删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

扩行距、缩株距对春玉米冠层结构及产量的影响

本站小编 Free考研考试/2022-01-01

何冬冬1,,
杨恒山1, 2,,,
张玉芹1, 2
1.内蒙古民族大学农学院 通辽 028000
2.内蒙古自治区饲用作物工程技术研究中心 通辽 028000
基金项目: 国家科技支撑计划项目2013BAD07B04
内蒙古自治区硕士研究生科研创新项目S20161013603

详细信息
作者简介:何冬冬, 主要研究方向为玉米高产高效栽培。E-mail:859555463@qq.com
通讯作者:杨恒山, 主要研究方向为玉米高产高效栽培。E-mail:yanghengshan2003@aliyun.com
中图分类号:S513

计量

文章访问数:1260
HTML全文浏览量:2
PDF下载量:1109
被引次数:0
出版历程

收稿日期:2017-08-07
录用日期:2017-11-03
刊出日期:2018-03-01

Effects of line-spacing expansion and row-spacing shrinkage on canopy structure and yield of spring corn

HE Dongdong1,,
YANG Hengshan1, 2,,,
ZHANG Yuqin1, 2
1. College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China
2. Center for Engineering Research on Forage Crops, Inner Mongolia Autonomous Region, Tongliao 028000, China
Funds: the National Key Technologies R & D Program of China2013BAD07B04
the Research Innovation Project of the Inner Mongolia Autonomous Region Graduate StudentsS20161013603

More Information
Corresponding author:YANG Hengshan, E-mail:yanghengshan2003@aliyun.com


摘要
HTML全文
(2)(9)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探究西辽河平原地区玉米扩行距、缩株距密植增产的生理生态机制,本研究以紧凑耐密玉米品种‘农华101’和半紧凑耐密玉米品种‘伟科702’为试验材料,在6×104株·hm-2(D1)、7.5×104株·hm-2(D2)、9×104株·hm-2(D3)密度下,设置扩行距、缩株距(KH,种植行距为100 cm,D1、D2和D3株距分别为16.67 cm、13.33 cm和11.11 cm)和当地农民常规种植(CK,种植行距为60 cm,D1、D2和D3株距分别为27.78 cm、22.22 cm和18.52 cm)2种种植模式,测定玉米吐丝期、乳熟期及完熟期玉米冠层叶面积指数、茎叶夹角、叶向值、透光率和产量及其构成因素,计算叶面积衰减率,研究扩行距、缩株距种植对春玉米产量及冠层结构特性的影响。结果表明,2品种KH种植下产量均显著大于CK,以D2密度下增产最明显;生育后期2品种KH种植下叶面积指数均大于CK,且乳熟期均达显著水平,D2密度下差异最大;2品种KH种植下均表现为上部叶片茎叶夹角较小,叶向值较大,而中部叶片和下部叶片茎叶夹角较大,叶向值较小。2品种KH种植下冠层透光率各层位均大于CK,其中顶层和穗位层均达显著水平;D1密度下,除2015年吐丝期‘伟科702’外均表现为顶层 > 穗位层 > 底层,D2、D3密度下,除2015年乳熟期D3密度下‘伟科702’外均表现为穗位层 > 顶层 > 底层,且以吐丝期D2密度下差异最为明显。综上所述,在较高密度种植下KH种植模式冠层结构更为合理,产量更高;且不同品种对KH种植模式的响应存在差异,其中‘农华101’各层位叶面积指数、茎叶夹角均小于‘伟科702’;各层位叶向值、冠层透光率均大于‘伟科702’;实测产量不同密度下均大于‘伟科702’,在7.5×104株·hm-2密度下产量最大,且‘农华101’较‘伟科702’增产更为明显。
关键词:春玉米/
扩行缩株/
冠层结构/
种植密度/
产量
Abstract:To explore the physiological and ecological mechanisms of expanding line-spacing and shrinking row-spacing for increasing planting density and yield of spring corn in Xiliaohe Plain, a study was conducted with two corn varieties (the compact density-enduring variety 'Nonghua 101' and the semi-compact variety 'Weike 702') with planting densities of 6×104 plants·hm-2 (D1), 7.5×104 plants·hm-2 (D2) and 9×104 plants·hm-2 (D3). Then the conventional cultivation was used as the control treatment (CK) with row-spacing of 60 cm and plant-spacing of 27.78 cm (D1), 22.22 cm (D2) and 18.52 cm (D3). The expanding line-spacing and the shrinking row-spacing mode of cultivation (KH) had row-spacing of 100 cm and plant-spacing of 16.67 cm (D1), 13.33 cm (D2) and 11.11 cm (D3). The leaf area index, stem leaf angle, leaf orientation value, light transmittance of corn canopy at spinning stage, milk-ripe stage and full ripe stage and component factors of yield were determined, and also leaf area attenuation rate was calculated. Then the effects of expanding line-spacing and shrinking row-spacing on spring corn yield and canopy structure were determined. The results showed that the yields of KH treatments were significantly higher than that of CK treatments, where the yield increased most obviously under D2 density. Leaf area index of KH was higher than that of CK at late growth stage, and reached the highest value at milk-ripe stage with the most obvious variation under D2 density. Stem leaf angle of the upper leaves was smaller and with higher leaf orientation value than those of the lower ones. Stem leaf angle of middle and lower leaves were larger but with smaller leaf orientation values than those of the upper ones for 2 varieties under KH treatments. The light transmittances of canopies were higher than those of CK for both varieties under KH plantation mode. For D1 density, light transmittances of canopies of 'Weike 702' was in the order of top layer > spike layer > bottom layer, except in 2015. Under the D2 and D3 densities, light transmittances of canopies of 'Weike 702' was in the order of spike layer > top layer > bottom layer. The differences were most obvious under D2 density, except in 2015. In conclusion, canopy structure of KH planting pattern was more reasonable under higher planting density resulting in higher yield. The responses of different varieties to KH planting pattern were different. Leaf area index and stem leaf angle of 'Nonghua 101' were lower than those of 'Weike 702'. Leaf aspect and canopy transmittance were also higher than those of 'Weike 702'. Measured yields of 'Nonghua 101' under different densities were higher than those of 'Weike 702', and the highest yield was under the 7.5×104 plants·hm-2 planting density. Moreover, yield increase of 'Nonghua 101' was more obvious than that of 'Weike 702'.
Key words:Spring corn/
Line-spacing expansion and row-spacing shrinkage/
Canopy structure/
Planting density/
Yield

