刘梦云1, 2,,,
刘丽雯1, 2,
赵国庆1, 2,
张杰1, 2,
张萌萌1, 2,
李笑然1, 2
1.农业部西北植物营养与农业环境重点实验室/西北农林科技大学资源环境学院 杨凌 712100
2.农业部农业环境重点实验室 北京 100081
基金项目: 中国科学院重点部署项目KFZD-SW-30
详细信息
作者简介:刘欢, 研究方向为资源环境监测与评价。E-mail:1220992824@qq.com
通讯作者:刘梦云, 研究方向为土地资源利用及地理信息系统研究。E-mail:lmy471993@qq.com
中图分类号:S152.6计量
文章访问数:781
HTML全文浏览量:1
PDF下载量:574
被引次数:0
出版历程
收稿日期:2017-12-03
录用日期:2018-02-18
刊出日期:2018-07-01
CH4 flux characteristics and influencing factors in six land use patterns in the Loess Plateau
LIU Huan1, 2,,LIU Mengyun1, 2,,,
LIU Liwen1, 2,
ZHAO Guoqing1, 2,
ZHANG Jie1, 2,
ZHANG Mengmeng1, 2,
LI Xiaoran1, 2
1. Northwest Key Laboratory of Plant Nutrition and Agro-Environment, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
2. Key Laboratory of Agricultural Environment, Ministry of Agriculture, Beijing 100081, China
Funds: the Key Project of Chinese Academy of SciencesKFZD-SW-30
More Information
Corresponding author:LIU Mengyun, E-mail:lmy471993@qq.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:土地利用转变会导致土壤微环境及生理生化过程发生改变,继而影响土壤温室气体的产生和排放。目前关于土地利用转变对温室气体通量的研究主要集中于CO2,而对CH4研究甚少。本文以黄土台塬为研究区,重点分析不同土地利用方式的土壤CH4通量特征与其影响因素的关系,并明确其关键影响因子,为预测整个黄土台塬土地利用方式转变对温室效应的贡献提供基础数据。以陕西省永寿县马莲滩林场为研究对象,于2015年4月-2016年3月,采用静态箱-气相色谱法,对耕地、天然草地、灌木林地、乔灌混交林地、乔木林地和果园的CH4通量特征进行研究,并分析土壤CH4通量与土壤温度、地表温度、含水量及全氮的关系。不同土地利用方式土壤CH4平均通量差异显著(P < 0.05),但表现相似的季节变化,呈现夏秋季高于冬春季特征。林地、园地、耕地土壤均为CH4吸收汇,其吸收能力(平均值)为乔灌混交林(51.24 μg·m-2·h-1)>乔木林(44.80 μg·m-2·h-1)>灌木林(31.52 μg·m-2·h-1)>草地(25.89 μg·m-2·h-1)>果园(18.97 μg·m-2·h-1)>耕地(14.89 μg·m-2·h-1)。不同土地利用方式土壤CH4吸收与土壤温度、全氮和地表大气温度均呈正相关;与土壤含水量呈负相关。其土壤表层(0~20 cm)温度是6种土地利用方式土壤CH4吸收的主要影响因素。总之,自然条件下的土壤CH4吸收率明显高于农业土壤CH4吸收率,耕地转变为林地后土壤的CH4吸收能力增强,土壤对减缓温室效应的贡献增大。
关键词:黄土台塬/
土地利用方式/
土壤CH4通量/
CH4汇/
耕地/
林地
Abstract:Change in land use can influence soil micro-environment along with microbial, physiological and biochemical processes, significantly affecting the generation and emission of greenhouse gases. At present, researches on greenhouse gas flux from land use transformation have mainly focused on carbon dioxide (CO2), largely neglecting methane (CH4) generation and emission. This study determined the characteristics of soil CH4 fluxes and the influencing factors, also highlighting the critical factors of different land use patterns (cultivated land, natural grassland, shrub land, arbor and shrub land, arbor land and orchard). The study laid the basis for predicting the contribution of land-use-driven transformation to greenhouse effects in the Loess Plateau region. The study was conducted in Malian Forest Farm of Yongshou County, Shaanxi Province. In the study, soil CH4 fluxes in different land use types were measured during the period from April 2015 to March 2016 using static chamber chromatograph techniques. The related environmental factors were recorded, including soil temperature, soil moisture, surface temperature and soil total nitrogen content. The results indicated that soils were CH4 sink under different land use types. There were significant differences (P < 0.05) in CH4 uptake fluxes in different land use types. Soil CH4 fluxes in six land use types had similar seasonal variations, higher in summer and autumn than in winter and spring. Average soil CH4 uptake was in the order of arbor and shrub land (51.24 μg·m-2·h-1) > arbor land (44.80 μg·m-2·h-1) > shrub land (31.52 μg·m-2·h-1) > natural grassland (25.89 μg·m-2·h-1) > orchard (18.97 μg·m-2·h-1) > cultivated land (14.89 μg·m-2·h-1). Soil CH4 uptake fluxes in different land use types were positively correlated with soil temperature, surface temperature and total nitrogen, and negatively correlated with soil moisture. Soil temperature at the 0-20 cm soil layer was the main layer of production of soil CH4 fluxes in six land use types. The uptake CH4 under natural soil conditions was significantly higher than that in agricultural soils. The transformation of cultivated land to forest land increased CH4 uptake, enhancing the mitigation of greenhouse effect of soil.
