易永健1,
屠乃美2, 3,
谭志坚1,
汪洪鹰1,
杨媛茹1,
王朝云1,,,
易镇邪2, 3,,
1.中国农业科学院麻类研究所 长沙 410205
2.湖南农业大学农学院 长沙 410128
3.南方粮油作物协同创新中心 长沙 410128
基金项目: 中国农业科学院科技创新工程项目ASTIP-IBFC07
国家自然科学基金项目31701372
中国农业科学院基本科研业务费专项Y2016CG14
国家重点研发计划项目2017YFD0301500
详细信息
作者简介:周晚来, 主要研究方向为作物栽培技术与原理。E-mail:aruofly@126.com
通讯作者:王朝云, 主要从事环保型麻地膜制造与应用研究, E-mail: ibfcwcy@139.com
易镇邪, 主要从事作物高产与资源高效利用研究, E-mail: yizhenxie@126.com
中图分类号:S31计量
文章访问数:1187
HTML全文浏览量:8
PDF下载量:1814
被引次数:0
出版历程
收稿日期:2017-07-24
录用日期:2017-11-27
刊出日期:2018-03-01
Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology
ZHOU Wanlai1, 2, 3,,YI Yongjian1,
TU Naimei2, 3,
TAN Zhijian1,
WANG Hongying1,
YANG Yuanru1,
WANG Chaoyun1,,,
YI Zhenxie2, 3,,
1. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
2. College of Agronomy, Hunan Agricultural University, Changsha 410128, China
3. South Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
Funds: the Science and Technology Innovation Project of Chinese Academy of Agricultural SciencesASTIP-IBFC07
the National Natural Science Foundation of China31701372
the Basal Research Fund of Chinese Academy of Agricultural SciencesY2016CG14
the National Key Research and Development Project of China2017YFD0301500
More Information
Corresponding author:WANG Chaoyun, E-mail: ibfcwcy@139.com;YI Zhenxie, E-mail: yizhenxie@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:根际氧是影响稻田土壤环境和水稻根系生理代谢的重要环境因子,已有的关于水稻根际氧的综述多从低氧或缺氧胁迫的角度展开,随着技术的进步,越来越多的****在水稻栽培中实施了主动的根际增氧措施,取得了一定的研究成果。根际增氧显著影响了水培水稻根系形态和结构,使其呈现细而长的特征,增氧条件下水稻根系形态、结构及其功能需求间存在内在的一致性;根际增氧对不同生育时期水稻的根系活力均有明显的促进作用,其增幅从10%到150%不等,并存在明显的品种间差异;从水稻根系形态、生理活性以及根部氮素形态转化等多个方面来看,增氧处理有利于水稻根系吸收氮素,但其对水稻氮素积累量的影响则与增氧处理方式和程度有关,过度增氧抑制了水稻植株对氮的利用,从而限制了其生物量的增加,反过来抑制了对氮的吸收。水稻对根际增氧的响应规律并非其对低氧和缺氧胁迫响应规律的简单倒转,饱和氧处理下水稻生物量和产量的剧烈降低表明了水稻对富氧响应的复杂性。探索根际增氧对三叶期前水稻幼苗的影响,完善根际增氧对水稻氮代谢的影响研究,并量化水稻田间需氧量,探索简单易行的苗期增氧措施,对进一步完善水稻育秧理论,改进水稻育秧技术具有重要意义。
关键词:水稻/
根际增氧/
根系形态/
根系活力/
氮代谢
Abstract:Rhizosphere oxygen is an important environmental factor that influences paddy filed environment and physiological metabolism of rice root. Existing reviews about rhizosphere oxygen are usually from the perspectives of hypoxia or anoxia stress. In recent years, more and more researchers implemented active oxygen-increasing in rice cultivation and obtained a large number of results. Rhizosphere oxygen-increasing significantly affects the morphology and structure of hydroponic rice root, making rice roots slender and elongated. It may be due to the reduced demand for preventing the leakage of oxygen and invasion of reducing substances, which means there is no need to form a barrier against radial O2 loss, so the thickness of outer layer cell wall of root is smaller than that under hypoxic or anoxic stress conditions. It's suggested that there is an internal consistency among the root morphology, structure and functional requirements of rice under aerobic condition. Rhizosphere oxygen-increasing significantly promotes root vigor with an increment from 10% to 150% and with great differences among varieties. From the aspects of root morphology, physiological activity and transformation of nitrogen form in root-zone, e.g., the increased fine root, the raised root vigor, the enhanced nitrification under aerobic treatment, rhizosphere oxygen-increasing is beneficial for rice roots to uptake nitrogen, however its effects on nitrogen accumulation in rice is complex and related with the method and degree of oxygen-increasing treatment. Excessive oxygen-increasing inhibits the use of nitrogen in rice plants, thus limiting the increase in biomass, which in turn inhibits the absorption and accumulation of nitrogen. Response of rice to oxygen-increasing is not a simple reverse of that to hypoxia or anoxia stress, the dramatic yield decrease of rice under oxygen-saturation treatment demonstrated the complexity of rice response to oxygen-enrichment environment. It's proposed that exploring the effects of rhizosphere oxygen-increasing on pre-third-leaf stage rice seedling and rice nitrogen metabolism, quantifying the demand for oxygen of field rice and seeking feasible oxygen-increasing measures in seedling stage was of great significance for further improving rice seedling raising technology and theory.