HTML全文


图12015年和2016年不同密度扩行缩株(KH)和常规(CK)种植模式下春玉米叶面积衰减率的变化
D1: 6×104株·hm-2; D2: 7.5×104株·hm-2; D3: 9×104株·hm-2。不同小写字母表示同年、同时期、同密度、同品种下不同处理间差异达0.05显著水平。
Figure1.Changes of leaf area attenuation rates of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK) with different planting densities in 2015 and 2016
D1: 6×104 plants·hm-2; D2: 7.5×104 plants·hm-2; D3: 9×104 plants·hm-2. Different letters show significant differences between KH and CK treatments for the same varieties at same year and growth stage with the same planting density at 0.05 probability level.


下载: 全尺寸图片幻灯片


图22015年和2016年扩行缩株(KH)和常规(CK)种植模式下春玉米不同层位叶面积指数的变化
D1: 6×104株·hm-2; D2: 7.5×104株·hm-2; D3: 9×104株·hm-2。不同小写字母表示同年、同时期、同密度、同品种、不同处理间差异达0.05显著水平。
Figure2.Changes of leaf area index of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK) in 2015 and 2016
D1: 6×104 plants·hm-2; D2: 7.5×104 plants·hm-2; D3: 9×104 plants·hm-2. Different letters show significant differences between KH and CK treatments for the same varieties at same year and growth stage with the same planting density at 0.05 probability level.


下载: 全尺寸图片幻灯片

表1扩行缩株(KH)和常规(CK)种植模式下春玉米产量及其构成因素
Table1.Yield and its components of spring corn under the pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份
Year
种植密度
Plant density
(×104 plants·hm-2)
品种
Variety
种植模式
Planting pattern
有效穗数
Effective spike
(×104 ear·hm-2)
穗粒数
Grain number per spike
千粒重
1000-kernel weight
(g)
实测产量
Actual yield
(t·hm-2)
2015 6 农华?101 NH101 KH 5.57±0.11a 612.55±11.14a 414.94±9.74a 13.99±0.18a
CK 5.37±0.14a 570.31±10.87b 410.77±8.32a 13.08±0.14b
伟科?702 WK702 KH 5.84±0.18a 608.14±10.01a 412.65±10.12a 13.80±0.20a
CK 5.67±0.21a 564.08±12.46b 411.61±8.73a 13.09±0.13b
7.5 农华?101 NH101 KH 6.90±0.11a 566.06±8.76 a 408.22±9.96a 15.18±0.04a
CK 6.97±0.16a 504.52±9.30b 394.80±5.18b 14.08±0.07b
伟科?702 WK702 KH 6.77±0.12a 556.83±9.09a 401.71±8.60a 14.80±0.18a
CK 6.90±0.17a 535.91±10.90b 396.87±9.12a 14.02±0.17b
9 农华?101 NH101 KH 8.37±0.16a 519.80±13.48a 390.87±9.81a 14.90±0.08a
CK 8.38±0.15a 470.14±10.57b 380.52±9.42a 14.34±0.16b
伟科?702 WK702 KH 8.37±0.21a 494.51±10.16a 387.93±10.64a 14.76±0.17a
CK 8.24±0.13a 483.81±9.31a 381.56±11.41a 14.21±0.20b
2016 6 农华?101 NH101 KH 5.53±0.18a 607.71±9.62a 409.13±16.65a 12.93±0.15a
CK 5.46±0.14a 561.41±12.34b 381.91±15.34a 12.18±0.10b
伟科?702 WK702 KH 5.42±0.17a 603.17±13.67a 392.20±10.53a 12.85±0.09a
CK 5.52±0.15a 550.89±12.51b 389.99±10.14a 12.14±0.17b
7.5 农华?101 NH101 KH 7.11±0.19a 558.52±13.60a 367.22±11.94a 13.98±0.12a
CK 6.94±0.17a 514.99±10.94b 357.81±6.79a 13.07±0.14b
伟科?702 WK702 KH 6.82±0.16a 539.74±15.67a 374.08±9.72a 13.84±0.11a
CK 6.96±0.10a 507.53±13.85a 368.40±8.14a 13.07±0.19b
9 农华?101 NH101 KH 8.44±0.11a 508.79±10.61a 335.23±11.01a 13.80±0.14a
CK 8.47±0.13a 454.48±12.93b 322.95±10.64a 13.05±0.16b
伟科?702 WK702 KH 8.37±0.18a 486.51±11.14a 340.45±9.54a 13.70±0.08a
CK 8.49±0.17a 431.99±10.68b 330.89±9.83a 13.02±0.17b
??数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density.


