删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

垄沟集雨系统Laio土壤水分动态随机模型参数敏感性分析及优化

本站小编 Free考研考试/2022-01-01

尹鑫卫1, 2,,
李晓玲3,
王琦4,,,
张永梅1, 2
1.中国科学院新疆生态与地理研究所/阜康荒漠生态国家野外科学观测研究站 乌鲁木齐 830011
2.中国科学院大学 北京 100049
3.甘肃农业大学水利水电工程学院 兰州 730070
4.甘肃农业大学草业学院 兰州 730070
基金项目: 国家自然科学基金项目41461062
国家自然科学基金项目41661059

详细信息
作者简介:尹鑫卫, 主要研究方向为干旱区水文生态学。E-mail: xinweiyin@foxmail.com
通讯作者:王琦, 主要从事牧草、草坪及作物节水灌溉方面研究。E-mail: wangqigsau@gmail.com
中图分类号:S152.7

计量

文章访问数:782
HTML全文浏览量:0
PDF下载量:851
被引次数:0
出版历程

收稿日期:2017-08-14
录用日期:2017-11-28
刊出日期:2018-05-01

Sensitivity analysis and optimization of parameters for Laio soil moisture dynamic stochastic model for ridge-furrow rainwater harvesting system

YIN Xinwei1, 2,,
LI Xiaoling3,
WANG Qi4,,,
ZHANG Yongmei1, 2
1. Fukang Station for Desert Ecosystem Observation and Experiment/Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China
4. College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
Funds: This study was supported by the National Natural Science Foundation of China41461062
This study was supported by the National Natural Science Foundation of China41661059

More Information
Corresponding author:WANG Qi E-mail: wangqigsau@gmail.com


摘要
HTML全文
(6)(4)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:水文模型参数的敏感性分析、优化和验证对提高模型计算精度和效率具有重要意义。为探讨Laio土壤水分动态随机模型(Laio模型)各参数在垄沟集雨系统的敏感性,同时,确定参数优化和模型验证的最佳方案,本文结合多因素敏感性分析法以及改进单纯形法(ISM)、粒子群优化算法(PSO)和混合粒子群优化算法(HPSO),利用中国气象局定西干旱气象与生态环境试验基地2012-2013年垄沟集雨燕麦生长季降雨、径流和土壤水分等实测数据,对垄沟集雨系统Laio模型的13个参数进行敏感性分析、优化和验证。结果表明,平均降水量α和凋萎系数sw对土壤水分概率密度函数p(s)最敏感,p(s)对参数α的敏感性在低土壤含水率下更明显,对参数sw的敏感性在高土壤含水率下更明显;3种算法(ISM、PSO和HPSO)的优化参数值均能对垄沟集雨系统土壤水分概率密度函数进行较好模拟,峰值(CPV)、峰值位置(PP)和95%置信区间(CI95%)实测值与模拟值的相对误差均小于10%,CM指数均大于0.5;同时,HPSO算法优化参数的模拟效果和收敛速度均显著优于PSO算法和ISM算法,能较显著克服ISM算法和PSO算法存在的缺陷。HPSO算法可作为垄沟集雨系统土壤水分动态随机模型参数优化的待选方案。
关键词:垄沟集雨系统/
土壤水分动态/
Laio土壤水分动态随机模型/
敏感性分析/
模型参数优化
Abstract:Sensitivity analysis of parameters, calibration and validation of eco-hydrological models are essential for model evaluation and application. It is important in model application to accurately estimate the values of model parameters and to further improve model prediction capacity. Based on eco-hydrological process, the Laio soil moisture dynamics stochastic model (Laio model) was used to describe daily water balance in active soil depth of ridge-furrow rainwater harvest system during growing season to analyze the effects of the interactions among plants, soil and environment under different climatic conditions on soil water balance and plant water conditions. The performance of the Laio model varied with climatic zone due to the heterogeneity of climate, vegetation and soil characteristics. In this study, in order to establish an effective system for parameter sensitivity analysis, calibration and validation of the Laio model in a ridge-furrow rainwater harvesting system in a semi-arid area, a field experiment with a randomized complete block design was conducted during the 2012 and 2013 oat growing seasons at Dingxi Arid Meteorology and Ecological Environment Experimental Station. The experiment was designed to investigate the parameter sensitivity and to determine the optimal mode of parameter optimization of the Laio model under various mulching materials (common plastic film, biodegradable film mulch and manually compacted soil) and various ridge-furrow ratios (60 cm:30 cm, 60 cm:45 cm and 60 cm:60 cm). The methods included multi-factor sensitivity analysis, simplex method (ISM), particle swarm optimization algorithm (PSO) and hybrid particle swarm optimization algorithm (HPSO). Also continuously monitored soil moisture, precipitation runoff and daily precipitation data for 2012-2013 were used to run the model. The results indicated that:(1) mean precipitation per rainfall event (α) and soil saturation degree at wilting point (sw) were the most sensitive parameters for probabilistic density function of soil moisture[p(s)] in different experimental treatments. While the sensitivity of p(s) to α was more obvious under low soil moisture content, that to sw was more obvious under high soil moisture content. (2) There were good agreements among the results of modelling using optimized parameters of the Laio model for the three optimization algorithms (ISM, PSO and HPSO) and the observation values, which were determined from the p(s) curve. This included curve peak value (CPV), curve peak position (PP), 95% confidence interval (CI95%) and consistency measure (CM). All of these indicated that the optimized parameters of the Laio model using the ISM, PSO and HPSO methods correctly estimated p(s) of ridge-furrow rainwater harvesting. (3) The HPSO method not only improved global optimization performance, but also quickened convergence and gave robust results with good quality. It was an effective optimization method for the Laio model calibration and validation. The study improved the efficiency of model parameter calibration, upgraded the accuracy of model simulation results and provided guidance for application of the Laio model in ridge-furrow rainwater harvesting research.
Key words:Ridge-furrow rainwater harvesting system/
Soil moisture dynamic/
Laio soil moisture dynamic stochastic model/
Sensitivity analysis/
Model parameter optimization

