杨恒山1, 2,,,
张玉芹1, 2
1.内蒙古民族大学农学院 通辽 028000
2.内蒙古自治区饲用作物工程技术研究中心 通辽 028000
基金项目: 国家科技支撑计划项目2013BAD07B04
内蒙古自治区硕士研究生科研创新项目S20161013603
详细信息
作者简介:何冬冬, 主要研究方向为玉米高产高效栽培。E-mail:859555463@qq.com
通讯作者:杨恒山, 主要研究方向为玉米高产高效栽培。E-mail:yanghengshan2003@aliyun.com
中图分类号:S513计量
文章访问数:1260
HTML全文浏览量:2
PDF下载量:1109
被引次数:0
出版历程
收稿日期:2017-08-07
录用日期:2017-11-03
刊出日期:2018-03-01
Effects of line-spacing expansion and row-spacing shrinkage on canopy structure and yield of spring corn
HE Dongdong1,,YANG Hengshan1, 2,,,
ZHANG Yuqin1, 2
1. College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China
2. Center for Engineering Research on Forage Crops, Inner Mongolia Autonomous Region, Tongliao 028000, China
Funds: the National Key Technologies R & D Program of China2013BAD07B04
the Research Innovation Project of the Inner Mongolia Autonomous Region Graduate StudentsS20161013603
More Information
Corresponding author:YANG Hengshan, E-mail:yanghengshan2003@aliyun.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探究西辽河平原地区玉米扩行距、缩株距密植增产的生理生态机制,本研究以紧凑耐密玉米品种‘农华101’和半紧凑耐密玉米品种‘伟科702’为试验材料,在6×104株·hm-2(D1)、7.5×104株·hm-2(D2)、9×104株·hm-2(D3)密度下,设置扩行距、缩株距(KH,种植行距为100 cm,D1、D2和D3株距分别为16.67 cm、13.33 cm和11.11 cm)和当地农民常规种植(CK,种植行距为60 cm,D1、D2和D3株距分别为27.78 cm、22.22 cm和18.52 cm)2种种植模式,测定玉米吐丝期、乳熟期及完熟期玉米冠层叶面积指数、茎叶夹角、叶向值、透光率和产量及其构成因素,计算叶面积衰减率,研究扩行距、缩株距种植对春玉米产量及冠层结构特性的影响。结果表明,2品种KH种植下产量均显著大于CK,以D2密度下增产最明显;生育后期2品种KH种植下叶面积指数均大于CK,且乳熟期均达显著水平,D2密度下差异最大;2品种KH种植下均表现为上部叶片茎叶夹角较小,叶向值较大,而中部叶片和下部叶片茎叶夹角较大,叶向值较小。2品种KH种植下冠层透光率各层位均大于CK,其中顶层和穗位层均达显著水平;D1密度下,除2015年吐丝期‘伟科702’外均表现为顶层 > 穗位层 > 底层,D2、D3密度下,除2015年乳熟期D3密度下‘伟科702’外均表现为穗位层 > 顶层 > 底层,且以吐丝期D2密度下差异最为明显。综上所述,在较高密度种植下KH种植模式冠层结构更为合理,产量更高;且不同品种对KH种植模式的响应存在差异,其中‘农华101’各层位叶面积指数、茎叶夹角均小于‘伟科702’;各层位叶向值、冠层透光率均大于‘伟科702’;实测产量不同密度下均大于‘伟科702’,在7.5×104株·hm-2密度下产量最大,且‘农华101’较‘伟科702’增产更为明显。
关键词:春玉米/
扩行缩株/
冠层结构/
种植密度/
产量
Abstract:To explore the physiological and ecological mechanisms of expanding line-spacing and shrinking row-spacing for increasing planting density and yield of spring corn in Xiliaohe Plain, a study was conducted with two corn varieties (the compact density-enduring variety 'Nonghua 101' and the semi-compact variety 'Weike 702') with planting densities of 6×104 plants·hm-2 (D1), 7.5×104 plants·hm-2 (D2) and 9×104 plants·hm-2 (D3). Then the conventional cultivation was used as the control treatment (CK) with row-spacing of 60 cm and plant-spacing of 27.78 cm (D1), 22.22 cm (D2) and 18.52 cm (D3). The expanding line-spacing and the shrinking row-spacing mode of cultivation (KH) had row-spacing of 100 cm and plant-spacing of 16.67 cm (D1), 13.33 cm (D2) and 11.11 cm (D3). The leaf area index, stem leaf angle, leaf orientation value, light transmittance of corn canopy at spinning stage, milk-ripe stage and full ripe stage and component factors of yield were determined, and also leaf area attenuation rate was calculated. Then the effects of expanding line-spacing and shrinking row-spacing on spring corn yield and canopy structure were determined. The results showed that the yields of KH treatments were significantly higher than that of CK treatments, where the yield increased most obviously under D2 density. Leaf area index of KH was higher than that of CK at late growth stage, and reached the highest value at milk-ripe stage with the most obvious variation under D2 density. Stem leaf angle of the upper leaves was smaller and with higher leaf orientation value than those of the lower ones. Stem leaf angle of middle and lower leaves were larger but with smaller leaf orientation values than those of the upper ones for 2 varieties under KH treatments. The light transmittances of canopies were higher than those of CK for both varieties under KH plantation mode. For D1 density, light transmittances of canopies of 'Weike 702' was in the order of top layer > spike layer > bottom layer, except in 2015. Under the D2 and D3 densities, light transmittances of canopies of 'Weike 702' was in the order of spike layer > top layer > bottom layer. The differences were most obvious under D2 density, except in 2015. In conclusion, canopy structure of KH planting pattern was more reasonable under higher planting density resulting in higher yield. The responses of different varieties to KH planting pattern were different. Leaf area index and stem leaf angle of 'Nonghua 101' were lower than those of 'Weike 702'. Leaf aspect and canopy transmittance were also higher than those of 'Weike 702'. Measured yields of 'Nonghua 101' under different densities were higher than those of 'Weike 702', and the highest yield was under the 7.5×104 plants·hm-2 planting density. Moreover, yield increase of 'Nonghua 101' was more obvious than that of 'Weike 702'.