Key words:Loess Plateau/
Land use type/
Soil CH4 flux/
CH4 sink/
Cultivated land/
Forest land
HTML全文
图1研究区试验期间(2015年4月-2016年3月)气温和降雨量的季节性变化
Figure1.Seasonal variations of air temperature and rainfall during the experiment period (from April 2015 to March 2016) in the study area
下载: 全尺寸图片幻灯片
图2不同土地利用方式下土壤CH4吸收的季节性变化
Figure2.Seasonal variations of soil CH4 fluxes of different land use types
下载: 全尺寸图片幻灯片
图3土壤CH4吸收与不同土层土壤全氮含量的相关性
Figure3.Correlation between soil CH4 flux and total nitrogen content in different soil layers
下载: 全尺寸图片幻灯片
表1不同土地利用方式采样点的基本信息
Table1.Basic information of sample plots in different land use types
土地利用方式 Land use type | 样点代表数 Sample number | 植被类型 Vegetation type | 平均海拔 Altitude (m) | 地理位置 Geographical position |
耕地 Cultivated land | 2 | 冬小麦Triticum aestivum | 1 240 | 108°05′24.2″E、34°48′22.0″N |
冬小麦T. aestivum | 1 267 | 108°05′36.4″E、34°48′42.7″N | ||
天然草地 Natural grassland | 2 | 白羊草-茭蒿群落 Community of Bothriochloa ischaemum and Artemisia lavandulaefolia | 1 237 | 108°05′22.6″E、34°48′20.8″N |
白羊草-茭蒿-铁杆蒿群落 Community of B. ischaemum, A. lavandulaefolia, and Artemisia gmelini | 1 265 | 108°05′39.3″E、34°48′31.6″N | ||
灌木林地 Shrub land | 3 | 过熟沙棘林Postmature forest of Hippophae rhamnoides | 1 252 | 108°05′29″E、34°48′21.0″N |
纯沙棘(< 10年) H. rhamnoides forest (younger than 10 years) | 1 258 | 108°05′38.6″E、34°48′31.4″N | ||
过熟沙棘林Postmature forest of H. rhamnoides | 1 246 | 108°05′25.0″E、34°48′32.2″N | ||
乔灌混交林地Arbor and shrub land | 3 | 油松、沙棘、刺槐混交林 Mixed forest of Pinus tabuliformis, H. rhamnoides and Robinia pseudoacacia | 1 248 | 108°05′19.5″E、34°47′19.3″N |
刺槐、沙棘混交林刺槐 Mixed forest of R. pseudoacacia and H. rhamnoides | 1 258 | 108°05′25.4″E、34°47′58.4″N | ||
白榆、油松、沙棘混交林 Mixed forest of Ulmus pumila, P. tabuliformis and H. rhamnoides | 1 267 | 108°05′24.5″E、34°48′20.3″N | ||
乔木林地 Arbor land | 4 | 侧柏纯林Platycladus orientalis forest | 1 218 | 108°05′35.0″E、34°48′11.1″N |
刺槐纯林R. pseudoacacia forest | 1 225 | 108°05′26.9″E、34°47′59.5″N | ||
油松纯林P. tabuliformis forest | 1 250 | 108°05′38.2″E、34°48′32.6″N | ||
油松纯林P. tabuliformis forest | 1 254 | 108°05′23.0″E、34°48′20.8″N | ||
果园 Orchard | 3 | 核桃园Juglans regia garden | 1 222 | 108°05′48.0″E、34°47′59.5″N |
核桃园J. regia garden | 1 222 | 108°05′48.0″E、34°47′59.5″N | ||
核桃园J. regia garden | 1 222 | 108°05′48.0″E、34°47′59.5″N |
下载: 导出CSV
表2不同土地利用类型样地不同土层土壤基本性质
Table2.Basic properties of sample plots of different soil layers in different land use types
土地利用方式 Land use type | 有机碳Total organic carbon (g·kg-1) | 全氮Total nitrogen (g·kg-1) | 容重Bulk density (g·cm-3) | |||||
0~5 cm | 5~20 cm | 0~5 cm | 5~20 cm | 0~5 cm | 5~20 cm | |||
耕地Cultivated land | 9.040±0.010 | 8.790±1.120 | 0.926±0.163 | 0.830±0.160 | 1.300±0.035 | 1.252±0.045 | ||
天然草地Natural grassland | 34.480±3.760 | 21.850±6.570 | 2.495±0.340 | 1.690±0.510 | 1.170±0.026 | 1.220±0.056 | ||
