删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

模拟降水和氮沉降对准噶尔盆地南缘梭梭光合生理的影响

本站小编 Free考研考试/2022-01-01

张维,
赵文勤,,
谢双全,
张莉,
吕新华,
贺亚玲
石河子大学生命科学学院/石河子大学化工学院 石河子 832000
基金项目: 国家重点基础研究发展计划(973计划)2014CB954203
国家自然科学基金项目31360139
国家自然科学基金项目41561010
国家自然科学基金项目31560177

详细信息
作者简介:张维, 主要从事干旱区植物与植被研究。E-mail:1182652644@qq.com
通讯作者:赵文勤, 主要从事干旱区植物与植被研究。E-mail:shz211985@163.com
中图分类号:Q945.79

计量

文章访问数:1028
HTML全文浏览量:15
PDF下载量:985
被引次数:0
出版历程

收稿日期:2017-06-06
录用日期:2017-08-06
刊出日期:2018-01-01

Combined effect of simulated precipitation and nitrogen deposition on photo-synthetic physiology of Haloxylon ammodendron in southern margin of Junggar Basin, China

ZHANG Wei,
ZHAO Wenqin,,
XIE Shuangquan,
ZHANG Li,
LYU Xinhua,
HE Yaling
College of Life Sciences/College of Chemical Technology, Shihezi University, Shihezi 832000, China
Funds: the National Basic Research Program of China (973 Program)2014CB954203
the National Natural Science Foundation of China31360139
the National Natural Science Foundation of China41561010
the National Natural Science Foundation of China31560177

More Information
Corresponding author:ZHAO Wenqin, E-mail: shz211985@163.com


摘要
HTML全文
(2)(3)
参考文献(39)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:氮沉降和降水格局变化是目前全球气候变化背景备受关注的热点研究课题,也是荒漠生态系统的两个主要限制因子。因此,研究两者对荒漠植物的效应有助于深入了解荒漠生态系统对全球变化的响应。本文选择准噶尔盆地南缘荒漠地区的建群种梭梭(Haloxylon ammodendron)作为研究对象,设置自然降水(W0)与增加降水30%(W1)两个水分条件和自然氮沉降(N0)、增加氮素30 kg(N)·hm-2·a-1(N1)与增加氮素60 kg(N)·hm-2·a-1(N2)3个施氮水平,连续处理2年,以探究降水、氮沉降及其交互作用对梭梭光合日变化及生理生态特征的影响。结果表明:降水、氮沉降及其交互作用对梭梭的净光合速率(Pn)日变化产生极显著正相关影响;同时根据梭梭Pn、胞间CO2浓度(Ci)及气孔限制值(Ls)的变化方向,推测梭梭光合"午休"主要由非气孔因素引起。此外,W0条件下,梭梭丙二醛(MDA)含量、抗氧化酶(POD、CAT、SOD)活性、可溶性蛋白(Pr)和可溶性糖(SS)含量均随施氮量增加而显著降低,脯氨酸(Pro)含量则呈先降低后增加的趋势;而W1条件下,梭梭MDA含量、抗氧化酶(POD、CAT、SOD)活性及渗透调节物质(Pro、Pr、SS)含量均随施氮量增加呈显著先增加后降低的趋势。两种水分条件下,除W1N1处理梭梭的Pro含量高于对照组外,其余处理均显著低于对照组;同时梭梭的MDA含量、抗氧化酶活性、Pr及SS含量也均显著低于对照组。综合分析结果表明:降水、增氮及其交互作用均有利于梭梭的生长,但其交互作用效应的强弱则取决于二者间的比例。
关键词:梭梭/
降水/
氮沉降/
水氮交互/
光合生理特征/
准噶尔盆地南缘
Abstract:Precipitation and nitrogen deposition are two of the most investigated factors of global climate change which also are the controlling factors of desert ecosystems. This study examined the combined effects of precipitation and nitrogen deposition on arid ecosystems in order to provide insight into the responses of ecosystems to global climate change. We selected plantation of Haloxylon ammodendron in the southern margin of Junggar Basin. Two precipitation conditions[natural precipitation (W0) and 30% increased precipitation (W1)] and three levels of nitrogen depositions[natural nitrogen deposition (N0), 30 kg(N)·hm-2·a-1 (N1) and 60 kg(N)·hm-2·a-1 (N2) increased natural nitrogen deposition] were randomly added to simulate nitrogen deposition and precipitation for two years to explored the effects of precipitation, nitrogen deposition and the combined effects on diurnal change in photosynthetic and physio-ecological traits of H. ammodendron. The results showed that precipitation, nitrogen deposition and the combined effects had direct significant correlation with diurnal change in net photosynthetic rate of H. ammodendron. Based on the variation in net photosynthetic rate, intercellular CO2 concentration and stomatal limitation of H. ammodendron, "midday depression" of photosynthesis was mainly caused by non-stomatal factors. Moreover, with increased nitrogen deposition, there were decreasing physiological indexes (MDA content, POD activity, CAT activity, SOD activity, soluble protein content and soluble sugar content) under W0 precipitation condition. However, proline content initially decreased before eventually increasing. There were initial increases followed by decreases in physiological indexes (MDA content, POD activity, CAT activity, SOD activity, soluble protein content, proline content and soluble sugar content) under W1 precipitation condition. With the exception of W1N1, proline content was lower under nitrogen deposition increase treatments than under the natural deposition treatment. Also MDA content, antioxidant enzymes activities, soluble protein content and soluble sugar content of H. ammodendron were also significantly lower under the other water/nitrogen treatments than under the control regimes. The results from the comprehensive analysis indicated that precipitation, nitrogen deposition and the combined effects benefited the growth of H. ammodendron, but the strength of the combined effect depended on the ratio between the nitrogen deposition and precipitation.
Key words:Haloxylon ammodendron/
Precipitation/
Nitrogen deposition/
Interaction of water and nitrogen/
Photosynthetic physiological traits/
Southern margin of Junggar Basin