HTML全文


图1垄沟集雨种植燕麦示意图
Figure1.Schematic diagram of ridge-furrow rainwater harvesting system for oats cultivation


下载: 全尺寸图片幻灯片


图2一致性测度(CM)指数定义示意图
Figure2.Schematic diagrams showing definition of consistency measure (CM)


下载: 全尺寸图片幻灯片


图3不同土壤含水率下不同覆盖处理的垄沟集雨系统Laio模型各参数敏感性分析
模型参数的意义见表 2
Figure3.Sensitivity analysis of parameters in Laio soil moisture dynamic stochastic model in ridge-furrow rainwater harvesting system under different mulching treatments and soil moistures
Meanings of parameters are shown in the table 2.


下载: 全尺寸图片幻灯片


图4基于SOM神经网络聚类法的垄沟集雨系统Laio模型参数敏感性分类
模型参数的意义见表 2
Figure4.Sensitivity classification of parameters in Laio soil moisture dynamic stochastic model in ridge-furrow rainwater harvesting system based on SOM neural network clustering method
Meanings of parameters are shown in the table 2.


下载: 全尺寸图片幻灯片


图5参数α(生长季平均降水量)和sw(凋萎系数)对垄沟集雨系统土壤水分概率密度函数[p(s)]的影响
Figure5.Influences of parameter α (mean rainfall depth of growing season) and parameter sw (wilting coefficient) on probability density function of soil [p(s)] in ridge-furrow rainwater harvesting system under common plastic film covering


下载: 全尺寸图片幻灯片


图6基于ISM、PSO和HPSO算法的垄沟集雨系统Laio模型参数优化效率和有效性验证
SMC:土壤含水量; NCF:正态曲线拟合; SPSO: PSO优化参数模拟曲线; SISM: ISM优化参数模拟曲线; SHPSO: HPSO优化参数模拟曲线。
Figure6.Optimization efficiency and validation of parameters in Laio soil moisture dynamic stochastic model based on ISM, PSO and HPSO algorithms in ridge-furrow rainwater harvesting system under different mulching treatments
SMC: soil moisture content; NCF: normal curve fitting; SPSO: simulating curves with PSO-optimized parameters; SISM: simulating curves with ISM-optimized; SHPSO: simulating curves with HPSO-optimized parameters.