Key words:Spring corn/
Line-spacing expansion and row-spacing shrinkage/
Canopy structure/
Planting density/
Yield
HTML全文
图12015年和2016年不同密度扩行缩株(KH)和常规(CK)种植模式下春玉米叶面积衰减率的变化
D1: 6×104株·hm-2; D2: 7.5×104株·hm-2; D3: 9×104株·hm-2。不同小写字母表示同年、同时期、同密度、同品种下不同处理间差异达0.05显著水平。
Figure1.Changes of leaf area attenuation rates of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK) with different planting densities in 2015 and 2016
D1: 6×104 plants·hm-2; D2: 7.5×104 plants·hm-2; D3: 9×104 plants·hm-2. Different letters show significant differences between KH and CK treatments for the same varieties at same year and growth stage with the same planting density at 0.05 probability level.
下载: 全尺寸图片幻灯片
图22015年和2016年扩行缩株(KH)和常规(CK)种植模式下春玉米不同层位叶面积指数的变化
D1: 6×104株·hm-2; D2: 7.5×104株·hm-2; D3: 9×104株·hm-2。不同小写字母表示同年、同时期、同密度、同品种、不同处理间差异达0.05显著水平。
Figure2.Changes of leaf area index of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK) in 2015 and 2016
D1: 6×104 plants·hm-2; D2: 7.5×104 plants·hm-2; D3: 9×104 plants·hm-2. Different letters show significant differences between KH and CK treatments for the same varieties at same year and growth stage with the same planting density at 0.05 probability level.
下载: 全尺寸图片幻灯片
表1扩行缩株(KH)和常规(CK)种植模式下春玉米产量及其构成因素
Table1.Yield and its components of spring corn under the pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份 Year | 种植密度 Plant density (×104 plants·hm-2) | 品种 Variety | 种植模式 Planting pattern | 有效穗数 Effective spike (×104 ear·hm-2) | 穗粒数 Grain number per spike | 千粒重 1000-kernel weight (g) | 实测产量 Actual yield (t·hm-2) |
2015 | 6 | 农华?101 NH101 | KH | 5.57±0.11a | 612.55±11.14a | 414.94±9.74a | 13.99±0.18a |
CK | 5.37±0.14a | 570.31±10.87b | 410.77±8.32a | 13.08±0.14b | |||
伟科?702 WK702 | KH | 5.84±0.18a | 608.14±10.01a | 412.65±10.12a | 13.80±0.20a | ||
CK | 5.67±0.21a | 564.08±12.46b | 411.61±8.73a | 13.09±0.13b | |||
7.5 | 农华?101 NH101 | KH | 6.90±0.11a | 566.06±8.76 a | 408.22±9.96a | 15.18±0.04a | |
CK | 6.97±0.16a | 504.52±9.30b | 394.80±5.18b | 14.08±0.07b | |||
伟科?702 WK702 | KH | 6.77±0.12a | 556.83±9.09a | 401.71±8.60a | 14.80±0.18a | ||
CK | 6.90±0.17a | 535.91±10.90b | 396.87±9.12a | 14.02±0.17b | |||
9 | 农华?101 NH101 | KH | 8.37±0.16a | 519.80±13.48a | 390.87±9.81a | 14.90±0.08a | |
CK | 8.38±0.15a | 470.14±10.57b | 380.52±9.42a | 14.34±0.16b | |||
伟科?702 WK702 | KH | 8.37±0.21a | 494.51±10.16a | 387.93±10.64a | 14.76±0.17a | ||
CK | 8.24±0.13a | 483.81±9.31a | 381.56±11.41a | 14.21±0.20b | |||
2016 | 6 | 农华?101 NH101 | KH | 5.53±0.18a | 607.71±9.62a | 409.13±16.65a | 12.93±0.15a |
CK | 5.46±0.14a | 561.41±12.34b | 381.91±15.34a | 12.18±0.10b | |||
伟科?702 WK702 | KH | 5.42±0.17a | 603.17±13.67a | 392.20±10.53a | 12.85±0.09a | ||
CK | 5.52±0.15a | 550.89±12.51b | 389.99±10.14a | 12.14±0.17b | |||
7.5 | 农华?101 NH101 | KH | 7.11±0.19a | 558.52±13.60a | 367.22±11.94a | 13.98±0.12a | |
CK | 6.94±0.17a | 514.99±10.94b | 357.81±6.79a | 13.07±0.14b | |||
伟科?702 WK702 | KH | 6.82±0.16a | 539.74±15.67a | 374.08±9.72a | 13.84±0.11a | ||
CK | 6.96±0.10a | 507.53±13.85a | 368.40±8.14a | 13.07±0.19b | |||
9 | 农华?101 NH101 | KH | 8.44±0.11a | 508.79±10.61a | 335.23±11.01a | 13.80±0.14a | |
CK | 8.47±0.13a | 454.48±12.93b | 322.95±10.64a | 13.05±0.16b | |||
伟科?702 WK702 | KH | 8.37±0.18a | 486.51±11.14a | 340.45±9.54a | 13.70±0.08a | ||
CK | 8.49±0.17a | 431.99±10.68b | 330.89±9.83a | 13.02±0.17b | |||
??数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density. |
下载: 导出CSV
表2扩行缩株(KH)和常规(CK)种植模式下春玉米产量方差分析
Table2.Variance analysis results of spring corn yield under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
源?Source | KH | CK | |||
F | P | F | P | ||
品种?Variety (A) | 7.171 | 0.013 | 0.312 | 0.582 | |