灌木林地Shrub land | 24.650±0.780 | 13.550±3.270 | 2.078±0.069 | 1.517±0.460 | 1.180±0.038 | 1.230±0.064 | ||
乔灌混交林地Arbor and shrub land | 24.030±6.430 | 10.610±1.270 | 1.830±0.377 | 0.765±0.410 | 1.201±0.054 | 1.183±0.032 | ||
乔木林地Arbor land | 26.540±2.380 | 15.17±6.520 | 1.864±0.290 | 1.210±0.560 | 1.230±0.080 | 1.202±0.048 | ||
果园Orchard | 9.390±0.139 | 8.318±0.237 | 1.003±0.199 | 0.770±0.030 | 1.291±0.023 | 1.261±0.067 |
下载: 导出CSV
表3不同土地利用方式下土壤CH4通量
Table3.Soil CH4 fluxes of different land use types
土地利用方式 Land use type | 变化范围 Range of variation (μg·m-2·h-1) | 平均通量 Average flux (μg·m-2·h-1) | 年通量 Annual cumulative flux (kg·hm-2) | 变异系数 Coefficient of variation (%) |
耕地Cultivated land | -4.30~-32.30 | -14.89±8.76e | -1.30 | 58.83 |
天然草地Natural grassland | -12.77~-49.93 | -25.89±12.52cd | -2.26 | 48.36 |
灌木林地Shrub land | -14.63~-63.52 | -31.52±15.89c | -2.76 | 50.41 |
乔灌混交林地Arbor and shrub land | -27.95~-69.14 | -51.24±12.81a | -4.48 | 25.00 |
乔木林地Arbor land | -23.60~-65.18 | -44.80±12.03ab | -3.92 | 26.85 |
果园Orchard | -4.50~-31.17 | -18.97±8.95de | -1.66 | 47.18 |
同列不同小写字母表示显著性差异(P < 0.05)。Different lowercase letters in the same column mean significant differences (P < 0.05). |
下载: 导出CSV
表4不同土地利用方式下土壤CH4吸收(Y)与5 cm和20 cm土壤温度(T)的关系
Table4.Correlation between soil CH4 flux (Y) and soil temperature (T) at 5 cm and 20 cm in different land use types
土地利用类型 Land use type | 样本量 Sample number | 5 cm土温Soil temperature at 5 cm | 20 cm土温Soil temperature at 20 cm | |||
相关方程 Correlated equation | R2 | 相关方程 Correlated equation | R2 | |||
耕地Cultivated land | 72 | Y=1.831+4.889lnT | 0.322 | Y=12.714+4.928lnT | 0.294 | |
天然草地Natural grassland | 72 | Y=-3.020+10.257lnT | 0.314 | Y=13.597+5.291lnT | 0.262 | |
灌木林地Shrub land | 108 | Y=-16.556+17.155lnT | 0.373* | Y=14.005+7.650lnT | 0.269 | |
乔灌混交林地Arbor and shrub land | 108 | Y=5.575+17.078lnT | 0.838** | Y=31.088+9.080lnT | 0.703** | |
乔木林地Arbor land | 144 | Y=-1.144+16.941lnT | 0.687** | Y=21.878+9.781lnT | 0.574** | |
果园Orchard | 108 | Y=-6.114+9.163lnT | 0.640** | Y=-0.232+7.650lnT | 0.558** | |
**表示0.01水平极显著相关(R≥0.683 5), *表示0.05水平显著相关(R≥0.552 9)。** indicates significant relation at 0.01 level (R ≥ 0.683 5); * indicates significant correlation at 0.05 level (R ≥ 0.552 9). |
下载: 导出CSV
表5不同土地利用方式下的土壤CH4吸收(Y)与5 cm和20 cm土壤含水量(W5、W20)的关系
Table5.Correlation between soil CH4 flux (Y) and soil moisture at 5 cm (W5) and 20 cm (W20) soil layers in different land use types
土地利用方式 Land use type | 样本量 Sample number | 5 cm含水量Soil water content at 5 cm | 20 cm含水量Soil water content at 20 cm | |||
相关方程 Correlated equation | R2 | 相关方程 Correlated equation | R2 | |||
耕地Cultivated land | 72 | Y=0.233W5+10.794 | 0.025 | Y=-0.386W20+22.426 | 0.023 | |
天然草地Natural grassland | 72 | Y=-0.440W5+38.281 | 0.166 | Y=-0.903W20+46.835 | 0.213 | |
灌木林地Shrub land | 108 | Y=-0.693W5+49.605 | 0.170 | Y=-0.644W20+45.529 | 0.075 | |