Key words:Rice/
Rhizosphere oxygen-increasing/
Root morphology/
Root activity/
Nitrogen metabolism
HTML全文
表1不同研究中根际增氧对水稻根系活力的影响
Table1.Effects of rhizosphere oxygen-increasing on root activity of rice in different researches
增氧方式 Method of oxygen-increasing | 品种 Variety | 生育期 Growth stage | 考察指标 Investigation index | 增幅 Increase percent (%) | 文献来源 Literature source |
干湿交替 Alternation of wetting and drying | 国稻1号 Guodao 1 | 分蘖期 Tillering stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 13.0 | [57] |
国稻1号 Guodao 1 | 灌浆期 Filling stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 31.0 | [57] | |
秀水09 Xiushui 09 | 分蘖期 Tillering stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 12.6 | [57] | |
连续通气氧饱和水培 Oxygen saturation hydroponics through continuous ventilation | 国稻1号 Guodao 1 | 分蘖期 Tillering stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 11.8 | [32] |
秀水09 Xiushui 09 | 分蘖期 Tillering stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 127.9 | [32] | |
巴西陆稻 Brazil Upland Rice | 分蘖期 Tillering stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 152.5 | [32] | |
国稻6号 Guodao 6 | 分蘖期 Tillering stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 28.7 | [33] | |
秀水09 Xiushui 09 | 分蘖期 Tillering stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 4.1 | [33] | |
汕优63 Shanyou 63 | 齐穗期 Full heading stage | 四氮唑还原强度 Reduction intensity of tetrazole | 119.5 | [27] | |
国稻1号 Guodao 1 | 齐穗期 Full heading stage | 四氮唑还原强度 Reduction intensity of tetrazole | 72.7 | [27] | |
湘早籼11 Xiangzaoxian 11 | 齐穗期 Full heading stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 11.3 | [27] | |
甬粳18 Yongjing 18 | 齐穗期 Full heading stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 37.1 | [27] | |
土壤根际通气 Rhizosphere soil ventilaiton | 深优9586 Shenyou 9586 | 分蘖始期 Beginning tillering stage | 四氮唑还原强度 Reduction intensity of tetrazole | 23.6 | [62] |
深优9586 Shenyou 9586 | 分蘖盛期 Middle tillering stage | 四氮唑还原强度 Reduction intensity of tetrazole | 25.4 | [62] | |
深优9586 Shenyou 9586 | 分蘖终期 Ending tillering stage | 四氮唑还原强度 Reduction intensity of tetrazole | 20.9 | [62] | |
超微气泡水增氧灌溉 Aerobic irrigation with ultrafine bubble water | 深优9586 Shenyou 9586 | 分蘖期 Tillering stage | 四氮唑还原强度 Reduction intensity of tetrazole | 114.9 | [63] |
秀水09 Xiushui 09 | 齐穗期 Full heading stage | 伤流强度 Bleeding intensity | 33.4 | [60] | |
两优培九 Liangyoupeijiu | 齐穗期 Full heading stage | 伤流强度 Bleeding intensity | 22.9 | [60] | |
深优9586 Shenyou 9586 | 齐穗期 Full heading stage | 四氮唑还原强度 Reduction intensity of tetrazole | 135.3 | [63] | |
好气灌溉 Aerobic irrigation | 中优6号 Zhongyou 6 | 开花期 Anthesis | 伤流强度 Bleeding intensity | 32.3 | [64] |
两优培九 Liangyoupeijiu | 开花期 Anthesis | 伤流强度 Bleeding intensity | 30.0 | [64] | |
中优6号 Zhongyou 6 | 孕穗期 Booting stage | 伤流强度 Bleeding intensity | 27.7 | [64] | |
两优培九 Liangyoupeijiu | 孕穗期 Booting stage | 伤流强度 Bleeding intensity | 17.2 | [64] | |
过氧化尿素 Urea hydrogen peroxide | 国稻1号 Guodao 1 | 灌浆期 Filling stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 19.2 | [57] |
过氧化钙 Calcium peroxide | 国稻1号 Guodao 1 | 灌浆期 Filling stage | α-萘胺氧化强度 Oxidation intensity of α-naphthylamine | 32.6 | [57] |
下载: 导出CSV
参考文献
[1] | PONNAMPERUMA F N. The chemistry of submerged soils[J]. Advances in Agronomy, 1972, 24:29-96 doi: 10.1016/S0065-2113(08)60633-1 |
[2] | 唐建军, 王永锐, 傅家瑞.水稻对渍水稻田土壤缺氧胁迫的反应[J].中国稻米, 1995, 1(1):29-31 TANG J J, WANG Y R, FU J R. The response of paddy rice to soil waterlogging hypoxiastress[J]. China Rice, 1995, 1(1):29-31 |
[3] | DREW M C. Oxygen deficiency and root metabolism:Injury and acclimation under hypoxia and anoxia[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48:223-250 doi: 10.1146/annurev.arplant.48.1.223 |