HTML全文


图1不同水氮处理下梭梭气体交换日变化
W0:自然降水; W1:自然降水基础上增加30%; N0:自然氮沉降; N1:自然氮沉降基础上增加30 kg(N)·hm-2·a-1; N2:自然氮沉降基础上增加60 kg(N)·hm-2·a-1。同时刻不同大、小写字母分别表示处理间差异极显著(P < 0.01)和显著(P < 0.05)。W0: natural precipitation; W1: natural precipitation increases by 30%; N0: natural nitrogen deposition; N1: natural nitrogen deposition increases by 30 kg(N)·hm-2·a-1; N2: natural nitrogen deposition increases by 60 kg(N)·hm-2·a-1. Different capital and lowercase letters at the same time indicate significances at P < 0.01 and P < 0.05 among treatments, respectively.
Figure1.Daily variations of gas exchange parameters of Haloxylon ammodendron under different water and N treatments


下载: 全尺寸图片幻灯片


图2不同水氮处理下梭梭同化枝丙二醛含量及过氧化物酶、过氧化氢酶和超氧化物歧化酶活性以及脯氨酸、可溶性蛋白和可溶性糖含量
W0:自然降水; W1:自然降水基础上增加30%; N0:自然氮沉降; N1:自然氮沉降基础上增加30 kg(N)·hm-2·a-1; N2:自然氮沉降基础上增加60 kg(N)·hm-2·a-1。不同大、小写字母分别表示处理间差异极显著(P < 0.01)和显著(P < 0.05)。W0: natural precipitation; W1: natural precipitation increases by 30%; N0: natural nitrogen deposition; N1: natural nitrogen deposition increases by 30 kg(N)·hm-2·a-1; N2: natural nitrogen deposition increases by 60 kg(N)·hm-2·a-1. Different capital and lowercase letters indicate significances at P < 0.01 and P < 0.05 among treatments, respectively.
Figure2.Malondialdehyde content, and peroxidase, catalase, superoxide dismutase activities, and proline, soluble protein and soluble sugar contents of Haloxylon ammodendron under different water and nitrogen treatments


