蔡立群1, 2, 3,
张仁陟1, 2, 3,,,
齐鹏1, 2,
张军1, 2, 3,
YeboahSTEPHEN4
1.甘肃农业大学资源与环境学院 兰州 730070
2.甘肃农业大学甘肃省干旱生境作物学重点实验室 兰州 730070
3.甘肃省节水农业工程技术研究中心 兰州 730070
4.加纳作物研究所 库马西 3785
基金项目: 国家自然科学基金项目31571594
国家自然科学基金项目41661049
“十二·五”《循环农业科技工程》项目2012BAD14B03
甘肃省自然科学基金项目1606RJZA076
详细信息
作者简介:武均, 主要研究方向为保护性耕作、土壤生态学。E-mail: wujun210@126.com
通讯作者:张仁陟, 主要从事保护性耕作、节水农业及土壤生态学方面的教学与研究。E-mail:zhangrz@gsau.edu.cn
中图分类号:S152.4+5计量
文章访问数:1133
HTML全文浏览量:3
PDF下载量:1196
被引次数:0
出版历程
收稿日期:2017-11-27
录用日期:2017-12-09
刊出日期:2018-03-01
Effect of tillage practices on soil water-stable aggregate stability in dry farm-lands in the Loess Plateau, Central Gansu Province
WU Jun1, 2,,CAI Liqun1, 2, 3,
ZHANG Renzhi1, 2, 3,,,
QI Peng1, 2,
ZHANG Jun1, 2, 3,
Yeboah STEPHEN4
1. College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
2. Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
3. Gansu Engineering Research Center for Agricultural Water-saving, Lanzhou 730070, China
4. CSIR-Crops Research Institute, Kumasi 3785, Ghana
Funds: the National Natural Science Foundation of China31571594
the National Natural Science Foundation of China41661049
the "National Twelfth Five-Year Plan" Circular Agricultural Science and Technology Project of China2012BAD14B03
the Natural Science Foundation of Gansu Province1606RJZA076
More Information
Corresponding author:ZHANG Renzhi, E-mail:zhangrz@gsau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了探明陇中黄土高原旱作农田土壤水稳性团聚体崩解机制,以连续进行15年的不同耕作措施长期定位试验为研究对象,利用LB湿筛法(快速湿润法、慢速湿润法和预湿润后扰动法)和传统湿筛法探索了传统耕作(T)、传统耕作+秸秆还田(TS)、免耕(NT)、免耕+秸秆覆盖(NTS)4种耕作措施对陇中黄土高原旱作农田土壤水稳性团聚体稳定性的影响及其破坏机制。结果表明:不同耕作措施下,4种湿筛法处理后, < 0.25 mm非水稳性团聚体含量排序为:传统湿筛法>快速湿润法>预湿润后扰动法>慢速湿润法;4种湿筛法处理后,团聚体平均重量直径排序为:慢速湿润法>预湿润后扰动法>快速湿润法>传统湿筛法;不同耕作措施下,土壤团聚体相对崩解指数高于相对机械破坏指数。不同湿筛法处理后,在0~5 cm和5~10 cm土层均以NTS的水稳性团聚体含量和平均重量直径最高,且NTS处理的平均重量直径显著(P≤5%)高于NT和T处理;而10~30 cm土层,TS处理的水稳性团聚体含量和平均重量直径最高,且显著高于T处理的平均重量直径,但与NTS处理的平均重量直径无显著差异。不同耕作措施下的团聚体崩解指数和机械破坏指数均以T处理最高,NT次之,NTS处理最低。秸秆对0~5 cm、5~10 cm、10~30 cm土层的团聚体崩解指数和机械破坏指数的降低均具有显著效应,而免耕仅在0~5 cm土层具有显著效应。因此,该区水稳性团聚体分散主要是由于水分入渗而引起的,且快速湿润时的破坏最大;同时,NTS处理可有效提升土壤水稳性团聚体稳定性,更有利于该区农田水土保持。
关键词:旱作农田/
秸秆还田/
免耕/
Le Bissonnais法/
土壤水稳性团聚体/
相对崩解指数/
相对机械破坏指数
Abstract:The semiarid western Loess Plateau is characterized by hilly landscape that is severely prone to soil erosion. Stability and distribution of soil water-stable aggregates could be affected by soil tillage methods in dry land areas. An improved understanding of the effect on soil and water erosion associated with the production of land is required for enhancement of agricultural sustainability in semiarid areas. A 15-year local field experiment was carried out to study the effects of different tillage methods and straw applications on soil water-stable aggregates and aggregate destruction mechanisms under spring-wheat/pea rotation using three Le Bissonnais (LB) and routine wet sieving (RW) methods. Three LB wet sieving methods used in the experiment were slow wetting sieving (SW) method simulating light rains (micro-cracking), fast-wetting sieving (FW) method simulating heavy rains (slaking), and wet stirring sieving (WS) method simulating disturbance (mechanical breakdown). Four aggregate size ranges were obtained by the sieving methods:2-5 mm (larger aggregate, LA); 0.25-2 mm (small aggregate, SA); 0.053-0.25 mm (micro-aggregate, MA); and < 0.053 mm (slit plus clay, SC). The results of the three LB methods and RW method were then compared and the mean weight diameter (MWD), relative slaking index (RSI) and relative