乔灌混交林地Arbor and shrub land | 108 | Y=-1.015W5+73.536 | 0.318* | Y=-1.894W20+88.273 | 0.436* | |
乔木林地Arbor land | 144 | Y=-0.965W5+66.869 | 0.276 | Y=-2.071W20+84.118 | 0.392* | |
果园Orchard | 108 | Y=0.136W5+16.604 | 0.009 | Y=0.302W20+13.083 | 0.046 | |
*表示0.05水平显著(R≥0.552 9)。* indicates significant correlation at 0.05 level (R ≥ 0.552 9). |
下载: 导出CSV
表6不同土地利用方式下的土壤CH4吸收(Y)与地表温度(t)的关系
Table6.Correlation between soil CH4 flux (Y) and surface soil temperature (t) in different land use types
土地利用方式Land use type | 相关方程Correlated equation | R2 |
耕地Cultivated land | Y=0.315t+7.396 | 0.200 |
天然草地Natural grassland | Y=0.506t+13.900 | 0.289 |
灌木林地Shrub land | Y=0.527t+17.724 | 0.153 |
乔灌混交林地Arbor and shrub land | Y=0.991t+30.896 | 0.645** |
乔木林地Arbor land | Y=0.706t+28.967 | 0.461* |
果园Orchard | Y=0.443t+8.925 | 0.413 |
**表示0.01水平极显著相关(R≥0.683 5), *表示0.05水平显著相关(R≥0.552 9)。** indicates significant relation at 0.01 level (R ≥ 0.683 5);* indicates significant correlation at 0.05 level (R ≥ 0.552 9). |
下载: 导出CSV
表76种土地利用方式下的土壤CH4通量与环境因子的逐步回归方程
Table7.Regression equations between soil CH4 flux and environmental factors under different land use types
土地利用方式Land use type | 回归方程Regression equation | F | 显著性Sig. | R2 |
耕地Cultivated land | Y=-71.683+3.162W20+1.580T20 | 7.321 | 0.013 | 0.619 |
天然草地Natural grassland | Y=13.131+0.930T5 | 5.375 | 0.043 | 0.350 |
灌木林地Shrub land | Y=8.314+1.247T5 | 6.628 | 0.028 | 0.399 |
乔灌混交林地Arbor and shrub land | Y=26.365+1.453T5 | 46.249 | 0.000 | 0.822 |
乔木林地Arbor land | Y=24.834+1.481T20 | 24.307 | 0.001 | 0.709 |
果园Orchard | Y=-7.350+0.737T20 | 8.368 | 0.016 | 0.523 |
T5、T20、W20分别表示5 cm、20 cm土壤温度和20 cm土壤水分。T5, T20 and W20 are soil temperature at 5 cm and 20 cm, and soil moisture at 20 cm. |
下载: 导出CSV
参考文献
[1] | IPCC. Climate Change 2007: The Physical Science Basis[M]. Cambridge, UK: Cambridge University Press, 2007 |
[2] | 翟洋洋, 程云湘, 常生华, 等.干旱地区农田生态系统土壤温室气体排放机制[J].中国农学通报, 2015, 31(9): 231-236 http://www.cqvip.com/QK/91831X/201509/664288090.html ZHAI Y Y, CHENG Y X, CHANG S H, et al. Mechanism of greenhouse gas emission from agro-ecosystem soil in arid regions[J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 231-236 http://www.cqvip.com/QK/91831X/201509/664288090.html |
[3] | IPCC. Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007: 23-24 |
[4] | BORKEN W, DAVIDSON E A, SAVAGE K, et al. Effect of summer through fall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil[J]. Soil Biology and Biochemistry, 2006, 38(6): 1388-1395 doi: 10.1016/j.soilbio.2005.10.011 |
[5] | 张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4): 966-975 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110441&flag=1 ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110441&flag=1 |