下载: 全尺寸图片幻灯片

表1垄沟集雨种植燕麦试验设计
Table1.Experimental design for oats cultivation in ridge-furrow rainwater harvesting system
处理
Treatment
沟垄比
Furrow:ridge (cm)
垄面积
Ridge area (m2)
沟面积
Furrow area (m2)
小区面积
Plot area (m2)
垄覆盖方式
Ridge mulch style
SR 60:30 13.50 18 31.50 土壤结皮
Soil crust
60:45 20.25 18 38.25
60:60 27.00 18 45.00
BMR 60:30 13.50 18 31.50 可降解地膜覆盖
Biodegradable mulch film
60:45 20.25 18 38.25
60:60 27.00 18 45.00
CMR 60:30 13.50 18 31.50 普通地膜覆盖
Common plastic film
60:45 20.25 18 38.25
60:60 27.00 18 45.00


下载: 导出CSV
表2垄沟集雨系统Laio模型参数取值范围及其不同覆盖处理的初始值
Table2.Values ranges and initial values of parameters in Laio soil moisture dynamic stochastic model (Laio model) for ridge-furrow rainwater harvesting system
属性
Property
随机模型参数
Parameter of Laio model
单位
Unit
参数取值范围
Value range of parameter
参数初始值
Initial value of parameter
符号
Symbol
意义 Meaning UBV LBV SR CMR BMR
土壤
Soil
n 土壤孔隙度 Soil porosity m3·m-3 0 1 0.58 0.58 0.58
β 土壤孔隙大小分布参数
Soil porosity distribution parameter
/ 10.00 20.00 14.8 14.8 14.8
Zr 土壤活动层深度 Depth of rooting zone cm 140 140 140 140 140
Ks 土壤饱和导水率
Saturated hydraulic conductivity of soil
cm·d-1 10.00 30.00 19.5 19.5 19.5
sh 吸湿系数 Hygroscopic coefficient m3·m-3 0 0.10 0.026 0.026 0.026
sw 凋萎系数 Wilting coefficient m3·m-3 0.10 0.40 0.25 0.25 0.25
s* 水分胁迫开始点
Critical point of plant undergoes water stress
m3·m-3 0.40 0.70 0.56 0.56 0.56
sfc 田间持水率 Field capacity m3·m-3 0.70 1 0.72 0.72 0.72
Ew 凋萎系数对应土壤蒸发
Soil evaporation at wilting point
cm·d-1 0 0.02 0.012 0.012 0.012
作物
Crop
Δ 植物截留阈值
Interception capacity of vegetation
cm 0 0.50 0.128 0.130 0.131
Emax 日最大蒸散量
Maximum evapotranspiration
cm·d-1 0 1.00 0.610 0.570 0.560
降雨
Rainfall
α 生长季平均降水量
Mean rainfall depth of growing season
d-1 同初始值
Same as the initial value
0.594 9 0.816 6 0.767 3
λ 生长季平均降水频率
Mean rainfall frequency of growing season
d-1 0.33 0.33 0.33 0.33 0.33
表中模型参数取值范围由相关实测数据和文献资料[11, 16]获得。UBV:参数取值下限; LBV:参数取值上限。Values ranges of model parameters in the table were obtained from the relevant measured data and literatures[11, 16]. UBV: upper bound value of model parameter; LBV: lower bound value of model parameter.