mechanical breakdown index (RMI) of soil aggregates were calculated. The field experiment was located in the Rainfed Agricultural Experimental Station (35°28'N, 104°44'E) which belongs to Gansu Agricultural University in Dingxi, Gansu Province, China. The experimental work included the following tillage and straw mulching treatments:conventional tillage (T), no tillage (NT), no tillage with straw mulching (NTS), and conventional tillage with straw incorporation (TS). The treatments were arranged in a complete randomized block design with three replications. The soil samples were taken at three soil depths (0-5 cm, 5-10 cm and 10-30 cm). The results showed that after wetting treatments except the slow wetting method, the dominant fraction of fragments in each soil layer was < 0.25 mm under all four tillage treatments. The order of sieving method as for < 0.25 mm non water-stable aggregates content was RW > FW > WS > SW. MWD of soil aggregates for four sieving methods was in the order of SW > WS > FW > RW under all the four tillage treatments. This trend indicated that aggregate breakdown mechanism was in the order of:slaking > mechanical breakdown > micro-cracking. While NTS treated soils exhibited the highest MWD and water-stable aggregates content for all wet sieving methods in the 0-5 cm and 5-10 cm soil layers. MWD for NTS treatment was significantly greater (P ≤ 5%) than T and NT treatments. Also TS treatment showed the highest MWD and water-stage aggregates content in the 10-30 cm soil layer, but with no significant difference in MWD from NTS. Compared with T treatment, TS treated soils significantly improved MWD. RSI and RMI of soil aggregates were suppressed by NTS, TS and NT treatments, and NTS treatment had the highest effect. Straw addition significantly suppressed RSI and RMI of soil aggregates in all three observed soil layers. No tillage significantly suppressed RSI of soil aggregate in the 0-5 cm soil layer. The results suggested that heavy rain was the main factor destroying soil aggregates in rainfed farmlands in the Loess Plateau region in Central Gansu Province. NTS treatment performed best for sustainable agricultural development and soil and water conservation in the Loess Plateau region in Central Gansu Province.
Key words:Dry farmland/
Straw retention/
No tillage/
Le Bissonnais method/
Soil water-stable aggregates/
Relative slaking index/
Relative mechanical breakdown index
HTML全文
图1快速湿润法对不同耕作措施下不同深度土壤不同粒径土壤团聚体组成的影响
Figure1.Effects of tillage methods on distribution of soil aggregates with different diameters in different soil depths by using fast wetting method
下载: 全尺寸图片幻灯片
图2慢速湿润法对不同耕作措施下不同深度不同粒径土壤团聚体组成的影响
Figure2.Effects of tillage methods on distribution of soil aggregates with different diameters in different soil depths by using slow wetting method
下载: 全尺寸图片幻灯片
图3预湿后扰动法对不同耕作措施下不同深度不同粒径土壤团聚体组成的影响
Figure3.Effects of tillage methods distribution of soil aggregates with different diameters in different soil depths by using wetting stirring method
下载: 全尺寸图片幻灯片
图4传统湿筛法对不同耕作措施下不同深度不同粒径土壤团聚体组成的影响
Figure4.Effects of tillage methods on distribution of soil aggregates with different diameters in different soil depths by using routine wet sieving method
下载: 全尺寸图片幻灯片
图5不同耕作措施下不同深度土壤有机碳(SOC)含量
图中不同小写字母表示不同处理间在0.05水平差异显著。
Figure5.Effects of tillage methods on soil organic carbon (SOC) concentrations in different soil depths
Different lowercase letters mean significant differences among treatments at 0.05 level.