[6] | 孙向阳.北京低山区森林土壤中CH4排放通量的研究[J].土壤与环境, 2000, 9(3): 173-176 http://www.adearth.ac.cn/article/2015/1001-8166-30-2-196.html SUN X Y. CH4 emission flux of forest soils in lower mountain area, Beijing[J]. Soil and Environmental Sciences, 2000, 9(3): 173-176 http://www.adearth.ac.cn/article/2015/1001-8166-30-2-196.html |
[7] | 刘惠, 赵平, 林永标, 等.华南丘陵区2种土地利用方式下地表CH4和N2O通量研究[J].热带亚热带植物学报, 2008, 16(4): 304-314 http://www.adearth.ac.cn/article/2015/1001-8166-30-2-196.html LIU H, ZHAO P, LIN Y B, et al. CH4 and N2O fluxes from soil surface of 2 land use in a hilly area of South China[J]. Journal of Tropical and Subtropical Botany, 2008, 16(4): 304-314 http://www.adearth.ac.cn/article/2015/1001-8166-30-2-196.html |
[8] | 宋利娜, 张玉铭, 胡春胜, 等.华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应[J].中国生态农业学报, 2013, 21(3): 297-307 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013305&flag=1 SONG L N, ZHANG Y M, HU C S, et al. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 297-307 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013305&flag=1 |
[9] | 梁晓, 方飞平, 彭义文.关于天然草地土壤对CH4吸收的研究[J].北方环境, 2011, 23(3): 36-38 LIANG X, FANG F P, PENG Y W. On CH4 absorption of soil properties of different reclamation years[J]. Northern Environment, 2011, 23(3): 36-38 |
[10] | 周小刚, 郭胜利, 车升国, 等.黄土高原刺槐人工林地表凋落物对土壤呼吸的贡献[J].生态学报, 2012, 32(7): 2150-2157 https://www.wenkuxiazai.com/doc/1e68f00c84868762caaed593.html ZHOU X G, GUO S L, CHE S G, et al. Aboveground litter contribution to soil respiration in a black locust plantation in the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(7): 2150-2157 https://www.wenkuxiazai.com/doc/1e68f00c84868762caaed593.html |
[11] | 吴健利, 刘梦云, 赵国庆, 等.黄土台塬土地利用方式对土壤有机碳矿化及温室气体排放的影响[J].农业环境科学学报, 2016, 35(5): 1006-1015 doi: 10.11654/jaes.2016.05.027 WU J L, LIU M Y, ZHAO G Q, et al. Effects of land-use types on soil organic carbon mineralization and greenhouse gas emissions in Loess tableland[J]. Journal of Agro-Environment Science, 2016, 35(5): 1006-1015 doi: 10.11654/jaes.2016.05.027 |
[12] | 刘丽雯, 刘梦云, 吴健利, 等.黄土台塬不同土地利用方式下土壤呼吸季节性变化及影响因素[J].环境科学研究, 2016, 29(12): 1819-1828 http://plantnutrifert.org/CN/abstract/abstract2562.shtml LIU L W, LIU M Y, WU J L, et al. Seasonal variation of soil respiration and affecting factors under different land use types in the tablelands of the Loess Plateau[J]. Research of Environmental Sciences, 2016, 29(12): 1819-1828 http://plantnutrifert.org/CN/abstract/abstract2562.shtml |
[13] | SHRESTHA R K, LAL R, RIMAL B. Soil carbon fluxes and balances and soil properties of organically amended no-till corn production systems[J]. Geoderma, 2013, 197/198: 177-185 doi: 10.1016/j.geoderma.2013.01.005 |
[14] | 陈匆琼, 杨智杰, 谢锦升, 等.中亚热带米槠天然林土壤甲烷吸收速率季节变化[J].应用生态学报, 2012, 23(1): 17-22 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201409010.htm CHEN C Q, YANG Z J, XIE J S, et al. Seasonal variations of soil CH4 uptake rate in Castanopsis carlesii forest in mid-subtropical China[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 17-22 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201409010.htm |