下载: 全尺寸图片幻灯片

表1水氮处理对梭梭土壤基质理化特征影响的双因素方差分析
Table1.Two-way ANOVA analysis for the effects of water and N treatments on physical and chemical characteristics of Haloxylon ammodendron soil
处理
Treatment
土壤含水率
Soil moisture content
电导率
Electrical conductivity
pH 土壤有机质
Soil organic matter
全氮
Total nitrogen
全磷
Total phosphorus
全钾
Total potassium
降水recipitation (P) 10 453.94** 13 744.92** 117.60** 969.47** 761.15** 0.87 2 543 700.21**
氮Nitrogen (N) 3 163.97** 1 755.73** 5.85* 1 763.02** 1 164.03** 430.99** 2 752 678.95**
降水×氮P × N 2 742.07** 1 138.51** 5.55* 134.85** 30.91** 89.84** 413 634.05**
??表中数值为F检验值。Values are results of F test. * P < 0.05; ** P < 0.01.


下载: 导出CSV
表2不同水氮处理下梭梭样地土壤的理化特性
Table2.Physical and chemical properties of Haloxylon ammodendron soil under different water and N treatments
处理
Treatment
土壤含水率
Soil moisture content (%)
电导率
Electrical conductivity
(μS·cm-1)
pH 土壤有机质
Soil organic matter (g·kg-1)
全氮
Total nitrogen
(g·kg-1)
全磷
Total phosphorus
(g·kg-1)
全钾
Total potassium
(g·kg-1)
W0 N0 0.769±0.013F 140.2±0.90F 9.55±0.06Cc 3.01±0.063Dd 0.16±0.001 3F 0.22±0.003 4Ee 10.59±1.001 0D
N1 0.815±0.001E 144.3±0.26E 9.68±0.05Bb 3.45±0.003Cc 0.21±0.001 3D 0.23±0.002 5Dd 12.26±0.001 4A
N2 0.878±0.001D 156.9±0.19D 9.53±0.05Cc 4.76±0.016Aa 0.23±0.006 3C 0.27±0.004 3Aa 12.01±0.001 9B
W1 N0 0.901±0.020C 159.8±0.22C 9.78±0.05ABa 2.68±0.047Ee 0.19±0.003 6E 0.23±0.001 0Dd 9.42±0.002 2F
N1 1.643±0.002A 174.2±0.26A 9.83±0.05Aa 3.00±0.080Dd 0.24±0.002 8B 0.24±0.001 4Cc 11.92±0.002 2C
N2 1.158±0.002B 166.8±0.17B 9.85±0.06Aa 3.70±0.032Bb 0.28±0.002 4A 0.25±0.001 3Bb 10.04±0.001 7E
???W0:自然降水; W1:自然降水基础上增加30%; N0:自然氮沉降; N1:自然氮沉降基础上增加30 kg(N)·hm-2·a-1; N2:自然氮沉降基础上增加60 kg(N)·hm-2·a-1。同列不同大、小写字母分别表示在P < 0.01和P < 0.05水平上差异显著。W0: natural precipitation; W1: natural precipitation increases by 30%; N0: natural nitrogen deposition; N1: natural nitrogen deposition increases by 30 kg(N)·hm-2·a-1; N2: natural nitrogen deposition increases by 60 kg(N)·hm-2·a-1. Different capital and lowercase letters within the same column indicate significant differences at the levels of P < 0.01 and P < 0.05, respectively.


下载: 导出CSV
表3水氮处理对梭梭生理影响的双因素方差分析
Table3.Two-way ANOVA analysis for the effects of water and N treatments on physiological traits of Haloxylon ammodendron
处理
Treatment
丙二醛含量
Malondialdehyde content
过氧化物酶活性
Peroxidase activity
超氧化物歧化酶活性
Superoxide dismutase activity
过氧化氢酶活性
Catalase activity
脯氨酸含量
Proline content
可溶性蛋白含量
Soluble protein content
可溶性糖含量
Soluble sugar content
降水Precipitation (P) 836.39** 52.75** 4 361.38** 52.72** 1 705.46** 112.91** 42.42**
氮Nitrogen (N) 180.26** 21.93** 362.07** 21.90** 3 923.52** 212.99** 52.80**
降水×氮P × N 957.71** 33.08** 2 903.07** 33.07** 13 196.04** 467.87** 97.85**
???表中数值为F检验值。Values are results of F test. ** P < 0.01.