下载: 全尺寸图片幻灯片
表1不同耕作处理描述
Table1.Description of tillage treatments in the experiment
代码 Code | 处理 Treatment | 耕作方法 Tillage method description |
T | 传统耕作 Conventional tillage | 前茬作物收获后三耕两耱(这是定西地区典型的传统耕作方式): 8月收获后进行第1次耕作, 月底和9月分别进行第2次、3次耕作, 耕深依次为20 cm、10 cm和5 cm; 9月第3次耕后耱1次, 10月份冻结前再耱1次。 The field was ploughed 3 times and harrowed twice after harvesting. The filed was first ploughed in August immediately after harvesting, the second and third ploughs were in late August and September respectively. The plough depths were 20 cm, 10 cm and 5 cm, respectively. The field was harrowed after the 3rd plough in September and re-harrowed in October before the ground was frozen. This was the typical conventional tillage practice in Dingxi region. |
NT | 免耕 No-tillage | 全年不耕作, 播种时用免耕播种机一次性完成施肥和播种。 No-tillage throughout a year. Sowing seeds and fertilization were performed with seeding-machine at the same time. |
TS | 传统耕作+秸秆还田 Conventional tillage with straw incorporation | 耕作方式同T, 但结合第1次耕作将所有前作秸秆翻埋入土。 The field was ploughed and harrowed exactly as T treatment, but with straw incorporation at the first plough. All the straw of the previous crop was returned to the original plot immediately after threshing and then incorporated into soil. |
NTS | 免耕+秸秆覆盖 No-tillage with straw mulching | 播种、除草方法同NT, 收获脱粒后将全部前作秸秆覆盖在原小区。 No-tillage through a year. The ground was covered with straw of previous crop from August till next March. All the straw from previous crop was returned to the original plot immediately after threshing. |
下载: 导出CSV
表2不同湿筛方法对不同耕作措施下不同深度土壤团聚体平均重量直径的影响
Table2.Effects of tillage methods on mean weight diameter (MWD) of soil aggregates in different soil depths by using different sieving methods
mm | |||||||||||||||
处理?Treat-ment | 快速湿润法?Fast wetting | 慢速湿润法?Slow wetting | 预湿后扰动法?Wetting stirring | 传统湿筛法?Routine wet sieving | |||||||||||
0~5 cm | 5~10 cm | 10~30 cm | 0~5 cm | 5~10 cm | 10~30 cm | 0~5 cm | 5~10 cm | 10~30 cm | 0~5 cm | 5~10 cm | 10~30 cm | ||||
T | 0.72±0.06d | 0.64±0.05c | 0.59±0.07b | 1.23±0.05c | 1.12±0.09c | 1.00±0.06c | 0.88±0.04c | 0.76±0.04d | 0.66±0.09b | 0.61±0.02d | 0.57±0.04c | 0.46±0.04b | |||
NT | 0.83±0.09c | 0.71±0.09bc | 0.62±0.04ab | 1.38±0.10b | 1.26±0.08bc | 1.06±0.05bc | 1.00±0.07b | 0.85±0.07c | 0.79±0.03b | 0.71±0.06c | 0.64±0.04bc | 0.50±0.03b | |||
TS | 0.92±0.09b | 0.80±0.09b | 0.72±0.04a | 1.50±0.07ab | 1.34±0.07ab | 1.23±0.05a | 1.22±0.09a | 1.03±0.05b | 0.87±0.05a | 0.78±0.07b | 0.70±0.06ab | 0.60±0.05a | |||
NTS | 1.03±0.03a | 0.91±0.04a | 0.65±0.07ab | 1.57±0.02a | 1.44±0.10a | 1.14±0.04ab | 1.29±0.04a | 1.13±0.04a | 0.86±0.05a | 0.83±0.02a | 0.75±0.06a | 0.59±0.05a | |||
同列不同小写字母表示不同处理间在0.05水平差异显著。Different lowercase letters in the same column mean significant differences among treatments at 0.05 level. |
下载: 导出CSV
表3不同耕作措施下不同深度土壤团聚体相对崩解指数和相对机械破坏指数
Table3.Effects of tillage methods on relative slaking index (RSI) and relative mechanical breakdown index (RMI) of soil aggregates in different soil depths
处理 Treatment | 相对崩解指数 Relative slaking index | 相对机械破坏指数 Relative mechanical breakdown index | |||||
0~5 cm | 5~10 cm | 10~30 cm | 0~5 cm | 5~10 cm | 10~30 cm | ||
T | 0.83±0.07a | 0.84±0.31a | 0.90±0.07a | 0.56±0.08a | 0.62±0.07a | 0.73±0.11a | |