下载: 导出CSV
表2扩行缩株(KH)和常规(CK)种植模式下春玉米产量方差分析
Table2.Variance analysis results of spring corn yield under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
源?Source KH CK
F P F P
品种?Variety (A) 7.171 0.013 0.312 0.582
种植密度?Plant density (B) 105.421 0.008 103.051 0.009
年份?Year (C) 270.858 0.003 259.914 0.005
A × B 0.479 0.625 0.115 0.892
A × C 1.028 0.321 0.039 0.845
B × C 0.152 0.860 2.354 0.117
A × B × C 0.209 0.813 0.112 0.894


下载: 导出CSV
表3扩行缩株(KH)和常规(CK)种植模式下春玉米叶面积指数
Table3.Leaf area index of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份
Year
种植密度
Plant density
(×104 plants·hm-2)
品种
Variety
种植模式
Planting pattern
叶面积指数?Leaf area index
吐丝期?Silking 乳熟期?Milking 完熟期?Maturity
2015 6 农华?101 NH101 KH 4.56±0.16a 4.55±0.14a 2.71±0.08a
CK 4.66±0.11a 4.21±0.19b 2.37±0.10b
伟科?702 WK702 KH 5.09±0.10a 5.08±0.10a 2.95±0.13a
CK 5.14±0.08a 4.46±0.16b 2.55±0.14b
7.5 农华?101 NH101 KH 5.36±0.12a 5.15±0.14a 3.04±0.12a
CK 5.39±0.14a 4.53±0.11b 2.36±0.14b
伟科?702 WK702 KH 6.19±0.12a 5.94±0.20a 3.44±0.10a
CK 6.05±0.12a 5.33±0.12b 2.65±0.16b
9 农华?101 NH101 KH 6.43±0.16a 6.06±0.21a 3.38±0.10a
CK 6.58±0.10a 5.46±0.13b 2.77±0.14b
伟科?702 WK702 KH 7.29±0.11a 6.86±0.21a 3.65±0.10a
CK 7.35±0.09a 6.26±0.20b 3.11±0.12b
2016 6 农华?101 NH101 KH 4.34±0.07a 4.26±0.10a 1.25±0.15a
CK 4.38±0.13a 3.83±0.09b 1.04±0.13a
伟科?702 WK702 KH 4.77±0.15a 4.64±0.11a 1.28±0.08a
CK 4.96±0.17a 4.28±0.17b 1.12±0.06a
7.5 农华?101 NH101 KH 5.20±0.19a 4.90±0.18a 1.33±0.09a
CK 5.24±0.17a 4.41±0.12b 1.17±0.04a
伟科?702 WK702 KH 5.70±0.07a 5.51±0.21a 1.49±0.15a
CK 5.56±0.11a 4.76±0.14b 1.25±0.09a
9 农华?101 NH101 KH 5.63±0.14a 5.24±0.11a 1.41±0.10a
CK 5.76±0.11a 4.77±0.12b 1.26±0.08a
伟科?702 WK702 KH 6.32±0.18b 5.81±0.21a 1.56±0.12a
CK 6.65±0.10a 5.38±0.15b 1.39±0.14a
??数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density.


下载: 导出CSV
表4扩行缩株(KH)和常规(CK)种植模式下春玉米叶面积指数方差分析
Table4.Variance analysis results of spring corn leaf area under planting pattern of line spacing expansion and row spacing shrinkage (KH) and conventional pattern (CK)
源Source KH CK
吐丝期Silking 乳熟期Milking 完熟期Maturing 吐丝期Silking 乳熟期Milking 完熟期Maturity
F P F P F P F P F P F P
品种?Variety (A) 753.608 0.004 182.430 0.012 5.003 0.089 49.704 0.002 120.180 0.025 8.566 0.043
种植密度?Plant density (B) 231.147 0.002 148.187 0.005 40.284 0.004 377.703 0.009 106.718 0.000 30.622 0.013
年份?Year (C) 331.460 0.003 55.087 0.018 371.247 0.003 23.915 0.039 68.251 0.014 445.530 0.002
A × B 1.719 0.211 1.507 0.252 0.044 0.957 3.841 0.079 1.918 0.179 0.548 0.589
A × C 18.399 0.013 4.225 0.109 0.211 0.670 0.052 0.830 2.696 0.176 0.259 0.638
B × C 8.956 0.003 9.049 0.002 27.522 0.003 9.317 0.002 4.975 0.021 11.012 0.002
A × B × C 0.269 0.768 0.033 0.968 1.481 0.257 1.958 0.174 2.139 0.150 0.645 0.538


下载: 导出CSV
表5扩行缩株(KH)和常规(CK)种植模式下春玉米茎叶夹角
Table5.Stem-leaf angles of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份
Year
种植密度
Plant density
(×104 plants·hm-2)
品种
Variety
种植模式
Planting pattern
茎叶夹角?Stem-leaf angle (°)
上部叶片
Top leaves
中部叶片
Middle leaves
下部叶片
Lower leaves
2015 6 农华?101 NH101 KH 12.96±1.02a 21.73±1.54a 22.40±2.14a
CK 14.55±1.34a 19.40±1.74a 21.10±1.05a
伟科?702 WK702 KH 13.25±1.05a 25.47±2.06a 31.80±2.81a
CK 14.60±1.12a 24.33±2.14a 30.00±1.76a
7.5 农华?101 NH101 KH 10.92±0.94b 18.93±1.48a 21.20±1.40a
CK 13.54±1.34a 16.73±1.73a 20.65±1.34a
伟科?702 WK702 KH 11.06±1.41b 24.80±2.04a 26.40±2.01a
CK 14.10±1.32a 22.67±2.41a 26.05±1.34a
9 农华?101 NH101 KH 9.61±0.97b 16.67±1.64a 19.90±2.07a
CK 13.14±1.74a 15.53±1.54a 18.10±1.62a
伟科?702 WK702 KH 10.41±0.86b 24.20±2.04a 25.10±2.17a
CK 13.92±1.51a 21.33±1.39a 23.42±1.54a
2016 6 农华?101 NH101 KH 12.37±1.17a 20.00±1.87a 21.72±1.04a
CK 14.40±1.24a 16.89±2.01a 18.67±1.67a
伟科?702 WK702 KH 13.02±1.32a 22.78±2.14a 27.00±2.31a
CK 15.13±1.52a 20.89±2.06a 26.00±2.04a
7.5 农华?101 NH101 KH 10.13±0.98b 16.22±1.05a 18.33±1.08a
CK 13.47±1.49a 15.56±0.54a 17.89±1.38a
伟科?702 WK702 KH 10.98±1.04b 21.89±1.07a 25.78±1.49a
CK 15.07±1.43a 21.78±1.48a 22.78±1.37a
9 农华?101 NH101 KH 9.15±1.12b 15.52±0.99a 17.33±1.92a
CK 12.67±1.20a 14.33±1.17a 17.22±1.09a
伟科?702 WK702 KH 10.03±1.41b 20.78±1.65a 24.22±2.16a
CK 13.99±1.07a 19.22±1.08a 23.67±1.07a
??数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density.