种植密度?Plant density (B) | 105.421 | 0.008 | 103.051 | 0.009 | |
年份?Year (C) | 270.858 | 0.003 | 259.914 | 0.005 | |
A × B | 0.479 | 0.625 | 0.115 | 0.892 | |
A × C | 1.028 | 0.321 | 0.039 | 0.845 | |
B × C | 0.152 | 0.860 | 2.354 | 0.117 | |
A × B × C | 0.209 | 0.813 | 0.112 | 0.894 |
下载: 导出CSV
表3扩行缩株(KH)和常规(CK)种植模式下春玉米叶面积指数
Table3.Leaf area index of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份 Year | 种植密度 Plant density (×104 plants·hm-2) | 品种 Variety | 种植模式 Planting pattern | 叶面积指数?Leaf area index | ||
吐丝期?Silking | 乳熟期?Milking | 完熟期?Maturity | ||||
2015 | 6 | 农华?101 NH101 | KH | 4.56±0.16a | 4.55±0.14a | 2.71±0.08a |
CK | 4.66±0.11a | 4.21±0.19b | 2.37±0.10b | |||
伟科?702 WK702 | KH | 5.09±0.10a | 5.08±0.10a | 2.95±0.13a | ||
CK | 5.14±0.08a | 4.46±0.16b | 2.55±0.14b | |||
7.5 | 农华?101 NH101 | KH | 5.36±0.12a | 5.15±0.14a | 3.04±0.12a | |
CK | 5.39±0.14a | 4.53±0.11b | 2.36±0.14b | |||
伟科?702 WK702 | KH | 6.19±0.12a | 5.94±0.20a | 3.44±0.10a | ||
CK | 6.05±0.12a | 5.33±0.12b | 2.65±0.16b | |||
9 | 农华?101 NH101 | KH | 6.43±0.16a | 6.06±0.21a | 3.38±0.10a | |
CK | 6.58±0.10a | 5.46±0.13b | 2.77±0.14b | |||
伟科?702 WK702 | KH | 7.29±0.11a | 6.86±0.21a | 3.65±0.10a | ||
CK | 7.35±0.09a | 6.26±0.20b | 3.11±0.12b | |||
2016 | 6 | 农华?101 NH101 | KH | 4.34±0.07a | 4.26±0.10a | 1.25±0.15a |
CK | 4.38±0.13a | 3.83±0.09b | 1.04±0.13a | |||
伟科?702 WK702 | KH | 4.77±0.15a | 4.64±0.11a | 1.28±0.08a | ||
CK | 4.96±0.17a | 4.28±0.17b | 1.12±0.06a | |||
7.5 | 农华?101 NH101 | KH | 5.20±0.19a | 4.90±0.18a | 1.33±0.09a | |
CK | 5.24±0.17a | 4.41±0.12b | 1.17±0.04a | |||
伟科?702 WK702 | KH | 5.70±0.07a | 5.51±0.21a | 1.49±0.15a | ||
CK | 5.56±0.11a | 4.76±0.14b | 1.25±0.09a | |||
9 | 农华?101 NH101 | KH | 5.63±0.14a | 5.24±0.11a | 1.41±0.10a | |
CK | 5.76±0.11a | 4.77±0.12b | 1.26±0.08a | |||
伟科?702 WK702 | KH | 6.32±0.18b | 5.81±0.21a | 1.56±0.12a | ||
CK | 6.65±0.10a | 5.38±0.15b | 1.39±0.14a | |||
??数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density. |
下载: 导出CSV
表4扩行缩株(KH)和常规(CK)种植模式下春玉米叶面积指数方差分析
Table4.Variance analysis results of spring corn leaf area under planting pattern of line spacing expansion and row spacing shrinkage (KH) and conventional pattern (CK)
源Source | KH | CK | |||||||||||||||
吐丝期Silking | 乳熟期Milking | 完熟期Maturing | 吐丝期Silking | 乳熟期Milking | 完熟期Maturity | ||||||||||||
F | P | F | P | F | P | F | P | F | P | F | P | ||||||
品种?Variety (A) | 753.608 | 0.004 | 182.430 | 0.012 | 5.003 | 0.089 | 49.704 | 0.002 | 120.180 | 0.025 | 8.566 | 0.043 | |||||
种植密度?Plant density (B) | 231.147 | 0.002 | 148.187 | 0.005 | 40.284 | 0.004 | 377.703 | 0.009 | 106.718 | 0.000 | 30.622 | 0.013 | |||||
年份?Year (C) | 331.460 | 0.003 | 55.087 | 0.018 | 371.247 | 0.003 | 23.915 | 0.039 | 68.251 | 0.014 | 445.530 | 0.002 | |||||
A × B | 1.719 | 0.211 | 1.507 | 0.252 | 0.044 | 0.957 | 3.841 | 0.079 | 1.918 | 0.179 | 0.548 | 0.589 | |||||
A × C | 18.399 | 0.013 | 4.225 | 0.109 | 0.211 | 0.670 | 0.052 | 0.830 | 2.696 | 0.176 | 0.259 | 0.638 | |||||
B × C | 8.956 | 0.003 | 9.049 | 0.002 | 27.522 | 0.003 | 9.317 | 0.002 | 4.975 | 0.021 | 11.012 | 0.002 | |||||
A × B × C | 0.269 | 0.768 | 0.033 | 0.968 | 1.481 | 0.257 | 1.958 | 0.174 | 2.139 | 0.150 | 0.645 | 0.538 |
下载: 导出CSV
表5扩行缩株(KH)和常规(CK)种植模式下春玉米茎叶夹角
Table5.Stem-leaf angles of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份 Year | 种植密度 Plant density (×104 plants·hm-2) | 品种 Variety | 种植模式 Planting pattern | 茎叶夹角?Stem-leaf angle (°) | ||
上部叶片 Top leaves | 中部叶片 Middle leaves | 下部叶片 Lower leaves | ||||
2015 | 6 | 农华?101 NH101 | KH | 12.96±1.02a | 21.73±1.54a | 22.40±2.14a |
CK | 14.55±1.34a | 19.40±1.74a | 21.10±1.05a | |||