[15] | 李新华, 朱振林, 董红云, 等.秸秆不同还田模式对玉米田温室气体排放和碳固定的影响[J].农业环境科学学报, 2015, 34(11): 2228-2235 doi: 10.11654/jaes.2015.11.027 LI X H, ZHU Z L, DONG H Y, et al. Effects of different return modes of wheat straws on greenhouse gas emissions and carbon sequestration of maize fields[J]. Journal of Agro-Environment Science, 2015, 34(11): 2228-2235 doi: 10.11654/jaes.2015.11.027 |
[16] | 刘硕, 李玉娥, 孙晓涵, 等.温度和土壤含水量对温带森林土壤温室气体排放的影响[J].生态环境学报, 2013, 22(7): 1093-1098 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201307001 LIU S, LI Y E, SUN X H, et al. Effects of temperature and soil moisture on greenhouse gases emission of temperate forest soil[J]. Ecology and Environment Sciences, 2013, 22(7): 1093-1098 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201307001 |
[17] | 党旭升, 程淑兰, 方华军, 等.温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系[J].生态学报, 2015, 35(19): 6530-6540 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201519031.htm DANG X S, CHENG S L, FANG H J, et al. The controlling factors and coupling of soil CO2, CH4 and N2O fluxes in a temperate needle-broadleaved mixed forest[J]. Acta Ecologica Sinica, 2015, 35(19): 6530-6540 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201519031.htm |
[18] | 丁维新, 蔡祖聪.土壤甲烷氧化菌及水分状况对其活性的影响[J].中国生态农业学报, 2003, 11(1): 94-97 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2003128&flag=1 DING W X, CAI Z C. Mechanism of methane oxidation by methanotrophs and effect of soil moisture content on their activity[J]. Chinese Journal of Eco-Agriculture, 2003, 11(1): 94-97 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2003128&flag=1 |
[19] | 匡艳华, 张秋良, 弥宏卓, 等.华北落叶松人工林土壤CO2和CH4通量的时间动态变化[J].内蒙古林业科技, 2013, 39(3): 32-36 http://www.adearth.ac.cn/article/2015/1001-8166-30-2-196.html KUANG Y H, ZHANG Q L, MI H Z, et al. Temporal variation of CO2 and CH4 fluxes in Larix principis-rupprechtii Plantation[J]. Journal of Inner Mongolia Forestry Science and Technology, 2013, 39(3): 32-36 http://www.adearth.ac.cn/article/2015/1001-8166-30-2-196.html |
[20] | GOULDING K W T, WILLISON T W, WEBSTER C P, et al. Methane fluxes in aerobic soils[J]. Environmental Monitoring and Assessment, 1996, 42(1/2): 175-187 |
[21] | STEUDLER P A, MELILLO J M, FEIGL B J, et al. Consequence of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon Basin[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D13): 18547-18554 doi: 10.1029/96JD01551 |
[22] | DOBBIE K E, SMITH K A, PRIEME A, et al. Effect of land use on the rate of methane uptake by surface soils in Northern Europe[J]. Atmospheric Environment, 1996, 30(7): 1005-1011 doi: 10.1016/1352-2310(95)00416-5 |