下载: 导出CSV
表6扩行缩株(KH)和常规(CK)种植模式下春玉米叶向值
Table6.Leaf orientation values of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份
Year
种植密度
Plant density
(×104 plants·hm-2)
品种
Variety
种植模式
Planting pattern
叶向值?Leaf orientation value
上部叶片
Top leaves
中部叶片
Middle leaves
下部叶片
Lower leaves
2015 6 农华101 NH101 KH 56.51±2.11a 48.06±1.47a 44.06±2.14a
CK 53.24±2.24a 49.60±1.82a 46.73±2.03a
伟科702 WK702 KH 55.95±1.94a 46.45±2.06a 43.09±1.94a
CK 52.09±3.71a 47.97±2.14a 46.27±2.34a
7.5 农华101 NH101 KH 62.35±2.50a 52.86±2.78a 46.88±2.76a
CK 55.35±2.64b 53.57±2.31a 51.96±2.03a
伟科702 WK702 KH 61.74±3.01a 51.93±1.54a 46.35±1.64a
CK 54.88±2.41b 54.63±2.94a 50.52±3.04a
9 农华101 NH101 KH 67.87±2.37a 53.95±1.74a 50.31±2.16a
CK 62.58±2.10b 56.08±3.20a 52.86±2.08a
伟科702 WK702 KH 66.42±2.91a 53.75±2.74a 50.44±3.08a
CK 60.73±2.74b 56.08±2.91a 53.87±2.94a
2016 6 农华101 NH101 KH 53.98±1.67a 45.45±2.41a 43.24±1.75a
CK 49.93±2.43a 46.73±2.04a 44.69±2.46a
伟科702 WK702 KH 53.43±2.86a 45.29±2.06a 43.18±2.04a
CK 49.44±2.12a 46.38±2.91a 44.62±2.61a
7.5 农华101 NH101 KH 60.75±2.41a 49.40±1.49a 47.61±2.75a
CK 53.64±2.14b 52.74±1.35a 51.51±2.14a
伟科702 WK702 KH 59.26±2.14a 48.86±2.05a 46.85±2.04a
CK 52.56±2.03b 51.14±2.40a 49.86±2.91a
9 农华101 NH101 KH 66.37±2.70a 55.83±2.94a 53.47±2.63a
CK 58.72±2.94b 57.72±2.60a 55.23±2.19a
伟科702 WK702 KH 65.61±3.09a 55.35±2.01a 50.48±1.87a
CK 58.58±2.10b 56.90±2.84a 52.67±1.95a
??数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density.


下载: 导出CSV
表7扩行缩株(KH)和常规(CK)种植模式下春玉米茎叶夹角、叶向值方差分析
Table7.Variance analysis results of stem-leaf angle and leaf orientation value of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
分析指标
Analysis index
源?Source KH CK
上部叶片
Top leaves
中部叶片
Middle leaves
下部叶片
Lower leaves
上部叶片
Top leaves
中部叶片
Middle leaves
下部叶片
Lower leaves
F P F P F P F P F P F P
茎叶夹角
Stem-leaf angle
品种?Variety (A) 14.752 0.018 60.516 0.002 193.222 0.005 7.595 0.041 451.854 0.006 76.109 0.001
种植密度?Plant density (B) 152.510 0.026 11.885 0.001 19.433 0.001 4.134 0.036 4.377 0.001 7.317 0.006
年份?Year (C) 6.840 0.120 15.639 0.058 6.035 0.133 0.261 0.660 35.686 0.067 18.711 0.080
A × B 0.649 0.536 3.161 0.070 0.515 0.607 0.746 0.490 0.369 0.697 1.534 0.246
A × C 1.497 0.288 0.814 0.418 0.004 0.952 8.993 0.070 1.089 0.356 0.047 0.839
B × C 0.002 0.998 0.088 0.916 0.374 0.694 0.900 0.426 0.557 0.584 1.684 0.217
A × B × C 0.378 0.691 0.267 0.769 3.452 0.057 1.350 0.287 0.068 0.935 0.297 0.747
叶向值
Leaf orientation value
品种?Variety (A) 49.645 0.002 13.232 0.022 15.346 0.017 16.296 0.016 10.066 0.034 12.820 0.023
种植密度?Plant density (B) 1 263.662 0.008 1185.486 0.004 245.184 0.006 1 368.195 0.005 635.809 0.026 545.186 0.009
年份?Year (C) 128.986 0.008 146.758 0.007 6.767 0.121 40.033 0.024 44.597 0.022 1.857 0.306
A × B 0.861 0.441 1.328 0.293 0.989 0.394 0.221 0.805 0.183 0.834 3.344 0.061
A × C 0.055 0.827 2.096 0.221 3.405 0.139 1.881 0.242 0.703 0.449 5.512 0.079
B × C 4.529 0.028 111.945 0.031 3.897 0.042 5.201 0.018 4.916 0.022 11.903 0.001
A × B × C 1.454 0.263 3.187 0.068 4.355 0.071 2.040 0.163 1.221 0.321 9.171 0.082