下载: 导出CSV
表3基于ISM、PSO和HPSO算法的垄沟集雨系统Laio模型参数优化结果
Table3.Optimization results of parameters in Laio soil moisture dynamic stochastic model based on ISM, PSO and HPSO algorithms in ridge-furrow rainwater harvesting system under different mulching treatments
模型参数
Parameter
单位
Unit
ISM算法参数优化值
Value after optimization using ISM
PSO算法参数优化值
Value after optimization using PSO
HPSO算法参数优化值
Value after optimization using HPSO
SR CMR BMR SR CMR BMR SR CMR BMR
n m3·m-3 0.569 6 0.581 4 0.581 1 0.563 7 0.586 3 0.580 9 0.563 4 0.586 6 0.580 4
β / 14.800 3 14.801 1 14.800 8 14.208 4 13.502 5 14.028 3 14.201 2 13.548 1 14.031 5
Zr cm 140 140 140 140 140 140 140 140 140
Ks cm·d-1 19.500 4 19.501 2 19.500 7 15.542 6 17.394 4 17.572 0 15.540 7 17.345 2 17.569 9
sh m3·m-3 0.025 8 0.026 3 0.026 3 0.022 1 0.028 8 0.024 3 0.026 1 0.027 9 0.023 8
sw m3·m-3 0.249 5 0.249 0 0.249 4 0.180 1 0.206 6 0.201 7 0.130 2 0.186 6 0.181 7
s* m3·m-3 0.580 3 0.570 3 0.569 8 0.671 3 0.561 1 0.532 5 0.691 0 0.571 2 0.534 1
sfc m3·m-3 0.721 0 0.721 0 0.720 0 0.820 6 0.743 9 0.745 4 0.880 3 0.746 8 0.743 5
Ew cm·d-1 0.009 0 0.006 3 0.010 0 0.015 2 0.017 8 0.018 2 0.013 2 0.016 7 0.018 1
Δ cm 0.128 0 0.129 3 0.131 0 0.143 8 0.111 9 0.117 1 0.138 6 0.112 3 0.116 4
Emax cm·d-1 0.611 1 0.671 2 0.559 8 0.611 5 0.600 9 0.531 6 0.661 9 0.600 2 0.531 1
α d-1 0.594 9 0.816 6 0.767 3 0.594 9 0.816 6 0.767 3 0.594 9 0.816 6 0.767 3
λ d-1 0.330 0 0.330 0 0.330 0 0.330 0 0.330 0 0.330 0 0.330 0 0.330 0 0.330 0
模型参数的意义见表 2。Meanings of parameters are shown in the table 2.


下载: 导出CSV
表4基于ISM、PSO和HPSO算法的垄沟集雨系统Laio模型参数优化性能比较
Table4.Performance comparison of parameter optimization in Laio soil moisture dynamic stochastic model based on ISM, PSO and HPSO algorithms in ridge-furrow rainwater harvesting system under different mulching treatments
算法
Algorithm
SR的p(s)曲线检验指标
Consistency test indicators of SR
CMR的p(s)曲线检验指标
Consistency test indicators of CMR
BMR的p(s)曲线检验指标
Consistency test indicators of BMR
CPV PP CI95% CM CPV PP CI95% CM CPV PP CI95% CM
ISM 0.019 4 0.033 3 -0.149 3 0.519 0.006 9 -0.028 6 -0.043 4 0.830 0.011 1 0.058 8 -0.043 7 0.685
PSO 0.012 6 0.033 3 -0.087 4 0.723 0.006 8 -0.028 6 -0.049 0 0.957 0.009 3 0.000 1 -0.021 0 0.864
HPSO 0.000 1 0.000 1 -0.062 9 0.805 0.006 1 -0.028 6 -0.024 1 0.994 -0.002 4 0.000 1 -0.019 3 0.903
CPV:峰值; PP:峰值位置; CI95%: 95%置信区间; CM:一致性指数。CPV: the curve peak value; PP: the position of the peak; CI95%: the confidence interval of 95%; CM: the consistency measure.