伟科?702 WK702 | KH | 13.25±1.05a | 25.47±2.06a | 31.80±2.81a | ||
CK | 14.60±1.12a | 24.33±2.14a | 30.00±1.76a | |||
7.5 | 农华?101 NH101 | KH | 10.92±0.94b | 18.93±1.48a | 21.20±1.40a | |
CK | 13.54±1.34a | 16.73±1.73a | 20.65±1.34a | |||
伟科?702 WK702 | KH | 11.06±1.41b | 24.80±2.04a | 26.40±2.01a | ||
CK | 14.10±1.32a | 22.67±2.41a | 26.05±1.34a | |||
9 | 农华?101 NH101 | KH | 9.61±0.97b | 16.67±1.64a | 19.90±2.07a | |
CK | 13.14±1.74a | 15.53±1.54a | 18.10±1.62a | |||
伟科?702 WK702 | KH | 10.41±0.86b | 24.20±2.04a | 25.10±2.17a | ||
CK | 13.92±1.51a | 21.33±1.39a | 23.42±1.54a | |||
2016 | 6 | 农华?101 NH101 | KH | 12.37±1.17a | 20.00±1.87a | 21.72±1.04a |
CK | 14.40±1.24a | 16.89±2.01a | 18.67±1.67a | |||
伟科?702 WK702 | KH | 13.02±1.32a | 22.78±2.14a | 27.00±2.31a | ||
CK | 15.13±1.52a | 20.89±2.06a | 26.00±2.04a | |||
7.5 | 农华?101 NH101 | KH | 10.13±0.98b | 16.22±1.05a | 18.33±1.08a | |
CK | 13.47±1.49a | 15.56±0.54a | 17.89±1.38a | |||
伟科?702 WK702 | KH | 10.98±1.04b | 21.89±1.07a | 25.78±1.49a | ||
CK | 15.07±1.43a | 21.78±1.48a | 22.78±1.37a | |||
9 | 农华?101 NH101 | KH | 9.15±1.12b | 15.52±0.99a | 17.33±1.92a | |
CK | 12.67±1.20a | 14.33±1.17a | 17.22±1.09a | |||
伟科?702 WK702 | KH | 10.03±1.41b | 20.78±1.65a | 24.22±2.16a | ||
CK | 13.99±1.07a | 19.22±1.08a | 23.67±1.07a | |||
??数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density. |
下载: 导出CSV
表6扩行缩株(KH)和常规(CK)种植模式下春玉米叶向值
Table6.Leaf orientation values of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份 Year | 种植密度 Plant density (×104 plants·hm-2) | 品种 Variety | 种植模式 Planting pattern | 叶向值?Leaf orientation value | ||
上部叶片 Top leaves | 中部叶片 Middle leaves | 下部叶片 Lower leaves | ||||
2015 | 6 | 农华101 NH101 | KH | 56.51±2.11a | 48.06±1.47a | 44.06±2.14a |
CK | 53.24±2.24a | 49.60±1.82a | 46.73±2.03a | |||
伟科702 WK702 | KH | 55.95±1.94a | 46.45±2.06a | 43.09±1.94a | ||
CK | 52.09±3.71a | 47.97±2.14a | 46.27±2.34a | |||
7.5 | 农华101 NH101 | KH | 62.35±2.50a | 52.86±2.78a | 46.88±2.76a | |
CK | 55.35±2.64b | 53.57±2.31a | 51.96±2.03a | |||
伟科702 WK702 | KH | 61.74±3.01a | 51.93±1.54a | 46.35±1.64a | ||
CK | 54.88±2.41b | 54.63±2.94a | 50.52±3.04a | |||
9 | 农华101 NH101 | KH | 67.87±2.37a | 53.95±1.74a | 50.31±2.16a | |
CK | 62.58±2.10b | 56.08±3.20a | 52.86±2.08a | |||
伟科702 WK702 | KH | 66.42±2.91a | 53.75±2.74a | 50.44±3.08a | ||
CK | 60.73±2.74b | 56.08±2.91a | 53.87±2.94a | |||
2016 | 6 | 农华101 NH101 | KH | 53.98±1.67a | 45.45±2.41a | 43.24±1.75a |
CK | 49.93±2.43a | 46.73±2.04a | 44.69±2.46a | |||
伟科702 WK702 | KH | 53.43±2.86a | 45.29±2.06a | 43.18±2.04a | ||
CK | 49.44±2.12a | 46.38±2.91a | 44.62±2.61a | |||
7.5 | 农华101 NH101 | KH | 60.75±2.41a | 49.40±1.49a | 47.61±2.75a | |
CK | 53.64±2.14b | 52.74±1.35a | 51.51±2.14a | |||
伟科702 WK702 | KH | 59.26±2.14a | 48.86±2.05a | 46.85±2.04a | ||
CK | 52.56±2.03b | 51.14±2.40a | 49.86±2.91a | |||
9 | 农华101 NH101 | KH | 66.37±2.70a | 55.83±2.94a | 53.47±2.63a | |
CK | 58.72±2.94b | 57.72±2.60a | 55.23±2.19a | |||
伟科702 WK702 | KH | 65.61±3.09a | 55.35±2.01a | 50.48±1.87a | ||
CK | 58.58±2.10b | 56.90±2.84a | 52.67±1.95a | |||
??数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density. |
下载: 导出CSV
表7扩行缩株(KH)和常规(CK)种植模式下春玉米茎叶夹角、叶向值方差分析
Table7.Variance analysis results of stem-leaf angle and leaf orientation value of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
分析指标 Analysis index | 源?Source | KH | CK | |||||||||||||||
上部叶片 Top leaves | 中部叶片 Middle leaves | 下部叶片 Lower leaves | 上部叶片 Top leaves | 中部叶片 Middle leaves | 下部叶片 Lower leaves | |||||||||||||
F | P | F | P | F | P | F | P | F | P | F | P | |||||||
茎叶夹角 Stem-leaf angle | 品种?Variety (A) | 14.752 | 0.018 | 60.516 | 0.002 | 193.222 | 0.005 | 7.595 | 0.041 | 451.854 | 0.006 | 76.109 | 0.001 | |||||