下载: 导出CSV
表8扩行缩株(KH)和常规(CK)种植模式下春玉米冠层透光率
Table8.Canopy transmittance rates of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份
Year
种植密度
Plant density (×104plants·hm-2)
品种
Variety
种植模式
Planting pattern
吐丝期透光率
Transmittance rate at silking (%)
乳熟期透光率
Transmittance rate at milking (%)
顶层
Top floor
穗位层
Ear layer
底层
Ground floor
顶层
Top floor
穗位层
Ear layer
底层
Ground floor
2015 6 农华?101 NH101 KH 49.64±2.10a 29.92±1.02a 12.39±1.02a 54.62±1.23a 34.11±1.21a 15.04±1.02a
CK 45.34±1.84b 26.52±1.24b 10.05±1.03a 51.22±1.20b 31.44±1.34b 12.49±0.95b
伟科?702 WK702 KH 48.25±1.94a 28.49±1.36a 11.77±0.94a 54.37±1.94a 33.20±1.21a 14.11±1.20a
CK 45.04±1.86b 25.23±1.04b 9.31±0.91a 51.18±1.70b 30.84±1.61b 11.89±1.03b
7.5 农华?101 NH101 KH 46.68±1.93a 24.25±1.47a 8.74±1.01a 50.12±1.74a 29.75±1.51a 12.75±1.24a
CK 41.83±1.70b 19.20±1.94b 7.27±0.84a 45.92±1.62b 24.93±1.37b 10.69±1.19a
伟科?702 WK702 KH 45.58±1.83a 23.59±1.80a 8.23±0.86a 49.92±1.54a 28.56±1.39a 11.89±1.51a
CK 40.90±1.79b 18.59±1.76b 7.02±0.92a 45.73±1.21b 23.85±1.84b 9.84±1.32a
9 农华?101 NH101 KH 37.99±2.04a 17.82±1.06a 6.85±0.88a 41.41±1.32a 23.36±1.04a 10.16±1.04a
CK 33.62±1.34b 13.09±1.11b 5.74±0.90a 37.49±1.27b 18.76±1.35b 8.20±1.07a
伟科?702 WK702 KH 36.51±1.94a 17.03±1.60a 6.19±0.84a 40.39±1.32a 22.56±1.47a 10.10±1.09a
CK 32.09±1.35b 12.48±1.31b 5.09±0.45a 37.05±1.75b 18.34±1.62b 8.11±0.98a
2016 6 农华?101 NH101 KH 49.84±2.01a 29.75±1.11a 12.38±0.98a 53.95±1.25a 34.25±1.51a 15.41±1.20a
CK 45.37±1.47b 26.27±1.24b 10.41±1.21a 50.54±1.34b 31.53±1.01b 12.91±1.10b
伟科?702 WK702 KH 48.48±2.03a 28.10±1.50a 12.08±1.42a 53.04±1.76a 33.30±1.23a 14.05±1.04a
CK 45.19±1.04b 24.87±1.23b 10.02±1.18a 50.11±1.09b 30.75±1.54b 11.77±1.11b
7.5 农华?101 NH101 KH 46.82±2.04a 24.28±1.23a 9.47±0.84a 50.05±2.10a 29.81±1.86a 12.79±0.79a
CK 41.94±1.54b 19.30±1.08b 7.84±0.74a 46.14±1.52b 24.84±1.45b 11.03±1.27a
伟科?702 WK702 KH 45.46±1.92a 23.77±1.68a 8.76±0.94a 49.72±1.86a 28.54±1.91a 12.16±1.24a
CK 41.41±1.34b 18.84±1.06b 7.23±0.86a 45.94±1.79b 23.74±1.42b 10.75±1.08a
9 农华?101 NH101 KH 38.04±1.66a 18.91±1.12a 6.95±0.67a 42.21±2.03a 23.43±1.51a 10.05±1.24a
CK 33.81±1.50b 14.20±1.21b 5.76±0.75a 38.50±1.01b 18.82±1.34b 8.73±0.76a
伟科?702 WK702 KH 36.76±1.09a 17.01±1.35a 6.30±0.81a 40.51±1.24a 22.74±1.05a 9.88±0.88a
CK 32.63±1.42b 12.65±1.26b 5.12±0.93a 37.11±1.36b 18.42±1.04b 8.20±0.96a
?数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density.


