删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

免耕对土壤剖面孔隙分布特征的影响

本站小编 Free考研考试/2022-01-01

杨永辉1, 2,,,
武继承1, 2,
毛永萍3,
何方1, 2,
张洁梅1, 2,
高翠民1, 2,
潘晓莹1, 2,
王越1, 2
1.河南省农业科学院植物营养与资源环境研究所 郑州 450002
2.农业部作物高效用水原阳科学观测站 原阳 453514
3.郑州市金水区总医院 郑州 450001
基金项目: 国家重点研发计划项目2017YFD0301102
国家自然科学基金项目U1404404
河南省农业科学院优秀青年科技基金项目2016YQ12
河南省重点研发与推广专项182102110060

详细信息
作者简介:杨永辉, 主要研究方向为土壤物理与节水农业。E-mail:yangyongh@mails.gucas.ac.cn
中图分类号:S152.5

计量

文章访问数:777
HTML全文浏览量:2
PDF下载量:741
被引次数:0
出版历程

收稿日期:2017-11-27
录用日期:2018-02-22
刊出日期:2018-07-01

Effect of no-tillage on pore distribution in soil profile

YANG Yonghui1, 2,,,
WU Jicheng1, 2,
MAO Yongping3,
HE Fang1, 2,
ZHANG Jiemei1, 2,
GAO Cuimin1, 2,
PAN Xiaoying1, 2,
WANG Yue1, 2
1. Institute of Plant Nutrition & Resource Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
2. Yuanyang Experimental Station of Crop Water Use, Ministry of Agriculture, Yuanyang 453514, China
3. Jinshui District General Hospital, Zhengzhou 450001, China
Funds: the National Key R&D Project of China2017YFD0301102
the National Natural Science Foundation of ChinaU1404404
the Excellent Youth Science and Technology Fund of Henan Academy of Agricultural Sciences2016YQ12
Henan Province Key R&D and Extension Project182102110060

More Information
Corresponding author:YANG Yonghui, E-mail: yangyongh@mails.gucas.ac.cn