种植密度?Plant density (B) | 152.510 | 0.026 | 11.885 | 0.001 | 19.433 | 0.001 | 4.134 | 0.036 | 4.377 | 0.001 | 7.317 | 0.006 | ||||||
年份?Year (C) | 6.840 | 0.120 | 15.639 | 0.058 | 6.035 | 0.133 | 0.261 | 0.660 | 35.686 | 0.067 | 18.711 | 0.080 | ||||||
A × B | 0.649 | 0.536 | 3.161 | 0.070 | 0.515 | 0.607 | 0.746 | 0.490 | 0.369 | 0.697 | 1.534 | 0.246 | ||||||
A × C | 1.497 | 0.288 | 0.814 | 0.418 | 0.004 | 0.952 | 8.993 | 0.070 | 1.089 | 0.356 | 0.047 | 0.839 | ||||||
B × C | 0.002 | 0.998 | 0.088 | 0.916 | 0.374 | 0.694 | 0.900 | 0.426 | 0.557 | 0.584 | 1.684 | 0.217 | ||||||
A × B × C | 0.378 | 0.691 | 0.267 | 0.769 | 3.452 | 0.057 | 1.350 | 0.287 | 0.068 | 0.935 | 0.297 | 0.747 | ||||||
叶向值 Leaf orientation value | 品种?Variety (A) | 49.645 | 0.002 | 13.232 | 0.022 | 15.346 | 0.017 | 16.296 | 0.016 | 10.066 | 0.034 | 12.820 | 0.023 | |||||
种植密度?Plant density (B) | 1 263.662 | 0.008 | 1185.486 | 0.004 | 245.184 | 0.006 | 1 368.195 | 0.005 | 635.809 | 0.026 | 545.186 | 0.009 | ||||||
年份?Year (C) | 128.986 | 0.008 | 146.758 | 0.007 | 6.767 | 0.121 | 40.033 | 0.024 | 44.597 | 0.022 | 1.857 | 0.306 | ||||||
A × B | 0.861 | 0.441 | 1.328 | 0.293 | 0.989 | 0.394 | 0.221 | 0.805 | 0.183 | 0.834 | 3.344 | 0.061 | ||||||
A × C | 0.055 | 0.827 | 2.096 | 0.221 | 3.405 | 0.139 | 1.881 | 0.242 | 0.703 | 0.449 | 5.512 | 0.079 | ||||||
B × C | 4.529 | 0.028 | 111.945 | 0.031 | 3.897 | 0.042 | 5.201 | 0.018 | 4.916 | 0.022 | 11.903 | 0.001 | ||||||
A × B × C | 1.454 | 0.263 | 3.187 | 0.068 | 4.355 | 0.071 | 2.040 | 0.163 | 1.221 | 0.321 | 9.171 | 0.082 |
下载: 导出CSV
表8扩行缩株(KH)和常规(CK)种植模式下春玉米冠层透光率
Table8.Canopy transmittance rates of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
年份 Year | 种植密度 Plant density (×104plants·hm-2) | 品种 Variety | 种植模式 Planting pattern | 吐丝期透光率 Transmittance rate at silking (%) | 乳熟期透光率 Transmittance rate at milking (%) | |||||
顶层 Top floor | 穗位层 Ear layer | 底层 Ground floor | 顶层 Top floor | 穗位层 Ear layer | 底层 Ground floor | |||||
2015 | 6 | 农华?101 NH101 | KH | 49.64±2.10a | 29.92±1.02a | 12.39±1.02a | 54.62±1.23a | 34.11±1.21a | 15.04±1.02a | |
CK | 45.34±1.84b | 26.52±1.24b | 10.05±1.03a | 51.22±1.20b | 31.44±1.34b | 12.49±0.95b | ||||
伟科?702 WK702 | KH | 48.25±1.94a | 28.49±1.36a | 11.77±0.94a | 54.37±1.94a | 33.20±1.21a | 14.11±1.20a | |||
CK | 45.04±1.86b | 25.23±1.04b | 9.31±0.91a | 51.18±1.70b | 30.84±1.61b | 11.89±1.03b | ||||
7.5 | 农华?101 NH101 | KH | 46.68±1.93a | 24.25±1.47a | 8.74±1.01a | 50.12±1.74a | 29.75±1.51a | 12.75±1.24a | ||
CK | 41.83±1.70b | 19.20±1.94b | 7.27±0.84a | 45.92±1.62b | 24.93±1.37b | 10.69±1.19a | ||||
伟科?702 WK702 | KH | 45.58±1.83a | 23.59±1.80a | 8.23±0.86a | 49.92±1.54a | 28.56±1.39a | 11.89±1.51a | |||
CK | 40.90±1.79b | 18.59±1.76b | 7.02±0.92a | 45.73±1.21b | 23.85±1.84b | 9.84±1.32a | ||||
9 | 农华?101 NH101 | KH | 37.99±2.04a | 17.82±1.06a | 6.85±0.88a | 41.41±1.32a | 23.36±1.04a | 10.16±1.04a | ||
CK | 33.62±1.34b | 13.09±1.11b | 5.74±0.90a | 37.49±1.27b | 18.76±1.35b | 8.20±1.07a | ||||
伟科?702 WK702 | KH | 36.51±1.94a | 17.03±1.60a | 6.19±0.84a | 40.39±1.32a | 22.56±1.47a | 10.10±1.09a | |||
CK | 32.09±1.35b | 12.48±1.31b | 5.09±0.45a | 37.05±1.75b | 18.34±1.62b | 8.11±0.98a | ||||
2016 | 6 | 农华?101 NH101 | KH | 49.84±2.01a | 29.75±1.11a | 12.38±0.98a | 53.95±1.25a | 34.25±1.51a | 15.41±1.20a | |
CK | 45.37±1.47b | 26.27±1.24b | 10.41±1.21a | 50.54±1.34b | 31.53±1.01b | 12.91±1.10b | ||||
伟科?702 WK702 | KH | 48.48±2.03a | 28.10±1.50a | 12.08±1.42a | 53.04±1.76a | 33.30±1.23a | 14.05±1.04a | |||
CK | 45.19±1.04b | 24.87±1.23b | 10.02±1.18a | 50.11±1.09b | 30.75±1.54b | 11.77±1.11b | ||||
7.5 | 农华?101 NH101 | KH | 46.82±2.04a | 24.28±1.23a | 9.47±0.84a | 50.05±2.10a | 29.81±1.86a | 12.79±0.79a | ||