下载: 导出CSV
表9扩行缩株(KH)和常规(CK)种植模式下春玉米冠层透光率方差分析
Table9.Variance analysis results of canopy transmittance rate of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
源?Source KH CK
顶层?Top floor 穗位层?Ear layer 底层?Ground floor 顶层?Top floor 穗位层?Ear layer 底层?Ground floor
F P F P F P F P F P F P
品种?Variety (A) 19.898 0.011 7.838 0.049 12.357 0.025 9.154 0.039 33.285 0.005 8.129 0.046
种植密度?Plant density (B) 1 480.961 0.005 584.644 0.008 451.652 0.007 1 768.476 0.008 1 609.628 0.004 261.718 0.006
年份?Year (C) 0.532 0.542 1.278 0.376 5.797 0.138 4.613 0.165 0.372 0.604 2.580 0.249
A × B 0.072 0.931 2.386 0.124 0.149 0.863 3.533 0.054 1.722 0.210 0.150 0.862
B × C 0.003 0.987 0.949 0.385 0.018 0.901 0.320 0.602 0.769 0.430 3.838 0.297
A × C 0.109 0.897 0.822 0.457 1.211 0.324 0.240 0.790 2.254 0.137 0.878 0.435
A × B × C 0.134 0.875 0.879 0.434 0.245 0.786 0.063 0.939 0.818 0.459 0.401 0.676