[4] | PEZESHKI S R. Wetland plant responses to soil flooding[J]. Environmental and Experimental Botany, 2001, 46(3):299-312 doi: 10.1016/S0098-8472(01)00107-1 |
[5] | BRAVIN M N, TRAVASSAC F, LE FLOCH M, et al. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.):A microcosm study[J]. Plant and Soil, 2008, 312(1/2):207-218 http://www.refdoc.fr/Detailnotice?cpsidt=20711706 |
[6] | 丁昌璞.中国自然土壤、旱作土壤、水稻土的氧化还原状况和特点[J].土壤学报, 2008, 45(1):66-75 doi: 10.11766/trxb200609060109 DING C P. Oxidation-reduction regimes and characteristics of natural soil, upland soil and paddy soil in China[J]. Acta Pe-dologica Sinica, 2008, 45(1):66-75 doi: 10.11766/trxb200609060109 |
[7] | HODGE A, BERTA G, DOUSSAN C, et al. Plant root growth, architecture and function[J]. Plant and Soil, 2009, 321(1/2):153-187 doi: 10.1007/s11104-009-9929-9 |
[8] | 梅少华, 梅金先, 陈兴国, 等.洪涝灾害对水稻生产的影响评估及抗灾对策研究[J].作物杂志, 2011, (2):89-93 https://www.wenkuxiazai.com/doc/6e213c661eb91a37f1115c68.html MEI S H, MEI J X, CHEN X G, et al. Flood impact assessment of rice production and disaster countermeasures[J]. Crops, 2011, (2):89-93 https://www.wenkuxiazai.com/doc/6e213c661eb91a37f1115c68.html |
[9] | 赵锋, 王丹英, 徐春梅, 等.水稻氧营养的生理、生态机制及环境效应研究进展[J].中国水稻科学, 2009, 23(4):335-341 http://www.ricesci.cn/CN/abstract/abstract2049.shtml ZHAO F, WANG D Y, XU C M, et al. Progress in research on physiological and ecological response of rice to oxygen nutrition and its environment effects[J]. Chinese Journal of Rice Science, 2009, 23(4):335-341 http://www.ricesci.cn/CN/abstract/abstract2049.shtml |
[10] | ALMEIDA A M, VRIEZEN W H, VAN DER STRAETEN D. Molecular and physiological mechanisms of flooding avoid-ance and tolerance in rice[J]. Russian Journal of Plant Physiology, 2003, 50(6):743-751 doi: 10.1023/B:RUPP.0000003272.65496.04 |
[11] | STOIMENOVA M, IGAMBERDIEV A U, GUPTA K J, et al. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria[J]. Planta, 2007, 226(2):465-474 doi: 10.1007/s00425-007-0496-0 |
[12] | TAIZ L, ZEIGER E. Plant Physiology[M]. 4th ed. Sunderland:Sinauer Associates, 2006 |
[13] | PONNAMPERUMA F N. Effects of flooding on soils[M]//KOZLOWSKI T T. Flooding and Plant Growth. New York: Academic Press, 1984: 9-45 |
[14] | LIESACK W, SCHNELL S, REVSBECH N P. Microbiology of flooded rice paddies[J]. FEMS Microbiology Reviews, 2000, 24(5):625-645 doi: 10.1111/j.1574-6976.2000.tb00563.x |
[15] | K?GEL-KNABNER I, AMELUNG W, CAO Z H, et al. Biogeochemistry of paddy soils[J]. Geoderma, 2010, 157(1/2):1-14 https://www.sciencedirect.com/science/article/pii/S0016706110000868 |
[16] | FAGERIA N K, CARVALHO G D, SANTOS A B, et al. Chemistry of lowland rice soils and nutrient availability[J]. Communications in Soil Science and Plant Analysis, 2011, 42(16):1913-1933 doi: 10.1080/00103624.2011.591467 |
[17] | BAI K Z, SONG M S, LOU C H. Quantitative estimations of downward oxygen transport from aerial to subterranean parts in intact seedlings of rice and other plants[J]. Journal of Integrative Plant Biology, 1965, 13(1):82-90 http://www.jipb.net/issue.aspx?id=48 |
[18] | 韩勃. 增氧条件下水稻根系及地上部生长特性研究[D]. 扬州: 扬州大学, 2007 HAN B. Growth characteristics of rice root and upper land plant with increased oxygen supply[D]. Yangzhou: Yangzhou University, 2007 |
[19] | YIN W Y, CUI Y Y, LOU C H. Relationship between down-ward oxygen transport and intercellular spaces in root cortex in water cultured and moist cultured seedlings[J]. Journal of Integrative Plant Biology, 1966, 14(1):26-33 doi: 10.1007/BF00010012 |