NT | 0.78±0.07ab | 0.82±0.15ab | 0.89±0.17a | 0.54±0.08a | 0.61±0.12a | 0.73±0.12a | |
TS | 0.75±0.03b | 0.77±0.09b | 0.84±0.12a | 0.37±0.08b | 0.44±0.08b | 0.59±0.08b | |
NTS | 0.65±0.05c | 0.70±0.02c | 0.84±0.06a | 0.34±0.13b | 0.40±0.03b | 0.49±0.10c | |
耕作措施?Tillage | 59.05*** | 3.48n.s. | 0.25n.s. | 4.53n.s. | 1.25n.s. | 3.882n.s. | |
秸秆还田?Straw | 102.90*** | 20.31** | 7.03* | 155.44*** | 73.61*** | 88.609*** | |
耕作措施×秸秆还田?Tillage × straw | 3.40n.s. | 1.55n.s. | 0.03n.s. | 0.01n.s. | 0.27n.s. | 1.35n.s. | |
同列不同小写字母表示不同处理间在0.05水平差异显著。*、**、***分别表示在0.05、0.01和0.001水平下有显著效应, n.s.表示在0.05水平下无显著效应; *、**、***和n.s.前的数值为F检验值。Different lowercase letters in the same column mean significant differences among treatments at 0.05 level. *, ** and *** indicate significant differences at 0.05, 0.01 and 0.001, respectively. n.s. indicates no significant difference at 0.05. The values represent F-statistic values in front of n.s., *, ** and ***. |
下载: 导出CSV
表4土壤有机碳与不同湿筛法处理后团聚体稳定性间的关系
Table4.Correlation between soil organic carbon (SOC) concentration and soil aggregates stability by using different sieving methods
MWDFW | MWDSW | MWDWS | MWDRW | RSI | RMI | |
SOC | 0.956** | 0.946** | 0.973** | 0.947** | -0.932** | -0.936** |
RSI | -0.969** | -0.949** | -0.954** | -0.959** | 1.000 | 0.909** |
RMI | -0.890** | -0.903** | -0.955** | -0.932** | 0.909** | 1.000 |
MWDFW、MWDSW、MWDWS、MWDRW分别代表快速湿润法、慢速湿润法、扰动后湿润处理法和传统湿筛法下的团聚体平均重量直径, RSI和RMI为团聚体相对崩解指数和相对机械破坏指数; **指在P ≤ 0.01水平显著相关。MWDFW, MWDSW, MWDWS and MWDRW indicate the mean weight diameter (MWD) of soil aggregates by using fast wetting, slow wetting, wet stirring and routine wet sieving methods, respectively. RSI and RMI are relative slaking index and relative mechanical breakdown index of soil aggregates, respectively. ** means significant correlation at P ≤ 0.01 level. |
下载: 导出CSV
参考文献
[1] | BRONICK C J, LAL R. Soil structure and management:A review[J]. Geoderma, 2005, 124(1/2):3-22 https://www.sciencedirect.com/science/article/pii/S0016706104000898 |
[2] | ABU-HAMDEH N H, ABO-QUDAIS S A, OTHMAN A M. Effect of soil aggregate size on infiltration and erosion characteristics[J]. European Journal of Soil Science, 2006, 57(5):609-616 doi: 10.1111/ejs.2006.57.issue-5 |
[3] | 武均, 蔡立群, 齐鹏, 等.不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J].中国生态农业学报, 2015, 23(3):276-284 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015303&flag=1 WU J, CAI L Q, QI P, et al. Distribution characteristics of organic carbon and total nitrogen in dry farmland soil aggre-gates under different tillage methods in the Loess Plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3):276-284 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015303&flag=1 |
[4] | ERKTAN A, CéCILLON L, GRAF F, et al. Increase in soil aggregate stability along a Mediterranean successional gradi-ent in severely eroded gully bed ecosystems:Combined ef-fects of soil, root traits and plant community characteristics[J]. Plant and Soil, 2016, 398(1/2):121-137 doi: 10.1007/s11104-015-2647-6 |
[5] | VALMIS S, DIMOYIANNIS D, DANALATOS N G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece[J]. Soil and Tillage Research, 2005, 80(1/2):139-147 https://www.sciencedirect.com/science/article/pii/S0167198704000625 |