CK | 41.94±1.54b | 19.30±1.08b | 7.84±0.74a | 46.14±1.52b | 24.84±1.45b | 11.03±1.27a | ||||
伟科?702 WK702 | KH | 45.46±1.92a | 23.77±1.68a | 8.76±0.94a | 49.72±1.86a | 28.54±1.91a | 12.16±1.24a | |||
CK | 41.41±1.34b | 18.84±1.06b | 7.23±0.86a | 45.94±1.79b | 23.74±1.42b | 10.75±1.08a | ||||
9 | 农华?101 NH101 | KH | 38.04±1.66a | 18.91±1.12a | 6.95±0.67a | 42.21±2.03a | 23.43±1.51a | 10.05±1.24a | ||
CK | 33.81±1.50b | 14.20±1.21b | 5.76±0.75a | 38.50±1.01b | 18.82±1.34b | 8.73±0.76a | ||||
伟科?702 WK702 | KH | 36.76±1.09a | 17.01±1.35a | 6.30±0.81a | 40.51±1.24a | 22.74±1.05a | 9.88±0.88a | |||
CK | 32.63±1.42b | 12.65±1.26b | 5.12±0.93a | 37.11±1.36b | 18.42±1.04b | 8.20±0.96a | ||||
?数据为平均值±标准偏差。数据后不同小写字母表示同年、同密度、相同品种下不同处理间差异达0.05显著水平。The values are means ± S.D. Different letters show significant differences at 0.05 probability level between KH and CK treatments for the same variety at the same year and density. |
下载: 导出CSV
表9扩行缩株(KH)和常规(CK)种植模式下春玉米冠层透光率方差分析
Table9.Variance analysis results of canopy transmittance rate of spring corn under planting pattern of line-spacing expansion and row-spacing shrinkage (KH) and conventional pattern (CK)
源?Source | KH | CK | |||||||||||||||
顶层?Top floor | 穗位层?Ear layer | 底层?Ground floor | 顶层?Top floor | 穗位层?Ear layer | 底层?Ground floor | ||||||||||||
F | P | F | P | F | P | F | P | F | P | F | P | ||||||
品种?Variety (A) | 19.898 | 0.011 | 7.838 | 0.049 | 12.357 | 0.025 | 9.154 | 0.039 | 33.285 | 0.005 | 8.129 | 0.046 | |||||
种植密度?Plant density (B) | 1 480.961 | 0.005 | 584.644 | 0.008 | 451.652 | 0.007 | 1 768.476 | 0.008 | 1 609.628 | 0.004 | 261.718 | 0.006 | |||||
年份?Year (C) | 0.532 | 0.542 | 1.278 | 0.376 | 5.797 | 0.138 | 4.613 | 0.165 | 0.372 | 0.604 | 2.580 | 0.249 | |||||
A × B | 0.072 | 0.931 | 2.386 | 0.124 | 0.149 | 0.863 | 3.533 | 0.054 | 1.722 | 0.210 | 0.150 | 0.862 | |||||
B × C | 0.003 | 0.987 | 0.949 | 0.385 | 0.018 | 0.901 | 0.320 | 0.602 | 0.769 | 0.430 | 3.838 | 0.297 | |||||
A × C | 0.109 | 0.897 | 0.822 | 0.457 | 1.211 | 0.324 | 0.240 | 0.790 | 2.254 | 0.137 | 0.878 | 0.435 | |||||
A × B × C | 0.134 | 0.875 | 0.879 | 0.434 | 0.245 | 0.786 | 0.063 | 0.939 | 0.818 | 0.459 | 0.401 | 0.676 |
下载: 导出CSV
参考文献
[1] | 李少昆, 赵久然, 董树亭, 等.中国玉米栽培研究进展与展望[J].中国农业科学, 2017, 50(11): 1941–1959 doi: 10.3864/j.issn.0578-1752.2017.11.001 LI S K, ZHAO J R, DONG S T, et al. Advances and prospects of maize cultivation in China[J]. Scientia Agricultura Sinica, 2017, 50(11): 1941–1959 doi: 10.3864/j.issn.0578-1752.2017.11.001 |
[2] | 李少昆, 王崇桃.玉米生产技术创新·扩散[M].北京:科学出版社, 2010 LI S K, WANG C T. Innovation and Diffusion of Corn Production Technology[M]. Beijing: Science Press, 2010 |
[3] | 宋慧欣, 付铁梅, 杨殿伶, 等.以增加密度为核心, 集成推广玉米高产创建技术体系[J].作物杂志, 2010, (5): 114–117 doi: 10.3969/j.issn.1000-6966.2010.27.016 SONG H X, FU T M, YANG D L, et al. To increase the density as the core, to promote the promotion of high yielding to create a technical system[J]. Crops, 2010, (5): 114–117 doi: 10.3969/j.issn.1000-6966.2010.27.016 |
[4] | 张玉芹, 杨恒山, 高聚林, 等.超高产春玉米冠层结构及其生理特性[J].中国农业科学, 2011, 44(21): 4367–4376 http://d.wanfangdata.com.cn/periodical_zgnykx201121005.aspx ZHANG Y Q, YANG H S, GAO J L, et al. Study on canopy structure and physiological characteristics of super-high yield spring maize[J]. Scientia Agricultura Sinica, 2011, 44(21): 4367–4376 http://d.wanfangdata.com.cn/periodical_zgnykx201121005.aspx |
[5] | 靳立斌, 张吉旺, 李波, 等.高产高效夏玉米的冠层结构及其光合特性[J].中国农业科学, 2013, 46(12): 2430–2439 doi: 10.3864/j.issn.0578-1752.2013.12.004 JIN L B, ZHANG J W, LI B, et al. Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize[J]. Scientia Agricultura Sinica, 2013, 46(12): 2430–2439 doi: 10.3864/j.issn.0578-1752.2013.12.004 |