摘要
HTML全文
(6)(1)
参考文献(53)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:探明长期免耕措施对土壤孔隙特征、土壤结构及土壤水分参数等影响,可为阐明在小麦、玉米轮作过程中,长期进行免耕对土壤剖面物理特征的改善及其作用机理提供科学依据。采用CT扫描法定量分析了免耕和常规耕作0~100 cm土层土壤孔隙(80~1 000 μm、 > 1 000 μm、 > 80 μm)的数目、孔隙度及孔隙在土壤剖面上的分布特征,同时采用常规方法测定了土壤大团聚体、土壤容重、有效水含量及饱和导水率等。结果表明:长期免耕不仅提高了土壤 > 1 000 μm、80~1 000 μm、 > 80 μm孔隙数,且其孔隙度也相应提高,较常规耕作孔隙数分别提高55.3%、58.2%、57.9%,孔隙度分别提高97.4%、39.4%、72.6%。同时土壤孔隙形态也得到了改善,孔隙成圆率提高。对不同土层而言,免耕更利于提高0~25 cm土层80~1 000 μm和 > 80 μm孔隙数以及0~45 cm土层 > 1 000 μm孔隙数,且显著提高了0~20 cm和25~40 cm土层 > 1 000 μm、 > 80 μm及0~20 cm土层80~1 000 μm的土壤孔隙度。说明长期免耕对土壤剖面孔隙的分布产生一定影响。此外,免耕提高了0~25 cm土层土壤的有效水含量、0~55 cm土层饱和导水率和 > 0.25 mm水稳性团聚体含量,降低了土壤容重,其作用深度在55 cm以上土层。通过CT扫描测得的土壤孔隙参数与常规方法测定的土壤物理参数之间存在极好的相关性,说明可从微观土壤孔隙特征来表征宏观的土壤物理性质。总之,长期免耕有利于改善土壤结构和土壤孔隙状况,提高土壤的渗透能力及土壤水分的有效性,促进作物的生长。
关键词:免耕/
小麦玉米轮作/
CT扫描/
土壤结构/
土壤孔隙/
土壤团聚体/
水分参数
Abstract:Soil pore structure plays an important role in soil water movement in both topsoil and subsoil, and it is closely related to soil surface runoff and permeability. CT scanning has accurately revealed the number, size and location of macro-pores (> 1 mm in diameter). Long-term tillage can greatly influence the physical properties of soil profile, while non-tillage can improve soil structure, increase soil fertility and soil porosity, and thereby decrease soil bulk density and promote crop growth. Studies of non-tillage effects on soil pore have mostly been focused on the ploughed layer. Further study is needed to determine the impact of long-term non-tillage on soil pore volume, size and distribution along soil profile by using the CT scanning method and combining with soil structure, soil bulk density and soil moisture parameters investigation by using conventional method, especially for the deep soil (0-100 cm) layer. Thus in order to determine the effect of long-term no-tillage measure on pore characteristics, structure and water parameters of soil, CT scanning was used to quantitatively analyze soil pore volume (80-1 000 μm, > 1 000 μm and > 80 μm), porosity, and pore distribution of the 0-100 cm soil profile under long-term no-tillage and conventional tillage conditions in this study. A conventional method was adopted to determine macro-aggregate amount, bulk density, field water capacity, effective water content and saturated hydraulic conductivity. The results showed that no-tillage treatment increased numbers and porosities of soil pores > 1 000 μm, 80-1 000 μm and > 80 μm. The numbers increased respectively by 55.3%, 58.2% and 57.9%, while porosities increased by 97.4%, 39.4% and 72.6% of > 1 000 μm, 80-1 000 μm and > 80 μm pores under non-tillage treatment compared with the conventional tillage treatment. It was also found that pore shape and pore circularity improved under non-tillage treatment. For different soil layers, no-tillage treatment increased numbers of 80-1 000 μm pores and > 80 μm pores in the 0-25 cm and 80-100 cm soil layers, and number of > 1 000 μm soil pore in the 0-45 cm soil layer. Furthermore, there were significantly increases in porosities > 1 000 μm and > 80 μm soil pores in the 0-20 cm and 25-40 cm soil layers, and porosity of 80-1 000 μm soil pores in the 0-20 cm soil layer under non-tillage treatment compared with those under conventional tillage treatment. In addition, long-term no-tillage increased water content in the 0-25 cm soil layer, saturated hydraulic conductivity and content of water stable aggregates (> 0.25 mm) in the 0-55 cm soil layer. Then long-term no-tillage treatment reduced soil bulk density in the 0-55 cm soil layer compared with conventional tillage treatment. Correlation analysis showed that CT scanning well showed soil pore characteristics, which was related with soil physical parameters measured by conventional method. Also micro-cosmic soil pore characteristics could be used to characterize macroscopic physical properties of the soil. In summary, long-term non-tillage practice was beneficial for improvement of soil structure and pore, and increased soil water availability.
Key words:No-tillage/
Wheat-maize rotation/
CT scanning/
Soil structure/
Soil pore/
Soil aggregates/
Water parameter

HTML全文


图1CT扫描土壤示意图
Figure1.Scheme of CT scanning soil


下载: 全尺寸图片幻灯片


图2不同耕作措施对0~100 cm土体 > 1 000 μm和80~1 000 μm孔隙数目、孔隙度及孔隙成圆率的影响
不同小写字母表示不同耕作措施间差异显著。
Figure2.Number, porosity and circularity of > 1 000 μm and 80-1 000 μm pores under different tillage treatments in 0-100 cm soil layer
Different lowercase letters show significant differences between two tillage treatments.


下载: 全尺寸图片幻灯片


图3不同耕作措施下不同土层 > 80 μm、 > 1 000 mm和80~1 000 μm孔隙的数目
Figure3.Numbers of > 80 μm, > 1 000 μm and 80-1 000 μm pores under different tillage treatments in different soil layers


下载: 全尺寸图片幻灯片


图4不同耕作措施不同土层 > 80 μm、 > 1 000 mm和80~1 000 μm孔隙的孔隙度
Figure4.Porosities of > 80 μm, > 1 000 μm and 80-1 000 μm pores under different tillage treatments in different soil layers