下载: 导出CSV

参考文献(36)
[1]莫非, 周宏, 王建永, 等.田间微集雨技术研究及应用[J].农业工程学报, 2013, 29(8):1-17 https://www.researchgate.net/profile/Jianyong_Wang4/publication/259241038_Development_and_application_of_micro-field_rain-harvesting_technologies/links/55d152bd08ae502646aa5604.pdf
MO F, ZHOU H, WANG J Y, et al. Development and application of micro-field rain-harvesting technologies[J]. Transactions of the CSAE, 2013, 29(8):1-17 https://www.researchgate.net/profile/Jianyong_Wang4/publication/259241038_Development_and_application_of_micro-field_rain-harvesting_technologies/links/55d152bd08ae502646aa5604.pdf
[2]ZHOU L M, ZHANG F, LIU C A. Improved yield by harvesting water with ridges and subgrooves using buried and surface plastic mulchs in a semiarid area of China[J]. Soil and Tillage Research, 2015, 150:21-29 doi: 10.1016/j.still.2015.01.006
[3]DU Y J, LI Z Z, LI W L. Effect of different water supply regimes on growth and size hierarchy in spring wheat populations under mulched with clear plastic film[J]. Agricultural Water Management, 2006, 79(3):265-279 doi: 10.1016/j.agwat.2005.02.018
[4]JIA Y, LI F M, WANG X L. Soil quality responses to alfalfa watered with a field micro-catchment technique in the Loess Plateau of China[J]. Field Crops Research, 2006, 95(1):64-74 doi: 10.1016/j.fcr.2005.02.002
[5]李小雁.干旱地区土壤-植被-水文耦合、响应与适应机制[J].中国科学:地球科学, 2011, 41(12):1721-1730 http://www.docin.com/p-703646769.html
LI X Y. Mechanism of coupling, response and adaptation between soil, vegetation and hydrology in arid and semiarid regions[J]. Scientia Sinica Terrae, 2011, 41(12):1721-1730 http://www.docin.com/p-703646769.html
[6]PORPORATO A, FENG X, MANZONI S, et al. Ecohydrological modeling in agroecosystems:Examples and challenges[J]. Water Resources Research, 2015, 51(7):5081-5099 doi: 10.1002/2015WR017289
[7]姚淑霞, 张铜会, 赵传成.科尔沁沙地土壤水分动态分析及其概率密度函数模拟[J].水科学进展, 2013, 24(1):62-72 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_skxjz201301009
YAO S X, ZHANG T H, ZHAO C C. Analysis of soil moisture dynamics and its probability density function simulation in Horqin Sand Land[J]. Advances in Water Science, 2013, 24(1):62-72 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_skxjz201301009
[8]EAGLESON P S. Climate, soil, and vegetation:1. Introduction to water balance dynamics[J]. Water Resources Research, 1978, 14(5):705-712 doi: 10.1029/WR014i005p00705
[9]MILLY P C D. An analytic solution of the stochastic storage problem applicable to soil water[J]. Water Resources Research, 1993, 29(11):3755-3758 doi: 10.1029/93WR01934
[10]RODRIGUEZ-ITURBE I, PORPORATO A, RIDOLFI L, et al. Probabilistic modelling of water balance at a point:The role of climate, soil and vegetation[J]. Proceedings of the Royal of Society A, 1999, 455(1990):3789-3805 doi: 10.1098/rspa.1999.0477
[11]LAIO F, PORPORATO A, RIDOLFI L, et al. Plants in water-controlled ecosystems:Active role in hydrologic processes and response to water stress:Ⅱ. Probabilistic soil moisture dynamics[J]. Advances in Water Resources, 2001, 24(7):707-723 doi: 10.1016/S0309-1708(01)00005-7
[12]PORPORATO A, DALY E, RODRIGUEZ-ITURBE I. Soil water balance and ecosystem response to climate change[J]. The American Naturalist, 2004, 164(5):625-632 doi: 10.1086/424970
[13]PAN X Y, POTTER N J, XIA J, et al. Hillslope-scale probabilistic characterization of soil moisture dynamics and average water balance[J]. Hydrological Processes, 2013, 27(10):1464-1474 doi: 10.1002/hyp.9281