[6] | 杨国虎, 李新, 王承莲, 等.种植密度影响玉米产量及部分产量相关性状的研究[J].西北农业学报, 2006, 15(5): 57–60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnny200718017 YANG G H, LI X, WANG C L, et al. Study on effects of plant densities on the yield and the related characters of maize hybrids[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2006, 15(5): 57–60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnny200718017 |
[7] | 沈秀瑛, 戴俊英, 胡安畅, 等.玉米群体冠层特征与光截获及产量关系的研究[J].作物学报, 1993, 19(3): 246–252 http://d.wanfangdata.com.cn/Thesis/Y148258 SHEN X Y, DAI J Y, HU A C, et al. Studies on relationship among character of canopy light interception and yield in maize populations (Zea mays L.)[J]. Acta Agronomica Sinica, 1993, 19(3): 246–252 http://d.wanfangdata.com.cn/Thesis/Y148258 |
[8] | 王庆祥, 顾慰连, 戴俊英.玉米群体的自动调节与产量[J].作物学报, 1987, 13(4): 281–287 http://d.wanfangdata.com.cn/Periodical_lnnykx201301016.aspx WANG Q X, GU W L, DAI J Y. Effect of population autoregulation on yield in maize[J]. Acta Agronomica Sinica, 1987, 13(4): 281–287 http://d.wanfangdata.com.cn/Periodical_lnnykx201301016.aspx |
[9] | 杨吉顺, 高辉远, 刘鹏, 等.种植密度和行距配置对超高产夏玉米群体光合特性的影响[J].作物学报, 2010, 36(7): 1226–1233 http://www.cnki.com.cn/Article/CJFDTotal-YMKX201406011.htm YANG J S, GAO H Y, LIU P, et al. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn[J]. Acta Agronomica Sinica, 2010, 36(7): 1226–1233 http://www.cnki.com.cn/Article/CJFDTotal-YMKX201406011.htm |
[10] | 杨恒山, 张瑞富, 张玉芹, 等.西辽河平原灌区玉米宽行少耕高产高效种植模式的研究[J].内蒙古民族大学学报:自然科学版, 2014, 29(5): 559–561 http://www.cnki.com.cn/Article/CJFDTotal-NMZF201508050.htm YANG H S, ZHANG R F, ZHANG Y Q, et al. Study on high yield and high efficiency cropping modes of wide row and reduced tillage for maize in west Liaohe River Plain irrigated regions[J]. Journal of Inner Mongolia University for Nationalities, 2014, 29(5): 559–561 http://www.cnki.com.cn/Article/CJFDTotal-NMZF201508050.htm |
[11] | ANDRADE F H, CALVI?O P, CIRILO A, et al. Yield responses to narrow rows depend on increased radiation interception[J]. Agronomy Journal, 2002, 94(5): 975–980 doi: 10.2134/agronj2002.0975 |
[12] | RETA-SáNCHEZ D G, FOWLER J L. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture[J]. Agronomy Journal, 2002, 94(6): 1317–1323 doi: 10.2134/agronj2002.1317 |
[13] | SHARRATT B S, MCWILLIAMS D A. Microclimatic and rooting characteristics of narrow-row versus conventional-row corn[J]. Agronomy Journal, 2005, 97(4): 1129–1135 doi: 10.2134/agronj2004.0292 |
[14] | 吕丽华, 赵明, 赵久然, 等.不同施氮量下夏玉米冠层结构及光合特性的变化[J].中国农业科学, 2008, 41(9): 2624–2632 http://www.cqvip.com/QK/97657X/201405/662607478.html LYU L H, ZHAO M, ZHAO J R, et al. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates[J]. Scientia Agricultura Sinica, 2008, 41(9): 2624–2632 http://www.cqvip.com/QK/97657X/201405/662607478.html |
[15] | 徐丽娜, 黄收兵, 陶洪斌, 等.不同氮肥模式对夏玉米冠层结构及部分生理和农艺性状的影响[J].作物学报, 2012, 38(2): 301–306 http://www.oalib.com/paper/4202485 XU L N, HUANG S B, TAO H B, et al. Effects of different nitrogen regimes on canopy structure and partial physiological and agronomic traits in summer maize[J]. Acta Agronomica Sinica, 2012, 38(2): 301–306 http://www.oalib.com/paper/4202485 |
[16] | 杨克军, 李明, 李振华.栽培方式与群体结构对寒地玉米物质积累及产量形成的影响[J].中国农学通报, 2005, 21(11): 157–160 http://www.cqvip.com/QK/91831X/200511/20675554.html YANG K J, LI M, LI Z H. Effect of cultivation way and community construction on material accumulation and yield formation of frigid corn[J]. Chinese Agricultural Science Bulletin, 2005, 21(11): 157–160 http://www.cqvip.com/QK/91831X/200511/20675554.html |