下载: 导出CSV

参考文献(39)
[1]FU G, SHEN Z X. Response of alpine soils to nitrogen addi-tion on the Tibetan plateau:A meta-analysis[J]. Applied Soil Ecology, 2017, 114:99-104 doi: 10.1016/j.apsoil.2017.03.008
[2]ZHANG X L, TAN Y L, LI A, et al. Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe[J]. Scientific Reports, 2015, 5:15549 doi: 10.1038/srep15549
[3]YIN C Y, PANG X Y, CHEN K, et al. The water adaptability of Jatropha curcas is modulated by soil nitrogen availability[J]. Biomass and Bioenergy, 2012, 47:71-81 doi: 10.1016/j.biombioe.2012.09.062
[4]WANG W F, ZONG Y Z, ZHANG S Q. Water-and nitro-gen-use efficiencies of sweet sorghum seedlings are improved under water stress[J]. International Journal of Agriculture & Biology, 2014, 16:285-292 https://www.researchgate.net/publication/50257544_Yield_Traits_and_Water_and_Nitrogen_Use_Efficiencies_of_Bell_Pepper_Grown_in_Plastic-Greenhouse
[5]BOBBINK R, HICKS K, GALLOWAY J, et al. Global as-sessment of nitrogen deposition effects on terrestrial plant diversity:A synthesis[J]. Ecological Applications, 2010, 20(1):30-59 doi: 10.1890/08-1140.1
[6]SPARRIUS L B, SEVINK J, KOOIJMAN A M. Effects of ni-trogen deposition on soil and vegetation in primary succes-sion stages in inland drift sands[J]. Plant and Soil, 2012, 353(1/2):261-272 doi: 10.1007/s11104-011-1029-y
[7]IPCC. Summary for policymakers of the synthesis report of the IPCC fourth assessment report[R]. Cambridge:Cambridge University Press, 2007 http://www.cfr.org/un/summary-policymakers-synthesis-report-ipcc-fourth-assessment-report/p14831
[8]YANG P, XIA J, ZHANG Y Y, et al. Temporal and spatial variations of precipitation in Northwest China during 1960-2013[J]. Atmospheric Research, 2017, 183:283-295 doi: 10.1016/j.atmosres.2016.09.014
[9]张影, 徐建华, 陈忠升, 等.中亚地区气温变化的时空特征分析[J].干旱区资源与环境, 2016, 30(7):133-137 http://www.doc88.com/p-9783583739081.html
ZHANG Y, XU J H, CHEN Z S, et al. Spatial and temporal variation of temperature in central Asia[J]. Journal of Arid Land Resources and Environment, 2016, 30(7):133-137 http://www.doc88.com/p-9783583739081.html
[10]辛福梅, 杨小林, 赵垦田, 等.干旱胁迫对拉萨半干旱河谷主要乔木树种幼树耗水及光合特性的影响[J].浙江大学学报:农业与生命科学版, 2016, 42(2):199-208 http://www.cnki.com.cn/Article/CJFDTotal-HLKJ201604002.htm
XIN F M, YANG X L, ZHAO K T, et al. Effect of drought stress on characteristics of water consumption and photosynthesis for main arbor species in semi-arid valley of Lhasa[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2016, 42(2):199-208 http://www.cnki.com.cn/Article/CJFDTotal-HLKJ201604002.htm
[11]GU D X, WANG Q, OTIENO D. Canopy transpiration and stomatal responses to prolonged drought by a dominant desert species in central Asia[J]. Water, 2017, 9(6):404 doi: 10.3390/w9060404
[12]KANG J J, ZHAO W Z, ZHENG Y, et al. Calcium chloride improves photosynthesis and water status in the C4 succulent xerophyte Haloxylon ammodendron under water deficit[J]. Plant Growth Regulation, 2017, 82(3):467-478 doi: 10.1007/s10725-017-0273-4
[13]ZHANG Y, XIE J B, LI Y. Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought[J]. Plant Biology, 2017, 19(2):191-200 doi: 10.1111/plb.12511