[14]BEN-ASHER J, WARRICK A W. Effect of variations in soil properties and precipitation on microcatchment water balance[J]. Agricultural Water Management, 1987, 12(3):177-194 doi: 10.1016/0378-3774(87)90011-4
[15]LI X Y, SHI P J, SUN Y L, et al. Influence of various in situ rainwater harvesting methods on soil moisture and growth of Tamarix ramosissima in the semiarid loess region of China[J]. Forest Ecology and Management, 2006, 233(1):143-148 doi: 10.1016/j.foreco.2006.06.013
[16]WANG Q, REN X, SONG X Y, et al. The optimum ridge-furrow ratio and suitable ridge-covering material in rainwater harvesting for oats production in semiarid regions of China[J]. Field Crops Research, 2015, 172:106-118 doi: 10.1016/j.fcr.2014.11.015
[17]任庆福. 气候变化下典型农田土壤水分随机模拟及应用[D]. 北京: 北京林业大学, 2016: 83-94 http://cdmd.cnki.com.cn/Article/CDMD-10022-1016140137.htm
REN Q F. Stochastic simulation for the typical farmland soil moisture under climate change and its application to the Shijin irrigated district in Hebei Province[D]. Beijing: Beijing Forestry University, 2016: 83-94 http://cdmd.cnki.com.cn/Article/CDMD-10022-1016140137.htm
[18]MILLER G R, BALDOCCHI D D, LAW B E, et al. An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites[J]. Advances in Water Resources, 2007, 30(5):1065-1081 doi: 10.1016/j.advwatres.2006.10.002
[19]任祥, 王琦, 张恩和, 等.覆盖材料和沟垄比对燕麦产量和水分利用效率的影响[J].中国生态农业学报, 2014, 22(8):945-954 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stnyyj201408013
REN X, WANG Q, ZHANG E H, et al. Effects of mulching materials and furrow-to-ridge ratios on oat grain/hay yield and water use efficiency under rainwater harvesting cultivation[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8):945-954 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_stnyyj201408013
[20]尹鑫卫, 李晓玲, 康燕霞, 等.基于SCS-CN模型的沟垄微型集雨系统径流预测[J].生态学杂志, 2015, 34(12):3502-3508 http://www.cqvip.com/QK/90811X/201512/666834091.html
YIN X W, LI X L, KANG Y X, et al. Prediction of runoff in ridge-furrow rainwater harvesting system based on SCS-CN model[J]. Chinese Journal of Ecology, 2015, 34(12):3502-3508 http://www.cqvip.com/QK/90811X/201512/666834091.html
[21]潘兴瑶, 夏军, 张橹.土壤水分随机模型支持下的土壤水平衡研究进展[J].资源科学, 2008, 30(3):460-467 http://www.oalib.com/paper/4412159
PAN X Y, XIA J, ZHANG L. A review of soil water balance studies based on stochastic soil moisture model[J]. Resources Science, 2008, 30(3):460-467 http://www.oalib.com/paper/4412159
[22]胡健, 吕一河.土壤水分动态随机模型研究进展[J].地理科学进展, 2015, 34(3):389-400 doi: 10.11820/dlkxjz.2015.03.014
HU J, LYU Y H. Research progress on stochastic soil moisture dynamic model[J]. Progress in Geography, 2015, 34(3):389-400 doi: 10.11820/dlkxjz.2015.03.014
[23]VANROLLEGHEM P A, MANNINA G, COSENZA A, et al. Global sensitivity analysis for urban water quality modelling:Terminology, convergence and comparison of different methods[J]. Journal of Hydrology, 2015, 522:339-352 doi: 10.1016/j.jhydrol.2014.12.056
[24]李毅, 邵明安, 王文焰, 等.土壤非饱和导水率模型中参数的敏感性分析[J].水科学进展, 2003, 14(5):593-597 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200305011
LI Y, SHAO M A, WANG W Y, et al. Sensitive analyses of parameters in unsaturated soil hydraulic conductivity model[J]. Advances in Water Science, 2003, 14(5):593-597 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200305011
[25]NELDER J A, MEAD R. A Simplex Method for function minimization[J]. The Computer Journal, 1965, 7(4):308-313 doi: 10.1093/comjnl/7.4.308
[26]刘欢培, 黄建华.改进单纯形法寻优的MATLAB实现[J].浙江工业大学学报, 2003, 31(4):377-381 http://www.cqvip.com/QK/93046A/200304/8095656.html