[20] | PEZESHKI S R, DELAUNE R D. Responses of Spartina alterniflora and Spartina patens to rhizosphere oxygen defi-ciency[J]. Acta Oecologica, 1996, 17(5):365-378 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ0210199344 |
[21] | WATERS I, ARMSTRONG W, THOMPSON C J, et al. Diurnal changes in radial oxygen loss and ethanol metabolism in roots of submerged and non-submerged rice seedlings[J]. New Phytologist, 1989, 113(4):439-451 doi: 10.1111/nph.1989.113.issue-4 |
[22] | 裴鹏刚, 张均华, 朱练峰, 等.根际氧浓度调控水稻根系形态和生理特性研究进展[J].中国稻米, 2013, 19(2):6-8 https://www.wenkuxiazai.com/doc/125aa2ba5ef7ba0d4b733b1b.html PEI P G, ZHANG J H, ZHU L F, et al. Research progress on effects of rhizosphere dissolved oxygen on root morphology and physiological characteristics in rice[J]. China Rice, 2013, 19(2):6-8 https://www.wenkuxiazai.com/doc/125aa2ba5ef7ba0d4b733b1b.html |
[23] | 黄昌勇.土壤学[M].北京:中国农业出版社, 2000:187 HUANG C Y. Soil Science[M]. Beijing:China Agriculture Press, 2000:187 |
[24] | 徐祥玉, 张志毅, 王娟, 等.起垄和施肥对冷浸田土壤氧化还原状况的影响[J].中国生态农业学报, 2013, 21(6):666-673 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013604&flag=1 XU X Y, ZHANG Z Y, WANG J, et al. Effect of ridging and fertilization on soil redox in cold waterlogged paddy fields[J]. Chinese Journal of Eco-Agriculture, 2013, 21(6):666-673 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013604&flag=1 |
[25] | DELAUNE R D, PEZESHKI S R, PARDUE J H. An oxida-tion-reduction buffer for evaluating the physiological re-sponse of plants to root oxygen stress[J]. Environmental and Experimental Botany, 1990, 30(2):243-247 doi: 10.1016/0098-8472(90)90070-K |
[26] | JAMPEETONG A, BRIX H. Oxygen stress in Salvini anatans:Interactive effects of oxygen availability and nitrogen source[J]. Environmental and Experimental Botany, 2009, 66(2):153-159 doi: 10.1016/j.envexpbot.2009.01.006 |
[27] | 王丹英, 韩勃, 章秀福, 等.水稻根际含氧量对根系生长的影响[J].作物学报, 2008, 34(5):803-808 http://www.doc88.com/p-6085982367173.html WANG D Y, HAN B, ZHANG X F, et al. Influence of rhizo-sphere oxygen concentration on rice root growth[J]. Acta Agronomica Sinica, 2008, 34(5):803-808 http://www.doc88.com/p-6085982367173.html |
[28] | 邓丹, 吴可为, 邓泓.根区通氧状况对水稻幼苗生长及吸收镉的影响[J].生态学报, 2009, 29(5):2520-2526 https://www.wenkuxiazai.com/doc/4874744edaef5ef7bb0d3c61.html DENG D, WU K W, DENG H. Effects of root zone oxygenation on growth and Cd accumulation in paddy rice (Oryza sativa L.)[J]. Acta Ecologica Sinica, 2009, 29(5):2520-2526 https://www.wenkuxiazai.com/doc/4874744edaef5ef7bb0d3c61.html |
[29] | 赵锋, 徐春梅, 张卫建, 等.根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响[J].中国水稻科学, 2011, 25(2):195-200 https://www.wenkuxiazai.com/doc/b365a29976eeaeaad1f330e7.html ZHAO F, XU C M, ZHANG W J, et al. Effects of rhizosphere dissolved oxygen and nitrogen form on root characteristics and nitrogen accumulation of rice[J]. Chinese Journal of Rice Science, 2011, 25(2):195-200 https://www.wenkuxiazai.com/doc/b365a29976eeaeaad1f330e7.html |
[30] | COLMER T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.)[J]. Annals of Botany, 2003, 91(2):301-309 doi: 10.1093/aob/mcf114 |
[31] | KOTULA L, RANATHUNGE K, SCHREIBER L, et al. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution[J]. Journal of Experimental Botany, 2009, 60(7):2155-2167 doi: 10.1093/jxb/erp089 |
[32] | 赵锋, 张卫建, 章秀福, 等.连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响[J].作物学报, 2012, 38(2):344-351 doi: 10.7606/j.issn.1009-1041.2012.02.028 ZHAO F, ZHANG W J, ZHANG X F, et al. Effect of contin-uous aeration on growth and activity of enzymes related to nitrogen metabolism of different rice genotypes at tillering stage[J]. Acta Agronomica Sinica, 2012, 38(2):344-351 doi: 10.7606/j.issn.1009-1041.2012.02.028 |