下载: 全尺寸图片幻灯片


图5不同耕作措施对不同土层土壤 > 0.25 mm团聚体含量及容重的影响
Figure5.Effects of different tillage treatments on > 0.25 aggregates content and soil bulk density in different soil layers


下载: 全尺寸图片幻灯片


图6不同耕作措施对不同土层土壤有效水含水量及饱和导水率的影响
Figure6.Effects of different tillage treatments on available water content and saturated hydraulic conductivity in different soil layers


下载: 全尺寸图片幻灯片

表1土壤孔隙特征与土壤团聚体含量及容重和含水量间的相关性
Table1.Correlation between soil pore characters and soil aggregates content, bulk density and water content
孔隙度Porosity 孔隙数目Pore number
> 80 μm > 1 000 μm 80~1 000 μm > 80 μm > 1 000 μm 80~1 000 μm
> 0.25 mm水稳性团聚体含量
> 0.25 mm water stable aggregate content
0.63** 0.64** 0.58** 0.66** 0.67** 0.65**
土壤容重Soil bulk density -0.82** -0.77** -0.80** -0.82** -0.77** -0.82**
饱和导水率Saturated hydraulic conductivity 0.88** 0.83** 0.84** 0.86** 0.76** 0.85**
有效水含量Available water content 0.86** 0.84** 0.78** 0.85** 0.83** 0.84**
??**表示相关性达显著水平P < 0.01。** indicates significant correlation at 0.01 level (LSD test).