[14]PE?UELAS J, FILELLA I, LLUSIà J, et al. Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia[J]. Journal of Experimental Botany, 1998, 49(319):229-238 https://www.researchgate.net/publication/268575338_Photosynthetic_ecophysiology_of_evergreen_leaves_in_the_woody_angiosperms_-_A_review
[15]DEWAR R C. A simple model of light and water use evaluated for Pinus radiata[J]. Tree Physiology, 1997, 17(4):259-265 doi: 10.1093/treephys/17.4.259
[16]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 1999:164-260 http://www.bookask.com/book/1946788.html
LI H S. Principles and Techniques of Plant Physiological Bi-ochemistry Experiment[M]. Beijing:Higher Education Press, 1999:164-260 http://www.bookask.com/book/1946788.html
[17]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000:104-160
ZOU Q. Instructional on Plant Physiology[M]. Beijing:China Agriculture Press, 2000:104-160
[18]李银坤, 武雪萍, 吴会军, 等.水氮条件对温室黄瓜光合日变化及产量的影响[J].农业工程学报, 2010, 26(13):122-129 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nygu2010s1025&dbname=CJFD&dbcode=CJFQ
LI Y K, WU X P, WU H J, et al. Effects of water and nitrogen conditions on the diurnal variation of photosynthesis and yield of cucumber in greenhouse[J]. Transactions of the CSAE, 2010, 26(13):122-129 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=nygu2010s1025&dbname=CJFD&dbcode=CJFQ
[19]刘振香. 不同水肥处理对夏玉米田土壤理化性质及微生物特性的影响[D]. 泰安: 山东农业大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10434-1014341566.htm
LIU Z X. Effects of irrigation and nitrogen on physical and chemical properties and microbiologic properties of soil on summer corn field[D]. Tai'an:Shandong Agricultural Uni-versity, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10434-1014341566.htm
[20]陈亚, 代先强, 袁玲, 等.水氮耦合对土壤理化性状及作物生长的影响研究进展[J].河南农业科学, 2009, 38(5):11-15 http://www.cqvip.com/QK/93996X/200905/30531381.html
CHEN Y, DAI X Q, YUAN L, et al. Advances of researches on effects of coupling water with nitrogen fertilizers on the physicochemical property of soil and crops growth[J]. Journal of Henan Agricultural Sciences, 2009, 38(5):11-15 http://www.cqvip.com/QK/93996X/200905/30531381.html
[21]肖新, 储祥林, 邓艳萍, 等.江淮丘陵季节性干旱区灌溉与施氮量对土壤肥力和水稻水分利用效率的影响[J].干旱地区农业研究, 2013, 31(1):84-88 http://www.wenkuxiazai.com/doc/ac19714a2e3f5727a5e96230.html
XIAO X, CHU X L, DENG Y P, et al. Effects of irrigation and nitrogen fertilization on soil fertility and water use efficiency of rice[J]. Agricultural Research in the Arid Areas, 2013, 31(1):84-88 http://www.wenkuxiazai.com/doc/ac19714a2e3f5727a5e96230.html
[22]王聪宇, 曹国军, 耿玉辉, 等.氮钾配施对吉林省湿润冷凉区玉米产量及钾素吸收积累的影响[J].吉林农业大学学报, 2015, 37(3):332-337 http://www.oalib.com/paper/5251628
WANG C Y, CAO G J, GENG Y H, et al. Effect of nitrogen and potassium interaction on yield and accumulation of spring maize in cold and humid region of Jilin Province[J]. Journal of Jilin Agricultural University, 2015, 37(3):332-337 http://www.oalib.com/paper/5251628
[23]陈亚. 水氮耦合对植烟土壤理化生物特性及烤烟生长的影响[D]. 重庆: 西南大学, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10635-2009105040.htm