[33] | 徐春梅, 王丹英, 陈松, 等.增氧对水稻根系生长与氮代谢的影响[J].中国水稻科学, 2012, 26(3):320-324 http://www.ricesci.cn/CN/abstract/abstract2247.shtml XU C M, WANG D Y, CHEN S, et al. Effect of aeration on root growth and nitrogen metabolism in rice[J]. Chinese Journal of Rice Science, 2012, 26(3):320-324 http://www.ricesci.cn/CN/abstract/abstract2247.shtml |
[34] | 徐春梅, 谢涛, 王丹英, 等.根际氧浓度对水稻分蘖期养分吸收和根系形态的影响[J].中国水稻科学, 2015, 29(6):619-627 http://www.doc88.com/p-1146638266139.html XU C M, XIE T, WANG D Y, et al. Effects of rhizosphere oxygen concentration on nutrient uptake and root morphology of rice at tillering stage[J]. Chinese Journal of Rice Science, 2015, 29(6):619-627 http://www.doc88.com/p-1146638266139.html |
[35] | 赵霞, 徐春梅, 王丹英, 等.根际溶氧量对分蘖期水稻生长特性及其氮素代谢的影响[J].中国农业科学, 2015, 48(18):3733-3742 doi: 10.3864/j.issn.0578-1752.2015.18.017 ZHAO X, XU C M, WANG D Y, et al. Effect of rhizosphere oxygen on the growth characteristics of rice and its nitrogen metabolism at tillering stage[J]. Scientia Agricultura Sinica, 2015, 48(18):3733-3742 doi: 10.3864/j.issn.0578-1752.2015.18.017 |
[36] | LORENZEN B, BRIX H, MENDELSSOHN I A, et al. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability[J]. Aquatic Botany, 2001, 70(2):117-133 doi: 10.1016/S0304-3770(01)00155-3 |
[37] | 王秋菊, 李明贤, 赵宏亮, 等.控水灌溉对水稻根系生长影响的试验研究[J].中国农学通报, 2008, 24(8):206-208 https://www.wenkuxiazai.com/doc/b797e7e80242a8956bece4c9.html WANG Q J, LI M X, ZHAO H L, et al. Study of the effect of control irrigation on the growth of rice root[J]. Chinese Ag-ricultural Science Bulletin, 2008, 24(8):206-208 https://www.wenkuxiazai.com/doc/b797e7e80242a8956bece4c9.html |
[38] | 秦华东, 肖巧珍, 梁天锋, 等.不同水分管理模式下免耕抛秧水稻立苗期根系生长特性[J].广西植物, 2011, 31(5):636-640 https://www.wenkuxiazai.com/doc/dbcfdb7331b765ce050814ed.html QIN H D, XIAO Q Z, LIANG T F, et al. Effect of different moisture management modes on root growth characteristics of cast transplanting rice in seedling standing period under no-tillage[J]. Guihaia, 2011, 31(5):636-640 https://www.wenkuxiazai.com/doc/dbcfdb7331b765ce050814ed.html |
[39] | COLMER T D, GIBBERED M R, WIENGWEERA A, et al. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution[J]. Journal of Experimental Botany, 1998, 49(325):1431-1436 doi: 10.1093/jxb/49.325.1431 |
[40] | 郝树荣, 郭相平, 王为木, 等.水稻分蘖期水分胁迫及复水对根系生长的影响[J].干旱地区农业研究, 2007, 25(1):149-152 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ghdqnyyj200701031 HAO S R, GUO X P, WANG W M, et al. Effects of water stress in tillering stage and re-watering on rice root growth[J]. Agricultural Research in the Arid Areas, 2007, 25(1):149-152 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ghdqnyyj200701031 |
[41] | 秦江涛, 胡锋, 李辉信, 等.覆草旱作对水稻主要农艺性状的影响及节水效应[J].中国水稻科学, 2006, 20(2):171-176 https://www.wenkuxiazai.com/doc/a282e0cc76a20029bd642d27.html QIN J T, HU F, LI H X, et al. Effects of dry cultivation with straw mulching on rice agronomic traits and water use effi-ciency[J]. Chinese Journal of Rice Science, 2006, 20(2):171-176 https://www.wenkuxiazai.com/doc/a282e0cc76a20029bd642d27.html |
[42] | 马廷臣, 余蓉蓉, 陈荣军, 等. PEG-6000模拟干旱对水稻苗期根系形态和部分生理指标影响的研究[J].中国农学通报, 2010, 26(8):149-156 https://www.wenkuxiazai.com/doc/b8b33231647d27284b735154.html MA T C, YU R R, CHEN R J, et al. Study on effect of drought stress with PEG-6000 on root morphology and some physiological indices in rice seedling[J]. Chinese Agricultural Science Bulletin, 2010, 26(8):149-156 https://www.wenkuxiazai.com/doc/b8b33231647d27284b735154.html |