下载: 导出CSV

参考文献(27)
[1]李少昆, 赵久然, 董树亭, 等.中国玉米栽培研究进展与展望[J].中国农业科学, 2017, 50(11): 1941–1959 doi: 10.3864/j.issn.0578-1752.2017.11.001
LI S K, ZHAO J R, DONG S T, et al. Advances and prospects of maize cultivation in China[J]. Scientia Agricultura Sinica, 2017, 50(11): 1941–1959 doi: 10.3864/j.issn.0578-1752.2017.11.001
[2]李少昆, 王崇桃.玉米生产技术创新·扩散[M].北京:科学出版社, 2010
LI S K, WANG C T. Innovation and Diffusion of Corn Production Technology[M]. Beijing: Science Press, 2010
[3]宋慧欣, 付铁梅, 杨殿伶, 等.以增加密度为核心, 集成推广玉米高产创建技术体系[J].作物杂志, 2010, (5): 114–117 doi: 10.3969/j.issn.1000-6966.2010.27.016
SONG H X, FU T M, YANG D L, et al. To increase the density as the core, to promote the promotion of high yielding to create a technical system[J]. Crops, 2010, (5): 114–117 doi: 10.3969/j.issn.1000-6966.2010.27.016
[4]张玉芹, 杨恒山, 高聚林, 等.超高产春玉米冠层结构及其生理特性[J].中国农业科学, 2011, 44(21): 4367–4376 http://d.wanfangdata.com.cn/periodical_zgnykx201121005.aspx
ZHANG Y Q, YANG H S, GAO J L, et al. Study on canopy structure and physiological characteristics of super-high yield spring maize[J]. Scientia Agricultura Sinica, 2011, 44(21): 4367–4376 http://d.wanfangdata.com.cn/periodical_zgnykx201121005.aspx
[5]靳立斌, 张吉旺, 李波, 等.高产高效夏玉米的冠层结构及其光合特性[J].中国农业科学, 2013, 46(12): 2430–2439 doi: 10.3864/j.issn.0578-1752.2013.12.004
JIN L B, ZHANG J W, LI B, et al. Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize[J]. Scientia Agricultura Sinica, 2013, 46(12): 2430–2439 doi: 10.3864/j.issn.0578-1752.2013.12.004
[6]杨国虎, 李新, 王承莲, 等.种植密度影响玉米产量及部分产量相关性状的研究[J].西北农业学报, 2006, 15(5): 57–60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnny200718017
YANG G H, LI X, WANG C L, et al. Study on effects of plant densities on the yield and the related characters of maize hybrids[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2006, 15(5): 57–60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnny200718017
[7]沈秀瑛, 戴俊英, 胡安畅, 等.玉米群体冠层特征与光截获及产量关系的研究[J].作物学报, 1993, 19(3): 246–252 http://d.wanfangdata.com.cn/Thesis/Y148258
SHEN X Y, DAI J Y, HU A C, et al. Studies on relationship among character of canopy light interception and yield in maize populations (Zea mays L.)[J]. Acta Agronomica Sinica, 1993, 19(3): 246–252 http://d.wanfangdata.com.cn/Thesis/Y148258
[8]王庆祥, 顾慰连, 戴俊英.玉米群体的自动调节与产量[J].作物学报, 1987, 13(4): 281–287 http://d.wanfangdata.com.cn/Periodical_lnnykx201301016.aspx
WANG Q X, GU W L, DAI J Y. Effect of population autoregulation on yield in maize[J]. Acta Agronomica Sinica, 1987, 13(4): 281–287 http://d.wanfangdata.com.cn/Periodical_lnnykx201301016.aspx
[9]杨吉顺, 高辉远, 刘鹏, 等.种植密度和行距配置对超高产夏玉米群体光合特性的影响[J].作物学报, 2010, 36(7): 1226–1233 http://www.cnki.com.cn/Article/CJFDTotal-YMKX201406011.htm
YANG J S, GAO H Y, LIU P, et al. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn[J]. Acta Agronomica Sinica, 2010, 36(7): 1226–1233 http://www.cnki.com.cn/Article/CJFDTotal-YMKX201406011.htm
[10]杨恒山, 张瑞富, 张玉芹, 等.西辽河平原灌区玉米宽行少耕高产高效种植模式的研究[J].内蒙古民族大学学报:自然科学版, 2014, 29(5): 559–561 http://www.cnki.com.cn/Article/CJFDTotal-NMZF201508050.htm
YANG H S, ZHANG R F, ZHANG Y Q, et al. Study on high yield and high efficiency cropping modes of wide row and reduced tillage for maize in west Liaohe River Plain irrigated regions[J]. Journal of Inner Mongolia University for Nationalities, 2014, 29(5): 559–561 http://www.cnki.com.cn/Article/CJFDTotal-NMZF201508050.htm
[11]ANDRADE F H, CALVI?O P, CIRILO A, et al. Yield responses to narrow rows depend on increased radiation interception[J]. Agronomy Journal, 2002, 94(5): 975–980 doi: 10.2134/agronj2002.0975
[12]RETA-SáNCHEZ D G, FOWLER J L. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture[J]. Agronomy Journal, 2002, 94(6): 1317–1323 doi: 10.2134/agronj2002.1317
[13]SHARRATT B S, MCWILLIAMS D A. Microclimatic and rooting characteristics of narrow-row versus conventional-row corn[J]. Agronomy Journal, 2005, 97(4): 1129–1135 doi: 10.2134/agronj2004.0292
[14]吕丽华, 赵明, 赵久然, 等.不同施氮量下夏玉米冠层结构及光合特性的变化[J].中国农业科学, 2008, 41(9): 2624–2632 http://www.cqvip.com/QK/97657X/201405/662607478.html
LYU L H, ZHAO M, ZHAO J R, et al. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates[J]. Scientia Agricultura Sinica, 2008, 41(9): 2624–2632 http://www.cqvip.com/QK/97657X/201405/662607478.html
[15]徐丽娜, 黄收兵, 陶洪斌, 等.不同氮肥模式对夏玉米冠层结构及部分生理和农艺性状的影响[J].作物学报, 2012, 38(2): 301–306 http://www.oalib.com/paper/4202485
XU L N, HUANG S B, TAO H B, et al. Effects of different nitrogen regimes on canopy structure and partial physiological and agronomic traits in summer maize[J]. Acta Agronomica Sinica, 2012, 38(2): 301–306 http://www.oalib.com/paper/4202485
[16]杨克军, 李明, 李振华.栽培方式与群体结构对寒地玉米物质积累及产量形成的影响[J].中国农学通报, 2005, 21(11): 157–160 http://www.cqvip.com/QK/91831X/200511/20675554.html
YANG K J, LI M, LI Z H. Effect of cultivation way and community construction on material accumulation and yield formation of frigid corn[J]. Chinese Agricultural Science Bulletin, 2005, 21(11): 157–160 http://www.cqvip.com/QK/91831X/200511/20675554.html
[17]苌建峰, 张海红, 董朋飞, 等.种植模式对不同株型夏玉米品种生理生态效应比较[J].玉米科学, 2014, 22(3): 115–120 http://www.cqvip.com/QK/97657X/201403/49922526.html
CHANG J F, ZHANG H H, DONG P F, et al. Comparison on physiological and ecological effects of planting patterns in summer maize with different morphological types[J]. Journal of Maize Sciences, 2014, 22(3): 115–120 http://www.cqvip.com/QK/97657X/201403/49922526.html
[18]杨利华, 张丽华, 张全国, 等.种植样式对高密度夏玉米产量和株高整齐度的影响[J].玉米科学, 2006, 14(6): 122–124 http://www.oalib.com/paper/4831427
YANG L H, ZHANG L H, ZHANG Q G, et al. Effect of row spacing pattern on yield and plant height uniformity in highly-densed summer maize[J]. Journal of Maize Sciences, 2006, 14(6): 122–124 http://www.oalib.com/paper/4831427
[19]何冬冬, 杨恒山, 张玉芹, 等.扩行缩株对春玉米干物质积累与转运的影响[J].玉米科学, 2017, 25(3): 73–79 http://mall.cnki.net/magazine/Article/YMKX201703018.htm
HE D D, YANG H S, ZHANG Y Q, et al. Effects of widening row spacing and shortening plant spacing on try matter accumulation and transportation in spring maize[J]. Journal of Maize Sciences, 2017, 25(3): 73–79 http://mall.cnki.net/magazine/Article/YMKX201703018.htm
[20]苌建峰, 张海红, 李鸿萍, 等.不同行距配置方式对夏玉米冠层结构和群体抗性的影响[J].作物学报, 2016, 42(1): 104–112 doi: 10.7606/j.issn.1009-1041.2016.01.15
CHANG J F, ZHANG H H, LI H P, et al. Effects of different row spaces on canopy structure and resistance of summer maize[J]. Acta Agronomica Sinica, 2016, 42(1): 104–112 doi: 10.7606/j.issn.1009-1041.2016.01.15
[21]朱从桦, 张嘉莉, 王兴龙, 等.硅磷配施对低磷土壤春玉米干物质积累、分配及产量的影响[J].中国生态农业学报, 2016, 24(6): 725–735 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016604&flag=1
ZHU C H, ZHANG J L, WANG X L, et al. Effects of combined application of silicon and phosphorus fertilizers on dry matter accumulation and distribution and grain yield of spring maize in low phosphorus soils[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 725–735 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016604&flag=1
[22]吕丽华, 王璞, 鲁来清.不同冠层结构下夏玉米产量形成的源库关系[J].玉米科学, 2008, 16(4): 66–71 http://www.oalib.com/paper/4831275
LYU L H, WANG P, LU L Q. The relationship of source-sink for yield form in summer maize under different canopy structure[J]. Journal of Maize Sciences, 2008, 16(4): 66–71 http://www.oalib.com/paper/4831275
[23]薛吉全, 梁宗锁, 马国胜, 等.玉米不同株型耐密性的群体生理指标研究[J].应用生态学报, 2002, 13(1): 55–59 https://mall.cnki.net/qikan-HBKO199702003.html
XUE J Q, LIANG Z S, MA G S, et al. Population physiological indices on density-tolerance of maize in different plant type[J]. Chinese Journal of Applied Ecology, 2002, 13(1): 55–59 https://mall.cnki.net/qikan-HBKO199702003.html
[24]马国胜, 薛吉全, 路海东, 等.播种时期与密度对关中灌区夏玉米群体生理指标的影响[J].应用生态学报, 2007, 18(6): 1247–1253 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200706013
MA G S, XUE J Q, LU H D, et al. Effects of planting date and density on population physiological indices of summer corn (Zea mays L.) in Central Shaanxi irrigation area[J]. Chinese Journal of Applied Ecology, 2007, 18(6): 1247–1253 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200706013
[25]王元东, 段民孝, 邢锦丰, 等.玉米理想株型育种的研究进展与展望[J].玉米科学, 2008, 16(3): 47–50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200706013
WANG Y D, DUAN M X, XING J F, et al. Progress and prospect in ideal plant type breeding in maize[J]. Journal of Maize Sciences, 2008, 16(3): 47–50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200706013
[26]EASTIN J D. Leaf position and leaf function in corn-carbon-14 labeled photosynthate distribution in corn in relation to leaf position and leaf function[C]//Chicago: Proceedings of the 24th Annual Corn and Sorghum Research Conference, 1969
[27]凌启鸿.作物群体质量[M].上海:上海科学技术出版社, 2000
LING Q H. Crop Population Quality[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2000