[6] | 姜学兵, 李运生, 欧阳竹, 等.免耕对土壤团聚体特征以及有机碳储量的影响[J].中国生态农业学报, 2012, 20(3):270-278 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012303&flag=1 JIANG X B, LI Y S, OUYANG Z, et al. Effect of no-tillage on soil aggregate and organic carbon storage[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3):270-278 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012303&flag=1 |
[7] | 张仁陟, 黄高宝, 蔡立群, 等.几种保护性耕作措施在黄土高原旱作农田的实践[J].中国生态农业学报, 2013, 21(1):61-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013108&flag=1 ZHANG R Z, HUANG G B, CAI L Q, et al. Dry farmland practice involving multi-conservation tillage measures in the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1):61-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013108&flag=1 |
[8] | HUANG G B, ZHANG R Z, LI G D, et al. Productivity and sustainability of a spring wheat-field pea rotation in a semi-arid environment under conventional and conservation tillage systems[J]. Field Crops Research, 2008, 107(1):43-55 doi: 10.1016/j.fcr.2007.12.011 |
[9] | 郭军玲, 王虹艳, 卢升高.亚热带土壤团聚体测定方法的比较研究[J].土壤通报, 2010, 41(3):542-546 http://www.cqvip.com/QK/91157X/201003/34157526.html GUO J L, WANG H Y, LU S G. Comparative studies on measurement methods for aggregate stability of subtropical soils[J]. Chinese Journal of Soil Science, 2010, 41(3):542-546 http://www.cqvip.com/QK/91157X/201003/34157526.html |
[10] | 曾全超, 董扬红, 李鑫, 等.基于Le Bissonnais法对黄土高原森林植被带土壤团聚体及土壤可蚀性特征研究[J].中国生态农业学报, 2014, 22(9):1093-1101 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014914&flag=1 ZENG Q C, DONG Y H, LI X, et al. Soil aggregate stability and erodibility under forest vegetation in the Loess Plateau using the Le Bissonnais method[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9):1093-1101 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014914&flag=1 |
[11] | LE BISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility:Ⅰ. Theory and methodolo-gy[J]. European Journal of Soil Science, 2016, 67(1):11-21 doi: 10.2307/42952486 |
[12] | KEMPER W D, ROSENAU R C. Aggregate stability and size distribution[M]//KLUTE A. Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Madision, WI: ASA, 1986: 425-442 |
[13] | YANG W, LI Z X, CAI C F, et al. Mechanical properties and soil stability affected by fertilizer treatments for an Ultisol in subtropical China[J]. Plant and Soil, 2013, 363(1/2):157-174 doi: 10.1007/s11104-012-1266-8 |
[14] | ZHANG B, HORN R. Mechanisms of aggregate stabilization in Ultisols from subtropical China[J]. Geoderma, 2001, 99(1/2):123-145 https://www.sciencedirect.com/science/article/pii/S0016706100000690 |
[15] | BESALATPOUR A A, AYOUBI S, HAJABBASI M A, et al. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed[J]. CATENA, 2013, 111:72-79 doi: 10.1016/j.catena.2013.07.001 |
[16] | 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2005:25-48 BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing:Chinese Agriculture Press, 2005:25-48 |
[17] | VAN BAVEL C H M. Mean weight-diameter of soil aggregates as a statistical index of aggregation[J]. Soil Science Society of America Journal, 1949, 14:20-23 http://www.oalib.com/references/17123939 |