[43] | 马廷臣, 余蓉蓉, 陈荣军, 等. PEG-6000模拟干旱对水稻幼苗期根系的影响[J].中国生态农业学报, 2010, 18(6):1206-1211 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=201061206&flag=1 MA T C, YU R R, CHEN R J, et al. Effect of drought stress simulated with PEG-6000 on root system in rice seedling[J]. Chinese Journal of Eco-Agriculture, 2010, 18(6):1206-1211 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=201061206&flag=1 |
[44] | 汪妮娜, 黄敏, 陈德威, 等.不同生育期水分胁迫对水稻根系生长及产量的影响[J].热带作物学报, 2013, 34(9):1650-1656 http://www.wenkuxiazai.com/doc/7a57fb1776eeaeaad0f3306b.html WANG N N, HUANG M, CHEN D W, et al. Effects of water stress on root and yield of rice at different growth stages[J]. Chinese Journal of Tropical Crops, 2013, 34(9):1650-1656 http://www.wenkuxiazai.com/doc/7a57fb1776eeaeaad0f3306b.html |
[45] | 杨彩玲, 刘立龙, CHUNG N T, 等.土壤水分对免耕水稻根系生长的影响[J].华中农业大学学报, 2016, 35(1):8-16 http://www.cqvip.com/QK/90088X/201601/667815578.html YANG C L, LIU L L, CHUNG N T, et al. Effects of soil moisture on root growth of no-tillage rice[J]. Journal of Huazhong Agricultural University, 2016, 35(1):8-16 http://www.cqvip.com/QK/90088X/201601/667815578.html |
[46] | ARMSTRONG W. Oxygen diffusion from the roots of some British bog plants[J]. Nature, 1964, 204(4960):801-802 doi: 10.1038/204801b0 |
[47] | ARMSTRONG W. Aeration in higher plants[J]. Advances in Botanical Research, 1980, 7:225-332 doi: 10.1016/S0065-2296(08)60089-0 |
[48] | JACKSON M B, ARMSTRONG W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence[J]. Plant Biology, 1999, 1(3):274-287 doi: 10.1111/plb.1999.1.issue-3 |
[49] | VISSER E J W, COLMER T D, BLOM C W P M, et al. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono-and dicotyledonous wetland species with contrasting types of aerenchyma[J]. Plant, Cell and Environment, 2000, 23(11):1237-1245 doi: 10.1046/j.1365-3040.2000.00628.x |
[50] | KIRK G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil[J]. New Phy-tologist, 2003, 159(1):185-194 doi: 10.1046/j.1469-8137.2003.00793.x |
[51] | SHIONO K, OGAWA S, YAMAZAKI S, et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Annals of Botany, 2011, 107(1):89-99 doi: 10.1093/aob/mcq221 |
[52] | JACKSON M B, DREW M C. Effects of flooding on growth and metabolism of herbaceous plants[M]//KOZLOWSKI T T. Flooding and Plant Growth. New York: Academic Press, 1984: 47-128 |
[53] | JUSTIN S H F W, ARMSTRONG W. The anatomical char-acteristics of roots and plant response to soil flooding[J]. New Phytologist, 1987, 106(3):465-495 doi: 10.1111/nph.1987.106.issue-3 |
[54] | COLMER T D. Long-distance transport of gases in plants:A perspective on internal aeration and radial oxygen loss from roots[J]. Plant, Cell & Environment, 2003, 26(1):17-36 http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/mini/Long-distance-transport-of-gases-in-plants--a-perspective-on-internal-aeration-and-radial-oxygen-loss-from-roots.pdf |
[55] | COLMER T D, COX M C H, VOESENEK L A C J. Root aeration in rice (Oryza sativa):Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclima-tizations[J]. New Phytologist, 2006, 170(4):767-778 doi: 10.1111/nph.2006.170.issue-4 |
[56] | INSALUD N, BELL R W, COLMER T D, et al. Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture[J]. Annals of Botany, 2006, 98(5):995-1004 doi: 10.1093/aob/mcl194 |
[57] | 赵锋, 王丹英, 徐春梅, 等.根际增氧模式的水稻形态、生理及产量响应特征[J].作物学报, 2010, 36(2):303-312 doi: 10.7606/j.issn.1009-1041.2010.02.022 ZHAO F, WANG D Y, XU C M, et al. Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere[J]. Acta Agronomica Sinica, 2010, 36(2):303-312 doi: 10.7606/j.issn.1009-1041.2010.02.022 |
[58] | 封克, 司江英, 汪晓丽, 等.不同水分条件下水稻根解剖结构的比较分析[J].植物营养与肥料学报, 2006, 12(3):346-351 doi: 10.11674/zwyf.2006.0310 FENG K, SI J Y, WANG X L, et al. Comparative analysis on rice root anatomical structure under different soil moisture[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3):346-351 doi: 10.11674/zwyf.2006.0310 |