下载: 导出CSV

参考文献(53)
[1]PETROVIC A M, SIEBERT J E, RIEKE P E. Soil bulk density analysis in three dimensions by computed tomographic scanning[J]. Soil Science Society of America Journal, 1982, 46(3):445-450 doi: 10.2136/sssaj1982.03615995004600030001x
[2]GANTZER C J, ANDERSON S H. Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds[J]. Soil and Tillage Research, 2002, 64(1/2):101-111 http://www.sciencedirect.com/science/article/pii/S0167198701002483
[3]ANDERSON S H, PEYTON R L, GANTZER C J. Evaluation of constructed and natural soil macropores using X-ray computed tomography[J]. Geoderma, 1990, 46(1/3):13-29 http://www.sciencedirect.com/science/article/pii/001670619090004S
[4]PEYTON R L, GANTZER C J, ANDERSON S H, et al. Fractal dimension to describe soil macropore structure using X ray computed tomography[J]. Water Resources Research, 1994, 30(3):691-700 doi: 10.1029/93WR02343
[5]ZENG Y, PAYTON R L, GANTZER C J, et al. Fractal dimension and lacunarity of bulk density determined with X-ray computed tomography[J]. Soil Science Society of America Journal, 1996, 60(6):1718-1724 doi: 10.2136/sssaj1996.03615995006000060016x
[6]PERRET J, PRASHER S O, KANTZAS A, et al. Preferential solute flow in intact soil columns measured by SPECT scanning[J]. Soil Science Society of America Journal, 2000, 64(2):469-477 doi: 10.2136/sssaj2000.642469x
[7]WAMER G S, NIEBER J L, MOORE I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3):653-660 doi: 10.2136/sssaj1989.03615995005300030001x
[8]PEYTON R L, HAEFFNER B A, ANDERSON S H, et al. Applying X-ray CT to measure macropore diameters in undisturbed soil cores[J]. Geoderma, 1992, 53(3/4):329-340 http://www.sciencedirect.com/science/article/pii/001670619290062C
[9]PHOGAT V K, AYLMORE L A G. Evaluation of soil structure by using computer-assisted tomography[J]. Australian Journal of Soil Research, 1989, 27(2):313-323 doi: 10.1071/SR9890313
[10]赵世伟, 赵勇钢, 吴金水.黄土高原植被演替下土壤孔隙的定量分析[J].中国科学:地球科学, 2010, 40(2):223-231 http://www.cqvip.com/qk/98491x/201002/32980646.html
ZHAO S W, ZHAO Y G, WU J S. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau[J]. Science China Earth Science, 2010, 40(2):223-231 http://www.cqvip.com/qk/98491x/201002/32980646.html
[11]吴华山, 陈效民, 陈粲.利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究[J].水土保持学报, 2007, 21(2):175-178 http://www.oalib.com/paper/4488606
WU H S, CHEN X M, CHEN C. Study on macropore in main paddy soils in Tai-Lake Region with CT[J]. Journal of Soil and Water Conservation, 2007, 21(2):175-178 http://www.oalib.com/paper/4488606
[12]冯杰, 郝振纯. CT扫描确定土壤大孔隙分布[J].水科学进展, 2002, 13(5):611-617 http://www.cqvip.com/qk/97113X/200205/6862401.html
FENG J, HAO Z C. Distribution of soil macropores characterized by CT[J]. Advances in Water Science, 2002, 13(5):611-617 http://www.cqvip.com/qk/97113X/200205/6862401.html
[13]杨永辉, 武继承, 韩庆元, 等.保水剂对土壤孔隙影响的定量分析[J].中国水土保持科学, 2011, 9(6):88-93 http://www.oalib.com/paper/5259879
YANG Y H, WU J C, HAN Q Y, et al. Quantitative analysis of the effect of water-retaining agent on soil pores[J]. Science of Soil and Water Conservation, 2011, 9(6):88-93 http://www.oalib.com/paper/5259879
[14]MARTíNEZ E, FUENTES J P, SILVA P, et al. Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile[J]. Soil and Tillage Research, 2008, 99(2):232-244 doi: 10.1016/j.still.2008.02.001
[15]雷金银, 吴发启, 王健, 等.保护性耕作对土壤物理特性及玉米产量的影响[J].农业工程学报, 2008, 24(10):40-45 doi: 10.3321/j.issn:1002-6819.2008.10.009
LEI J Y, WU F Q, WANG J, et al. Effects of conservation tillage on soil physical properties and corn yield[J]. Transactions of the CSAE, 2008, 24(10):40-45 doi: 10.3321/j.issn:1002-6819.2008.10.009
[16]周静, 张仁陟.不同耕作措施下春小麦应对干旱胁迫的生理响应[J].干旱区研究, 2010, 27(1):39-43 http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201408010.htm
ZHOU J, ZHANG R Z. Physiological response of spring wheat to drought stress under different cultivation measures[J]. Arid Zone Research, 2010, 27(1):39-43 http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201408010.htm
[17]康红, 朱保安, 洪利辉, 等.免耕覆盖对旱地土壤肥力和小麦产量的影响[J].陕西农业科学, 2001, 46(9):1-3 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnykx200109001