[18] | 李娅芸, 刘雷, 安韶山, 等.应用Le Bissonnais法研究黄土丘陵区不同植被区及坡向对土壤团聚体稳定性和可蚀性的影响[J].自然资源学报, 2016, 31(2):287-298 doi: 10.11849/zrzyxb.20141207 LI Y Y, LIU L, AN S S, et al. Research on the effect of vegetation and slope aspect on the stability and erodibility of soil aggregate in Loess Hilly region based on Le Bissonnais method[J]. Journal of Natural Resources, 2016, 31(2):287-298 doi: 10.11849/zrzyxb.20141207 |
[19] | 刘雷, 安韶山, 黄华伟.应用Le Bissonnais法研究黄土丘陵区植被类型对土壤团聚体稳定性的影响[J].生态学报, 2013, 33(20):6670-6680 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201320027 LIU L, AN S S, HUANG H W. Application of Le Bissonnais method to study soil aggregate stability under different vege-tation on the Loess Plateau[J]. Acta Ecologica Sinica, 2013, 33(20):6670-6680 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201320027 |
[20] | 赵玉明, 高晓飞, 刘瑛娜, 等.不同水稳性团聚体测定方法的对比研究[J].水土保持通报, 2013, 33(2):138-143 https://www.wenkuxiazai.com/doc/bfbb8b74910ef12d2af9e7c1.html ZHAO Y M, GAO X F, LIU Y N, et al. Comparison of dif-ferent pre-wetting strategies in wet aggregate stability deter-mination[J]. Bulletin of Soil and Water Conservation, 2013, 33(2):138-143 https://www.wenkuxiazai.com/doc/bfbb8b74910ef12d2af9e7c1.html |
[21] | SONG K, YANG J J, XUE Y, et al. Influence of tillage prac-tices and straw incorporation on soil aggregates, organic car-bon, and crop yields in a rice-wheat rotation system[J]. Sci-entific Reports, 2016, 6:36602 doi: 10.1038/srep36602 |
[22] | FUENTES M, HIDALGO C, ETCHEVERS J, et al. Conser-vation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions[J]. Plant and Soil, 2011, 355(1/2):183-197 https://www.researchgate.net/profile/J_Etchevers/publication/257638683_Conservation_agriculture_increased_organic_carbon_in_the_top-soil_macro-aggregates_and_reduced_soil_CO2_emissions/links/0c96052b357dfe1972000000.pdf?origin=publication_list |
[23] | 杨永辉, 武继承, 张洁梅, 等.耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响[J].中国生态农业学报, 2017, 25(2):258-266 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170213&flag=1 YANG Y H, WU J C, ZHANG J M, et al. Effect of tillage method on soil water infiltration, organic carbon content and structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2):258-266 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170213&flag=1 |
[24] | MENG Q F, SUN Y T, ZHAO J, et al. Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen Plain, Northeast China[J]. Journal of Soils and Sediments, 2014, 14(6):1041-1049 doi: 10.1007/s11368-014-0859-7 |
[25] | WANG Q, WANG D, WEN X F, et al. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands[J]. PLoS One, 2015, 10(2):e0117033 doi: 10.1371/journal.pone.0117033 |
[26] | CERNUDA C F, SMITH R M, VICENTE-CHANDLER J. In-fluence of initial soil moisture condition on resistance of macroaggregates to slaking and to water-drop impact[J]. Soil Science, 1954, 77(1):19-28 doi: 10.1097/00010694-195401000-00003 |
[27] | GUIMAR?ES R M L, TORMENA C A, ALVES S J, et al. Tensile strength, friability and organic carbon in an Oxisol under a crop-livestock system[J]. Scientia Agricola, 2009, 66(4):499-505 doi: 10.1590/S0103-90162009000400011 |
[28] | TORMENA C A, ARAúJO M A, FIDALSKI J, et al. Quanti-fication of tensile strength and friability of an Oxisol (Acrudox) under no-tillage[J]. Revista Brasileira de Ciência do Solo, 2008, 32(3):943-952 doi: 10.1590/S0100-06832008000300004 |