[59] | 徐芬芬, 曾晓春, 石庆华, 等.不同灌溉方式对水稻根系生长的影响[J].干旱地区农业研究, 2007, 25(1):102-104 http://www.cqvip.com/QK/94737X/200701/23748451.html XU F F, ZENG X C, SHI Q H, et al. Effects of different irri-gation patterns on the growth of rice root[J]. Agricultural Research in the Arid Areas, 2007, 25(1):102-104 http://www.cqvip.com/QK/94737X/200701/23748451.html |
[60] | 朱练峰, 刘学, 禹盛苗, 等.增氧灌溉对水稻生理特性和后期衰老的影响[J].中国水稻科学, 2010, 24(3):257-263 https://www.wenkuxiazai.com/doc/2f187a304b73f242336c5f78.html ZHU L F, LIU X, YU S M, et al. Effects of aerated irrigation on physiological characteristics and senescence at late growth stage of rice[J]. Chinese Journal of Rice Science, 2010, 24(3):257-263 https://www.wenkuxiazai.com/doc/2f187a304b73f242336c5f78.html |
[61] | NISHIUCHI S, YAMAUCHI T, TAKAHASHI H, et al. Mechanisms for coping with submergence and waterlogging in rice[J]. Rice, 2012, 5(1):2 doi: 10.1186/1939-8433-5-2 |
[62] | 黄晓波, 姚帮松, 肖卫华, 等.不同增氧处理对水稻分蘖期生长特性的影响[J].中国稻米, 2015, 21(3):12-15 http://www.cqvip.com/QK/98556X/201503/664801837.html HUANG X B, YAO B S, XIAO W H, et al. The influence of different aerobic treatment on growth of rice tillering stage[J]. China Rice, 2015, 21(3):12-15 http://www.cqvip.com/QK/98556X/201503/664801837.html |
[63] | 肖卫华, 张文萍, 李子豪, 等.不同增氧灌溉对水稻根系生长的影响研究[J].湖南农业科学, 2016, (2):19-21 http://www.cqvip.com/QK/91786A/201608/669744404.html XIAO W H, ZHANG W P, LI Z H, et al. Effects of different oxygation treatments on rice root growth[J]. Hunan Agricul-tural Sciences, 2016, (2):19-21 http://www.cqvip.com/QK/91786A/201608/669744404.html |
[64] | 林贤青, 朱德峰, 李春寿, 等.水稻不同灌溉方式下的高产生理特性[J].中国水稻科学, 2005, 19(4):328-332 http://www.ricesci.cn/fileup/PDF/050408.PDF LIN X Q, ZHU D F, LI C S, et al. Physiological characteristics of high-yielding rice under different irrigation methods[J]. Chinese Journal of Rice Science, 2005, 19(4):328-332 http://www.ricesci.cn/fileup/PDF/050408.PDF |
[65] | 徐春梅, 陈丽萍, 王丹英, 等.低氧胁迫对水稻幼苗根系功能和氮代谢相关酶活性的影响[J].中国农业科学, 2016, 49(8):1625-1634 doi: 10.3864/j.issn.0578-1752.2016.08.020 XU C M, CHEN L P, WANG D Y, et al. Effects of low oxygen stress on the root function and enzyme activities related to nitrogen metabolism in roots of rice seedlings[J]. Scientia Agricultura Sinica, 2016, 49(8):1625-1634 doi: 10.3864/j.issn.0578-1752.2016.08.020 |
[66] | 何胜德, 林贤青, 朱德峰, 等.杂交水稻根际供氧对土壤氧化还原电位和产量的影响[J].杂交水稻, 2006, 21(3):78-80 http://www.cqvip.com/qk/91685X/200603/21982083.html HE D S, LIN X Q, ZHU D F, et al. Effects of oxygen supply in the rhizosphere on soil Eh and hybrid rice yield[J]. Hybrid Rice, 2006, 21(3):78-80 http://www.cqvip.com/qk/91685X/200603/21982083.html |
[67] | KRONZUCKER H J, SIDDIQI M Y, GLASS A D M, et al. Nitrate-ammonium synergism in rice. A subcellular flux analysis[J]. Plant Physiology, 1999, 119(3):1041-1046 doi: 10.1104/pp.119.3.1041 |
[68] | ZHAO X Q, ZHAO S P, SHI W M. Enhancement of NH4+ up-take by NO3- in relation to expression of nitrate-induced genes in rice (Oryza sativa) roots[J]. Pedosphere, 2008, 18(1):86-91 doi: 10.1016/S1002-0160(07)60106-4 |
[69] | CAO Y, FAN X R, SUN S B, et al. Effect of nitrate on activities and transcript levels of nitrate reductase and glutamine synthetase in rice[J]. Pedosphere, 2008, 18(5):664-673 doi: 10.1016/S1002-0160(08)60061-2 |
[70] | 章永松, 林咸永, 罗安程.水稻根系泌氧对水稻土磷素化学行为的影响[J].中国水稻科学, 2000, 14(4):208-212 http://www.ricesci.cn/CN/abstract/abstract1096.shtml ZHANG Y S, LIN X Y, LUO A C. Chemical behavior of phosphorus in paddy soil as affected by O2 secretion from rice root[J]. Chinese Journal of Rice Science, 2000, 14(4):208-212 http://www.ricesci.cn/CN/abstract/abstract1096.shtml |