[17] | 苌建峰, 张海红, 董朋飞, 等.种植模式对不同株型夏玉米品种生理生态效应比较[J].玉米科学, 2014, 22(3): 115–120 http://www.cqvip.com/QK/97657X/201403/49922526.html CHANG J F, ZHANG H H, DONG P F, et al. Comparison on physiological and ecological effects of planting patterns in summer maize with different morphological types[J]. Journal of Maize Sciences, 2014, 22(3): 115–120 http://www.cqvip.com/QK/97657X/201403/49922526.html |
[18] | 杨利华, 张丽华, 张全国, 等.种植样式对高密度夏玉米产量和株高整齐度的影响[J].玉米科学, 2006, 14(6): 122–124 http://www.oalib.com/paper/4831427 YANG L H, ZHANG L H, ZHANG Q G, et al. Effect of row spacing pattern on yield and plant height uniformity in highly-densed summer maize[J]. Journal of Maize Sciences, 2006, 14(6): 122–124 http://www.oalib.com/paper/4831427 |
[19] | 何冬冬, 杨恒山, 张玉芹, 等.扩行缩株对春玉米干物质积累与转运的影响[J].玉米科学, 2017, 25(3): 73–79 http://mall.cnki.net/magazine/Article/YMKX201703018.htm HE D D, YANG H S, ZHANG Y Q, et al. Effects of widening row spacing and shortening plant spacing on try matter accumulation and transportation in spring maize[J]. Journal of Maize Sciences, 2017, 25(3): 73–79 http://mall.cnki.net/magazine/Article/YMKX201703018.htm |
[20] | 苌建峰, 张海红, 李鸿萍, 等.不同行距配置方式对夏玉米冠层结构和群体抗性的影响[J].作物学报, 2016, 42(1): 104–112 doi: 10.7606/j.issn.1009-1041.2016.01.15 CHANG J F, ZHANG H H, LI H P, et al. Effects of different row spaces on canopy structure and resistance of summer maize[J]. Acta Agronomica Sinica, 2016, 42(1): 104–112 doi: 10.7606/j.issn.1009-1041.2016.01.15 |
[21] | 朱从桦, 张嘉莉, 王兴龙, 等.硅磷配施对低磷土壤春玉米干物质积累、分配及产量的影响[J].中国生态农业学报, 2016, 24(6): 725–735 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016604&flag=1 ZHU C H, ZHANG J L, WANG X L, et al. Effects of combined application of silicon and phosphorus fertilizers on dry matter accumulation and distribution and grain yield of spring maize in low phosphorus soils[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 725–735 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016604&flag=1 |
[22] | 吕丽华, 王璞, 鲁来清.不同冠层结构下夏玉米产量形成的源库关系[J].玉米科学, 2008, 16(4): 66–71 http://www.oalib.com/paper/4831275 LYU L H, WANG P, LU L Q. The relationship of source-sink for yield form in summer maize under different canopy structure[J]. Journal of Maize Sciences, 2008, 16(4): 66–71 http://www.oalib.com/paper/4831275 |
[23] | 薛吉全, 梁宗锁, 马国胜, 等.玉米不同株型耐密性的群体生理指标研究[J].应用生态学报, 2002, 13(1): 55–59 https://mall.cnki.net/qikan-HBKO199702003.html XUE J Q, LIANG Z S, MA G S, et al. Population physiological indices on density-tolerance of maize in different plant type[J]. Chinese Journal of Applied Ecology, 2002, 13(1): 55–59 https://mall.cnki.net/qikan-HBKO199702003.html |
[24] | 马国胜, 薛吉全, 路海东, 等.播种时期与密度对关中灌区夏玉米群体生理指标的影响[J].应用生态学报, 2007, 18(6): 1247–1253 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200706013 MA G S, XUE J Q, LU H D, et al. Effects of planting date and density on population physiological indices of summer corn (Zea mays L.) in Central Shaanxi irrigation area[J]. Chinese Journal of Applied Ecology, 2007, 18(6): 1247–1253 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200706013 |
[25] | 王元东, 段民孝, 邢锦丰, 等.玉米理想株型育种的研究进展与展望[J].玉米科学, 2008, 16(3): 47–50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200706013 WANG Y D, DUAN M X, XING J F, et al. Progress and prospect in ideal plant type breeding in maize[J]. Journal of Maize Sciences, 2008, 16(3): 47–50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200706013 |
[26] | EASTIN J D. Leaf position and leaf function in corn-carbon-14 labeled photosynthate distribution in corn in relation to leaf position and leaf function[C]//Chicago: Proceedings of the 24th Annual Corn and Sorghum Research Conference, 1969 |
[27] | 凌启鸿.作物群体质量[M].上海:上海科学技术出版社, 2000 LING Q H. Crop Population Quality[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2000 |