KANG H, ZHU B A, HONG L H, et al. Effects of zero-tillage and mulching on the soil fertility and wheat yield in the arid land[J]. Shaanxi Journal of Agricultural Sciences, 2001, 46(9):1-3 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnykx200109001
[18]ACHARYA C L, SHARMA P D. Tillage and mulch effects on soil physical environment, root growth, nutrient uptake and yield of maize and wheat on an alfisol in north-west India[J]. Soil and Tillage Research, 1994, 32(4):291-302 doi: 10.1016/0167-1987(94)00425-E
[19]IMHOFF S, GHIBERTO P J, GRIONI A, et al. Porosity characterization of Argiudolls under different management systems in the Argentine Flat Pampa[J]. Geoderma, 2010, 158(3/4):268-274 http://www.sciencedirect.com/science/article/pii/S0016706110001576
[20]EDWARDS W M, SHIPITALO M J, TRAINA S J, et al. Role of Lumbricus terrestris (L.) burrows on quality of infiltrating water[J]. Soil Biology and Biochemistry, 1992, 24(12):1555-1561 doi: 10.1016/0038-0717(92)90150-V
[21]KUSHWAHA C P, TRIPATHI S K, SINGH K P. Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem[J]. Applied Soil Ecology, 2001, 16(3):229-241 doi: 10.1016/S0929-1393(00)00121-9
[22]DA VEIGA M, HORN R, REINERT D J, et al. Soil compressibility and penetrability of an Oxisol from southern Brazil, as affected by long-term tillage systems[J]. Soil and Tillage Research, 2007, 92(1/2):104-113 http://www.sciencedirect.com/science/article/pii/S0167198706000286
[23]KAY B D. Rates of change of soil structure under different cropping systems[M]//STEWART B A. Advances in Soil Science 12. New York: Springer, 1990: 1-52
[24]王殿武, 褚达华.少、免耕对旱地土壤物理性质的影响[J].河北农业大学学报, 1992, 15(2):28-33 http://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201404012.htm
WANG D W, CHU D H. Effect of zero tillage and minimum tillage on physical properties of soil in dryland[J]. Journal of Hebei Agricultural University, 1992, 15(2):28-33 http://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201404012.htm
[25]陈学文, 张晓平, 梁爱珍, 等.耕作方式对黑土耕层孔隙分布和水分特征的影响[J].干旱区资源与环境, 2012, 26(6):114-120 http://www.cqvip.com/QK/96735X/201206/41638259.html
CHEN X W, ZHANG X P, LIANG A Z, et al. Tillage effects on soil pore size distribution and soil moisture in Northeast China[J]. Journal of Arid Land Resources and Environment, 2012, 26(6):114-120 http://www.cqvip.com/QK/96735X/201206/41638259.html
[26]于同艳, 张兴义.耕作措施对黑土农田耕层水分的影响[J].西南大学学报:自然科学版, 2007, 29(3):121-124 http://www.oalib.com/paper/4513240
YU T Y, ZHANG X Y. Effects of different soil tillage systems on soil water in the black farmland[J]. Journal of Southwest University:Natural Science Edition, 2007, 29(3):121-124 http://www.oalib.com/paper/4513240
[27]杨永辉, 武继承, 毛永萍, 等.利用计算机断层扫描技术研究土壤改良措施下土壤孔隙[J].农业工程学报, 2013, 29(23):99-108 doi: 10.3969/j.issn.1002-6819.2013.23.014
YANG Y H, WU J C, MAO Y P, et al. Using computed tomography scanning to study soil pores under different soil structure improvement measures[J]. Transactions of the CSAE, 2013, 29(23):99-108 doi: 10.3969/j.issn.1002-6819.2013.23.014
[28]王玉玲, 李军, 柏炜霞.轮耕体系对黄土台塬麦玉轮作土壤生产性能的影响[J].农业工程学报, 2015, 31(1):107-116 http://www.cnki.com.cn/Article/CJFDTotal-NYGU201501016.htm
WANG Y L, LI J, BAI W X. Effects of rotational tillage systems on soil production performance in wheat-maize rotation field in Loess Platform region of China[J]. Transactions of the CSAE, 2015, 31(1):107-116 http://www.cnki.com.cn/Article/CJFDTotal-NYGU201501016.htm
[29]ABRAMOFF M D, MAGELH?ES P J, RAM S J. Image processing with imageJ[J]. Biophotonics International, 2004, 11(7):36-42 http://www.researchgate.net/publication/228334776_Image
[30]WARNER G S, NIEBER J L, MOORE I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3):653-660 doi: 10.2136/sssaj1989.03615995005300030001x
[31]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术文献出版社, 1995
Institute of Soil Science, Chinese Academy of Sciences. Soil Agricultural Chemistry Analysis[M]. Shanghai:Shanghai Science and Technology Literature Press, 1995
[32]欧少亭.林业管理常用标准及政策法规汇编——森林土壤渗透性测定[M].长春:吉林电子出版社, 2002