CHEN Y. Effects of water-nitrogen coupling on the growth of flue-cured tobacco and physicochemical and biological properties of soil[D]. Chongqing:Southwest University, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10635-2009105040.htm
[24]李轶凡. 增氮增雨对贝加尔针茅草甸草原土壤氮矿化及土壤理化性质的影响[D]. 长春: 东北师范大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10200-1015414630.htm
LI Y F. Effects of stimulating nitrogen deposition and in-creasing precipitation on nitrogen mineralization in a Stipa baicalensis meadow steppe[D]. Changchun:Northeast Nor-mal University, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10200-1015414630.htm
[25]韦泽秀. 水肥对大棚黄瓜和番茄生理特性及土壤环境的影响[D]. 咸阳: 西北农林科技大学, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10712-2010049896.htm
WEI Z X. Effect the condition of soil water and fertilizer on the physiological characteristics of plant and soil environ-ments of cucumber and tomato in greenhouse[D]. Xianyang:North West Agriculture and Forestry University, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10712-2010049896.htm
[26]闫慧, 吴茜, 丁佳, 等.不同降水及氮添加对浙江古田山4种树木幼苗光合生理生态特征与生物量的影响[J].生态学报, 2013, 33(14):4226-4236 http://www.cqvip.com/QK/90772X/201314/46525297.html
YAN H, WU Q, DING J, et al. Effects of precipitation and nitrogen addition on photosynthetically eco-physiological characteristics and biomass of four tree seedlings in Gutian Mountain, Zhejiang Province, China[J]. Acta Ecologica Sinica, 2013, 33(14):4226-4236 http://www.cqvip.com/QK/90772X/201314/46525297.html
[27]田媛, 塔西甫拉提·特依拜, 徐贵青.梭梭与白梭梭气体交换特征对比分析[J].干旱区研究, 2014, 31(3):542-549 http://mall.cnki.net/magazine/Article/ZJLX200804028.htm
TIAN Y, TAXIPLAT T, XU G Q. Gas exchange of Haloxylon ammodendron and H. persicum[J]. Arid Zone Research, 2014, 31(3):542-549 http://mall.cnki.net/magazine/Article/ZJLX200804028.htm
[28]刘晓宏, 肖洪浪, 赵良菊.不同水肥条件下春小麦耗水量和水分利用率[J].干旱地区农业研究, 2006, 24(1):56-59 http://www.irgrid.ac.cn/handle/1471x/642356?mode=full
LIU X H, XIAO H L, ZHAO L J. Effects of water and nitrogen condition on water consumption and water use efficiency of spring wheat[J]. Agricultural Research in the Arid Areas, 2006, 24(1):56-59 http://www.irgrid.ac.cn/handle/1471x/642356?mode=full
[29]王海江, 崔静, 侯振安, 等.膜下滴灌棉花水氮耦合对其干物质和水分利用效率的影响[J].西北农业学报, 2010, 19(3):76-80 http://www.cqvip.com/QK/97435X/201003/33861367.html
WANG H J, CUI J, HOU Z A, et al. Impact of coupling of water and nitrogen on dry matter and water use efficiency of cotton under plastic mulching by drip irrigation[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(3):76-80 http://www.cqvip.com/QK/97435X/201003/33861367.html
[30]柴仲平, 王雪梅, 孙霞, 等.水氮耦合对红枣光合特性与水分利用效率的影响研究[J].西南农业学报, 2010, 23(5):1625-1630 http://www.cqvip.com/QK/93783A/201205/43849690.html
CHAI Z P, WANG X M, SUN X, et al. Photosynthetic char-acteristics and water use efficiency of Zizyphus jujube under coupling of water and N[J]. Southwest China Journal of Ag-ricultural Sciences, 2010, 23(5):1625-1630 http://www.cqvip.com/QK/93783A/201205/43849690.html
[31]李银坤, 武雪萍, 武其甫, 等.不同水氮处理对温室黄瓜产量、品质及水分利用效率的影响[J].中国土壤与肥料, 2010, (3):21-24 http://www.cqvip.com/QK/93143A/201003/34211845.html