[71] | 苏玲, 章永松, 林咸永.干湿交替过程中水稻土铁形态和磷吸附解吸的变化[J].植物营养与肥料学报, 2001, 7(4):410-415 doi: 10.11674/zwyf.2001.0409 SU L, ZHANG Y S, LIN X Y. Changes of iron oxides and phosphorus adsorption-desorption in paddy soils under alternating flooded and dried conditions[J]. Plant Nutrition and Fertilizer Science, 2001, 7(4):410-415 doi: 10.11674/zwyf.2001.0409 |
[72] | 胡志华, 朱练峰, 林育炯, 等.根部增氧模式对水稻产量与氮素利用的影响[J].植物营养与肥料学报, 2016, 22(6):1503-1512 doi: 10.11674/zwyf.15517 HU Z H, ZHU L F, LIN Y J, et al. Effect of root aeration methods on rice yield and nitrogen utilization[J]. Plant Nutrition and Fertilizer Science, 2016, 22(6):1503-1512 doi: 10.11674/zwyf.15517 |
[73] | 胡志华, 朱练峰, 林育炯, 等.根际氧浓度对水稻产量及其氮素利用的影响[J].中国水稻科学, 2015, 29(4):382-389 http://www.cqvip.com/QK/97017X/201504/665320653.html HU Z H, ZHU L F, LIN Y J, et al. Effects of rhizosphere oxygen concentration on rice grain yield and nitrogen utilization[J]. Chinese Journal of Rice Science, 2015, 29(4):382-389 http://www.cqvip.com/QK/97017X/201504/665320653.html |
[74] | RUFTY T W, HUBER S C, VOLK R J. Alterations in leaf carbohydrate metabolism in response to nitrogen stress[J]. Plant Physiology, 1988, 88(3):725-730 doi: 10.1104/pp.88.3.725 |
[75] | GIBBS J, GREENWAY H. Mechanisms of anoxia tolerance in plants.Ⅰ. Growth, survival and anaerobic catabolism[J]. Functional Plant Biology, 2003, 30(1):1-47 doi: 10.1071/PP98095 |
[76] | MOMMER L, PEDERSEN O, VISSER E J W. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water[J]. Plant, Cell & Environment, 2004, 27(10):1281-1287 doi: 10.1111/j.1365-3040.2004.01235.x/full?scrollTo=footer-citing |
[77] | KAWAI M, SAMARAJEEWA P K, BARRERO R A, et al. Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots[J]. Planta, 1998, 204(3):277-287 doi: 10.1007/s004250050257 |
[78] | 王荣栋, 尹经章.作物栽培学[M].北京:高等教育出版社, 2015:76-80 WANG R D, YIN J Z. Crop Cultivation Science[M]. Beijing:High Education Press, 2015:76-80 |
[79] | LICAUSI F, PERATA P. Low oxygen signaling and tolerance in plants[J]. Advances in Botanical Research, 2009, 50:139-198 doi: 10.1016/S0065-2296(08)00804-5 |
[80] | VAN DONGEN J T, LICAUSI F. Low-Oxygen Stress in Plants[M]. Wien New York:Springer Verlag, 2014 |
[81] | STOIMENOVA M, H?NSCH R, MENDEL R, et al. The role of nitrate reduction in the anoxic metabolism of roots Ⅰ. Characterization of root morphology and normoxic metabolism of wild type tobacco and a transformant lacking root nitrate reductase[J]. Plant and Soil, 2003, 253(1):145-153 doi: 10.1023/A:1024563507275 |
[82] | MORARD P, SILVESTRE J, LACOSTE L, et al. Nitrate uptake and nitrite release by tomato roots in response to anoxia[J]. Journal of Plant Physiology, 2004, 161(7):855-865 doi: 10.1016/j.jplph.2003.11.003 |
[83] | BOTREL A, MAGNé C, KAISER W M. Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia[J]. Plant Physiology and Biochemistry, 1996, 34(5):645-652 https://www.researchgate.net/publication/224904015_Nitrate_reduction_nitrite_reduction_and_ammonium_assimilation_in_barley_roots_in_response_to_anoxia |
[84] | BRAND?O A D, SODEK L. Nitrate uptake and metabolism by roots of soybean plants under oxygen deficiency[J]. Bra-zilian Journal of Plant Physiology, 2009, 21(1):13-23 doi: 10.1590/S1677-04202009000100003 |
[85] | 余喜初, 李大明, 黄庆海, 等.过氧化钙及硅钙肥改良潜育化稻田土壤的效果研究[J].植物营养与肥料学报, 2015, 21(1):138-146 doi: 10.11674/zwyf.2015.0115 YU X C, LI D M, HUANG Q H, et al. Amelioration effects of the application of calcium peroxide and silicon calcium fertilizer in gleyed paddy fields[J]. Plant Nutrition and Fertilizer Science, 2015, 21(1):138-146 doi: 10.11674/zwyf.2015.0115 |