相关话题/结构 数据 科学 作物 生理

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 黑龙江省热量资源变化及其对作物生产的影响
    杜春英1,2,,宫丽娟1,2,,,张志国1,2,赵慧颖1,2,吴双1,2,田宝星1,2,赵放31.黑龙江省气象科学研究所哈尔滨1500302.中国气象局东北地区生态气象创新开放实验室哈尔滨1500303.宁夏大学农学院银川750021基金项目:黑龙江省气象局科研项目HQ2016014黑龙江省气象局科 ...
    本站小编 Free考研考试 2022-01-01
  • 豆科作物与禾本科作物轮作研究进展及前景
    曾昭海,中国农业大学农学院北京100193基金项目:国家自然科学基金项目3167164公益性行业(农业)科研专项20150321详细信息通讯作者:曾昭海,研究方向为现代农作制。E-mail:zengzhaohai@cau.edu.cn中图分类号:S344.1计量文章访问数:1283HTML全文浏览量 ...
    本站小编 Free考研考试 2022-01-01
  • 模拟降水和氮沉降对准噶尔盆地南缘梭梭光合生理的影响
    张维,赵文勤,,谢双全,张莉,吕新华,贺亚玲石河子大学生命科学学院/石河子大学化工学院石河子832000基金项目:国家重点基础研究发展计划(973计划)2014CB954203国家自然科学基金项目31360139国家自然科学基金项目41561010国家自然科学基金项目31560177详细信息作者简介 ...
    本站小编 Free考研考试 2022-01-01
  • Chiplet封装结构与通信结构综述
    陈桂林1,王观武1,胡健1,王康1,许东忠21(国防科技大学第六十三研究所南京210007);2(战略支援部队31121部队南京210042)(cglnudt@163.com)出版日期:2022-01-01基金资助:国家自然科学基金项目(61902421)SurveyonChipletPackagi ...
    本站小编 Free考研考试 2022-01-01
  • 基于属性分割的高维二值数据差分隐私发布
    洪金鑫1,吴英杰1,蔡剑平2,孙岚11(福州大学数学与计算机科学学院福州350108);2(厦门华厦学院信息与智能机电工程学院福建厦门361024)(fzu_hjx@163.com)出版日期:2022-01-01基金资助:福建省自然科学基金项目(2017J01754,2018J01797)Diffe ...
    本站小编 Free考研考试 2022-01-01
  • 多轮EM结构的量子差分碰撞密钥恢复攻击
    张中亚1,2,3,吴文玲1,2,邹剑41(中国科学院软件研究所可信计算与信息保障实验室北京100190);2(中国科学院大学北京100049);3(洛阳师范学院河南洛阳471934);4(福州大学数学与计算机科学学院福州350108)(zzya1013@tca.iscas.ac.cn)出版日期:20 ...
    本站小编 Free考研考试 2022-01-01
  • 基于滑动窗口模型的数据流闭合高效用项集挖掘
    程浩东,韩萌,张妮,李小娟,王乐(北方民族大学计算机科学与工程学院银川750021)(734811467@qq.com)出版日期:2021-11-01基金资助:国家自然科学基金项目(62062004);宁夏自然科学基金项目(2020AAC03216);北方民族大学研究生创新项目(YCX20077)C ...
    本站小编 Free考研考试 2022-01-01
  • 区块链数据隐私保护:研究现状与展望
    王晨旭1,3,程加成1,桑新欣1,李国栋2,管晓宏31(西安交通大学软件学院西安710049);2(西安交通大学网络信息中心西安710049);3(智能网络与网络安全教育部重点实验室(西安交通大学)西安710049)(cxwang@mail.xjtu.edu.cn)出版日期:2021-10-01基金 ...
    本站小编 Free考研考试 2022-01-01
  • 基于深度学习的数据库自然语言接口综述
    潘璇1,3,徐思涵1,3,蔡祥睿2,3,温延龙1,3,袁晓洁2,31(南开大学计算机学院天津300350);2(南开大学网络空间安全学院天津300350);3(天津市网络与数据安全技术重点实验室(南开大学)天津300350)(panxuan@dbis.nankai.edu.cn)出版日期:2021- ...
    本站小编 Free考研考试 2022-01-01
  • 基于粗粒度数据流架构的稀疏卷积神经网络加速
    吴欣欣1,2,3,欧焱1,2,3,李文明1,2,王达1,2,张浩1,2,范东睿1,2,31(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190);2(中国科学院计算技术研究所北京100190);3(中国科学院大学计算机科学与技术学院北京100049)(wuxinxin@ict. ...
    本站小编 Free考研考试 2022-01-01