[23] | 齐玉春, 董云社, 章申.农业微环境对土壤温室气体排放的影响[J].生态农业研究, 2000, 8(1): 45-48 http://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201110058.htm QI Y C, DONG Y S, ZHANG S. Influence of agricultural micro-environment factors on greenhouse gases emission from the soil[J]. Eco-Agriculture Research, 2000, 8(1): 45-48 http://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201110058.htm |
[24] | PETERJOHN W T, MELILLO J M, STEUDLER P A, et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures[J]. Ecological Applications, 1994, 4(3): 617-625 doi: 10.2307/1941962 |
[25] | 董云社, 彭公炳, 李俊.温带森林土壤排放CO2、CH4、N2O时空特征[J].地理学报, 1996, 51(S1): 120-128 https://image.hanspub.org/xml/22096.xml DONG Y S, PENG G B, LI J. Seasonal variations of CO2, CH4 and N2O fluxes from temperate forest soil[J]. Acta Geographica Sinica, 1996, 51(S1): 120-128 https://image.hanspub.org/xml/22096.xml |
[26] | LIU H, ZHAO P, LU P, et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China[J]. Agriculture, Ecosystems & Environment, 2008, 124(1/2): 125-135 |
[27] | IQBAL J, LIN S, HU R G, et al. Temporal variability of soil-atmospheric CO2 and CH4 fluxes from different land uses in mid-subtropical China[J]. Atmospheric Environment, 2009, 43(37): 5865-5875 doi: 10.1016/j.atmosenv.2009.08.025 |
[28] | NESBIT S P, BREITENBECK G A. A laboratory study of factors influencing methane uptake by soils[J]. Agriculture, Ecosystems & Environment, 1992, 41(1): 39-54 |
[29] | 孙海龙, 张彦东, 吴世义.东北温带次生林和落叶松人工林土壤CH4吸收和N2O排放通量[J].生态学报, 2013, 33(17): 5320-5328 SUN H L, ZHANG Y D, WU S Y. Methane and nitrous oxide fluxes in temperate secondary forest and larch plantation in Northeastern China[J]. Acta Ecologica Sinica, 2013, 33(17): 5320-5328 |
[30] | TORN M S, HARTE J. Methane consumption by montane soils: Implications for positive and negative feedback with climatic change[J]. Biogeochemistry, 1996, 32(1): 53-67 |
[31] | CASTRO M S, STEUDLER P A, MELILLO J M, et al. Factors controlling atmospheric methane consumption by temperate forest soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 1-10 doi: 10.1029/94GB02651 |
[32] | SINGH J S, SINGH S, RAGHUBANSHI A S, et al. Effect of soil nitrogen, carbon and moisture on methane uptake by dry tropical forest soils[J]. Plant and Soil, 1997, 196(1): 115-121 doi: 10.1023/A:1004233208325 |
[33] | 耿远波, 章申, 董云社, 等.草原土壤的碳氮含量及其与温室气体通量的相关性[J].地理学报, 2001, 56(1): 44-53 doi: 10.11821/xb200101006 GENG Y B, ZHANG S, DONG Y S, et al. The content of soil organic carbon and total nitrogen and correlativity between their content and fluxes of CO2, N2O and CH4 in Xilin River basin steppe[J]. Acta Geographica Sinica, 2001, 56(1): 44-53 doi: 10.11821/xb200101006 |
[34] | HüTSCH B W. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH[J]. Biology and Fertility of Soils, 1998, 28(1): 27-35 doi: 10.1007/s003740050459 |
[35] | 李俊, 同小娟, 于强.不饱和土壤CH4的吸收与氧化[J].生态学报, 2005, 25(1): 141-147 LI J, TONG X J, YU Q. Methane uptake and oxidation by unsaturated soil[J]. Acta Ecologica Sinica, 2005, 25(1): 141-147 |