Z. The effect of returning straws into paddy fields as fertilizer on soil properties and rice yield[J]. Journal of Southwest Agricultural University, 1995, 17(5):436-439 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnnd505.015&dbname=CJFD&dbcode=CJFQ |
[12] | ROLDáN A, CARAVACA F, HERNáNDEZ M T, et al. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico)[J]. Soil and Tillage Research, 2003, 72(1):65-73 https://www.sciencedirect.com/science/article/pii/S0167198703000515 |
[13] | BESCANSA P, IMAZ M J, VIRTO I, et al. Soil water reten-tion as affected by tillage and residue management in semiarid Spain[J]. Soil and Tillage Research, 2006, 87(1):19-27 doi: 10.1016/j.still.2005.02.028 |
[14] | SASAL M C, ANDRIULO A E, TABOADA M A. Soil po-rosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas[J]. Soil and Tillage Re-search, 2006, 87(1):9-18 doi: 10.1016/j.still.2005.02.025 |
[15] | 陈恩凤, 周礼恺, 武冠云.微团聚体的保肥供肥性能及其组成比例在评断土壤肥力水平中的意义[J].土壤学报, 1994, 31(1):18-25 http://www.wenkuxiazai.com/doc/f99de59ddaef5ef7ba0d3c79-3.html CHEN E F, ZHOU L K, WU G Y. Performances of soil mi-croaggregates in storing and supplying moisture and nutrients and role of their compositional proportion in judging fertility level[J]. Acta Pedologica Sinica, 1994, 31(1):18-25 http://www.wenkuxiazai.com/doc/f99de59ddaef5ef7ba0d3c79-3.html |
[16] | ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3):627-633 doi: 10.2136/sssaj1986.03615995005000030017x |
[17] | HINDS A A, LOWE L E. Distribution of carbon, nitrogen, sulphur and phosphorus in particle-size separates from Gleysolic soils[J]. Canadian Journal of Soil Science, 1980, 60(4):783-786 http://agris.fao.org/agris-search/search.do?recordID=CA8108636 |
[18] | 于博. 松辽平原玉米带高产田土壤结构性对冻结的响应及机理研究[D]. 长春: 吉林农业大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10193-1013127201.htm YU B. Research of the mechanism and response of high yield farmland soil structure characteristics to freeze in corn belt of the Songliao Plain[D]. Changchun: Jilin Agriculture University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10193-1013127201.htm |
[19] | 杨培岭, 罗远培, 石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报, 1993, 38(20):1896-1899 doi: 10.3321/j.issn:0023-074X.1993.20.010 YANG P L, LUO Y P, SHI Y C. Fractal features of soils characterized by grain weight distribution[J]. Chinese Science Bulletin, 1993, 38(20):1896-1899 doi: 10.3321/j.issn:0023-074X.1993.20.010 |
[20] | 于博. 春玉米高产田土壤结构及深翻秸秆还田调控机制[D]. 呼和浩特: 内蒙古农业大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10129-1016250032.htm YU B. The mechanism of high yield farmland soil structure and deep tillage and straw returning regulation in spring maize[D]. Hohhot: Inner Mongolia Agriculture University, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10129-1016250032.htm |
[21] | 马永良, 师宏奎, 张书奎, 等.玉米秸秆整株全量还田土壤理化性状的变化及其对后茬小麦生长的影响[J].中国农业大学学报, 2003, 8(S1):42-46 http://www.cqvip.com/QK/90547A/2003z1/1000350239.html MA Y L, SHI H K, ZHANG S K, et al. Whole maize straw addition:The changes of soil physical and chemical proper-ties and the effect on winter wheat[J]. Journal of China Agri-cultural University, 2003, 8(S1):42-46 http://www.cqvip.com/QK/90547A/2003z1/1000350239.html |
[22] | 张鹏, 贾志宽, 王维, 等.秸秆还田对宁南半干旱地区土壤团聚体特征的影响[J].中国农业科学, 2012, 45(8):1513-1520 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201208007 ZHANG P, JIA Z K, WANG W, et al. Effects of straw re-turning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China[J]. Scientia Agricultura Sinica, 2012, 45(8):1513-1520 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201208007 |
[23] | 杨长明, 欧阳竹, 杨林章, 等.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J].生态学报, 2006, 26(12):4148-4155 doi: 10.3321/j.issn:1000-0933.2006.12.030 YANG C M, OUYANG Z, YANG L Z, et al. Organic carbon fractions and aggregate stability in an aquatic soil as influ-enced by agricultural land uses in the Northern China Plain[J]. Acta Ecologica Sinica, 2006, 26(12):4148-4155 doi: 10.3321/j.issn:1000-0933.2006.12.030 |
[24] | LEBISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility:Ⅰ. Theory and methodology[J]. European Journal of Soil Science, 1996, 47(4):425-437 doi: 10.1111/j.1365-2389.1996.tb01843.x/abstract |