LIU H P, HUANG J H. Realization of improved simplex method using MATLAB[J]. Journal of Zhejiang University of Technology, 2003, 31(4):377-381 http://www.cqvip.com/QK/93046A/200304/8095656.html
[27]KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of 1995 IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948
[28]刘苏宁, 甘泓, 魏国孝.粒子群算法在新安江模型参数率定中的应用[J].水利学报, 2010, 41(5):537-544 https://www.wenkuxiazai.com/doc/df959a9e561252d381eb6e75.html
LIU S N, GAN H, WEI G X. Application of PSO algorithm to calibrate the Xin'anjiang Hydrological Model[J]. Shuili Xuebao, 2010, 41(5):537-544 https://www.wenkuxiazai.com/doc/df959a9e561252d381eb6e75.html
[29]陈俊风, 任子武, 范新南. 一种基于改进单纯形法和粒子群算法的混合优化算法[C]//中国自动化学会控制理论专业委员会. 第25届中国控制会议论文集(中册). 哈尔滨: 哈尔滨工业大学出版社, 2006: 7-11 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KZLL200608002156.htm
CHEN J F, REN Z W, FAN X N. A hybrid optimized algorithm based on improved simplex method and particle swarm optimization[C]//Technical Committee on Control Theory, Chinese Association of Automation. Proceedings of the 25th Chinese Control Conference (Middle). Harbin: Harbin Institute of Technology Press, 2006: 7-11 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KZLL200608002156.htm
[30]陆克中, 吴璞, 王汝传.基于粒子群优化算法的非线性系统模型参数估计[J].计算机技术与发展, 2008, 18(6):57-59 https://www.wenkuxiazai.com/doc/12a5176ba98271fe910ef9b6-3.html
LU K Z, WU P, WANG R C. A method of parameter estimation in a nonlinear system model based on particle swarm optimization[J]. Computer Technology and Development, 2008, 18(6):57-59 https://www.wenkuxiazai.com/doc/12a5176ba98271fe910ef9b6-3.html
[31]吴春梅.现代智能优化算法的研究综述[J].科技信息, 2012, (8):31 https://www.wenkuxiazai.com/doc/42744cbdf524ccbff1218482-2.html
WU C M. A review of modern intelligent optimized algorithm[J]. Science & Technology Information, 2012, (8):31 https://www.wenkuxiazai.com/doc/42744cbdf524ccbff1218482-2.html
[32]ZHU A X. A personal construct-based knowledge acquisition process for natural resource mapping[J]. International Journal of Geographical Information Science, 1999, 13(2):119-141 doi: 10.1080/136588199241382
[33]任小龙, 贾志宽, 丁瑞霞, 等.我国旱区作物根域微集水种植技术研究进展及展望[J].干旱地区农业研究, 2010, 28(3):83-89 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ghdqnyyj201003015
REN X L, JIA Z K, DING R X, et al. Progress and prospect of research on root-zone water micro-collecting farming for crop in arid region of China[J]. Agricultural Research in the Arid Areas, 2010, 28(3):83-89 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ghdqnyyj201003015
[34]宋秉海.旱地地膜玉米"贫水富集"种植模式研究[J].中国生态农业学报, 2006, 14(3):93-95 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2006327&flag=1
SONG B H. Study on planting models of rainwater harvesting technique of mulched maize in arid areas[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3):93-95 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2006327&flag=1
[35]江燕, 刘昌明, 胡铁松, 等.新安江模型参数优选的改进粒子群算法[J].水利学报, 2007, 38(10):1200-1206 doi: 10.3321/j.issn:0559-9350.2007.10.008
JIANG Y, LIU C M, HU T S, et al. Improved particle swarm optimization for parameter calibration of Xin'anjiang model[J]. Journal of Hydraulic Engineering, 2007, 38(10):1200-1206 doi: 10.3321/j.issn:0559-9350.2007.10.008
[36]俞欢军, 许宁, 张丽平, 等.混合粒子群优化算法研究[J].信息与控制, 2005, 34(4):500-504 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xxyk200504023&dbname=CJFD&dbcode=CJFQ
YU H J, XU N, ZHANG L P, et al. Research on hybrid particle swarm optimization[J]. Information and Control, 2005, 34(4):500-504 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xxyk200504023&dbname=CJFD&dbcode=CJFQ

相关话题/土壤 优化 系统 图片 概率