LI Y K, WU X P, WU Q P, et al. Effects of different water and nitrogen treatment on the yield and quality and water use ef-ficiency of cucumber in greenhouse[J]. Soils and Fertilizer Sciences in China, 2010, (3):21-24 http://www.cqvip.com/QK/93143A/201003/34211845.html
[32]李静静, 陈雅君, 张璐, 等.水氮交互作用对草地早熟禾生理生化与坪用质量的影响[J].中国草地学报, 2016, 38(4):42-48 http://www.cqvip.com/QK/98438X/201506/668018171.html
LI J J, CHEN Y J, ZHANG L, et al. Effects of water-nitrogen interaction on physiological-biochemical indexes and turf quality of Poa pratensis L.[J]. Chinese Journal of Grassland, 2016, 38(4):42-48 http://www.cqvip.com/QK/98438X/201506/668018171.html
[33]李鑫, 张永清, 王大勇, 等.水氮耦合对红小豆根系生理生态及产量的影响[J].中国生态农业学报, 2015, 23(12):1511-1519 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151203&flag=1
LI X, ZHANG Y Q, WANG D Y, et al. Effects of coupling water and nitrogen on root physio-ecological indices and yield of adzuki bean[J]. Chinese Journal of Eco-Agriculture, 2015, 23(12):1511-1519 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151203&flag=1
[34]米美多, 慕宇, 代晓华, 等.花后高温胁迫下不同施氮量对春小麦抗氧化特性的影响[J].江苏农业科学, 2017, 45(1):52-56 http://www.cqvip.com/QK/96016B/201507/665451838.html
MI M D, MU Y, DAI X H, et al. Effect of different nitrogen amounts on antioxidant properties of spring wheat after anthesis under high temperature stress[J]. Jiangsu Agricultural Sciences, 2017, 45(1):52-56 http://www.cqvip.com/QK/96016B/201507/665451838.html
[35]LI J, QU H, ZHAO H L, et al. Growth and physiological re-sponses of Agriophyllum squarrosum to sand burial stress[J]. Journal of Arid Land, 2015, 7(1):94-100 doi: 10.1007/s40333-014-0033-5
[36]MITTAL S, KUMARI N, SHARMA V. Differential response of salt stress on Brassica juncea:Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes[J]. Plant Physiology and Biochemistry, 2012, 54:17-26 doi: 10.1016/j.plaphy.2012.02.003
[37]翁伯琦, 郑向丽, 赵婷, 等.不同生育期花生叶片蛋白质含量及氮代谢相关酶活性分析[J].植物资源与环境学报, 2014, 23(1):65-70 http://www.cnki.com.cn/Article/CJFDTotal-XBZW199806027.htm
WENG B Q, ZHENG X L, ZHAO T, et al. Analyses on protein content and enzyme activity involved in nitrogen metabolism of peanut (Arachis hypogaea) leaf at different growth stages[J]. Journal of Plant Resources and Environment, 2014, 23(1):65-70 http://www.cnki.com.cn/Article/CJFDTotal-XBZW199806027.htm
[38]王景燕, 龚伟, 李伦刚, 等.水肥对汉源花椒幼苗抗逆生理的影响[J].西北植物学报, 2015, 35(3):530-539 https://mall.cnki.net/lunwen-1016157357.html
WANG J Y, GONG W, LI L G, et al. Effects of water and fertilizer on physiological characteristics of stress resistance of Zanthoxylum bungeanum Maxim. 'Hanyuan' seedling[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(3):530-539 https://mall.cnki.net/lunwen-1016157357.html
[39]杨晓清, 周再知, 梁坤南, 等.氮素对模拟胁迫下土沉香幼苗抗旱生理的影响[J].热带作物学报, 2013, 34(6):1121-1127 http://www.cqvip.com/QK/95551X/201306/46247926.html
YANG X Q, ZHOU Z Z, LIANG K N, et al. Effects of nitrogen nutrition on physiological traits of the Aquilaria sinensis seedlings under simulated water stress[J]. Chinese Journal of Tropical Crops, 2013, 34(6):1121-1127 http://www.cqvip.com/QK/95551X/201306/46247926.html

相关话题/自然 生理 土壤 植物 理化