OU S T. Compilation of Commonly Used Standards, Policies and Regulations for Forestry Management:Determination of Forest Soil Permeability[M]. Changchun:Jilin Electronic Publishing House, 2002
[33]中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社, 1978
Institute of Soil Science, Chinese Academy of Sciences. Determination Methods for Soil Physical Properties[M]. Beijing:Science Press, 1978
[34]POESEN J, INGELMO-SANCHEZ F. Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position[J]. CATENA, 1992, 19(5):451-474 doi: 10.1016/0341-8162(92)90044-C
[35]杜建涛, 何文清, NANGIA V, 等.北方旱区保护性耕作对农田土壤水分的影响[J].农业工程学报, 2008, 24(11):25-29 doi: 10.3321/j.issn:1002-6819.2008.11.005
DU J T, HE W Q, NANGIA V, et al. Effects of conservation tillage on soil water content in northern arid regions of China[J]. Transactions of the CSAE, 2008, 24(11):25-29 doi: 10.3321/j.issn:1002-6819.2008.11.005
[36]陈浩, 李洪文, 高焕文, 等.多年固定道保护性耕作对土壤结构的影响[J].农业工程学报, 2008, 24(11):122-125 doi: 10.3321/j.issn:1002-6819.2008.11.023
CHEN H, LI H W, GAO H W, et al. Effect of long-term controlled traffic conservation tillage on soil structure[J]. Transactions of the CSAE, 2008, 24(11):122-125 doi: 10.3321/j.issn:1002-6819.2008.11.023
[37]杨永辉, 武继承, 张洁梅, 等.耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响[J].中国生态农业学报, 2017, 25(2):258-266 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170213&flag=1
YANG Y H, WU J C, ZHANG J M, et al. Effect of tillage method on soil water infiltration, organic carbon content and structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2):258-266 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170213&flag=1
[38]陈源泉, 隋鹏, 高旺盛, 等.中国主要农业区保护性耕作模式技术特征量化分析[J].农业工程学报, 2012, 28(18):1-7 doi: 10.3969/j.issn.1002-6819.2012.18.001
CHEN Y Q, SUI P, GAO W S, et al. Quantitative analysis on technological characteristics of different conservation tillage patterns in major agricultural regions of China[J]. Transactions of the CASE, 2012, 28(18):1-7 doi: 10.3969/j.issn.1002-6819.2012.18.001
[39]ASARE S N, RUDRA R P, DICKINSON W T, et al. SW-soil and water:Soil macroporosity distribution and trends in a no-till plot using a volume computer tomography scanner[J]. Journal of Agricultural Engineering Research, 2001, 78(4):437-447 doi: 10.1006/jaer.2000.0659
[40]甘磊, 张静举, 黄太庆, 等.基于CT技术的甘蔗地不同耕作措施下土壤孔隙结构研究[J].西南农业学报, 2017, 30(8):1843-1848 http://www.cnki.com.cn/Article/CJFDTotal-TRXB201306020.htm
GAN L, ZHANG J J, HUANG T Q, et al. Pore structure in sugarcane soil under different tillage managements based on CT scanning[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(8):1843-1848 http://www.cnki.com.cn/Article/CJFDTotal-TRXB201306020.htm
[41]GAN L, PENG X, PETH S, et al. Effects of grazing intensity on soil thermal properties and heat flux under Leymus chinensis and Stipa grandis vegetation in Inner Mongolia, China[J]. Soil and Tillage Research, 2012, 118:147-158 doi: 10.1016/j.still.2011.11.005
[42]KAY B D, VANDENBYGAART A J. Conservation tillage and depth stratification of porosity and soil organic matter[J]. Soil and Tillage Research, 2002, 66(2):107-118 doi: 10.1016/S0167-1987(02)00019-3
[43]CARTER M R. Characterizing the soil physical condition in reduced tillage systems for winter wheat on a fine sandy loam using small cores[J]. Canadian Journal of Soil Science, 1992, 72(4):395-402 doi: 10.4141/cjss92-033
[44]许淑青. 不同农作方式对耕层土壤理化性质的影响[D]. 兰州: 甘肃农业大学, 2008: 22-24 http://cdmd.cnki.com.cn/Article/CDMD-10733-2009029187.htm
XU S Q. Effects of the different agricultural tillage methods on soil physical and chemical properties in tilth soil[D]. Lanzhou: Gansu Agricultural University, 2008: 22-24 http://cdmd.cnki.com.cn/Article/CDMD-10733-2009029187.htm
[45]田效琴, 田佳乔, 李卓, 等.保护性耕作下西南黄壤坡地的土壤结构效应[J].中国农学通报, 2017, 33(14):62-68 http://www.cnki.com.cn/Article/CJFDTotal-XJNY198504007.htm
TIAN X Q, TIAN J Q, LI Z, et al. Soil structure effect of conservation tillage in yellow soil slope cropland in southwest China[J]. Chinese Agricultural Science Bulletin, 2017, 33(14):62-68 http://www.cnki.com.cn/Article/CJFDTotal-XJNY198504007.htm
[46]HAMMEL J E. Long-term tillage and crop rotation effects on bulk density and soil impedance in northern Idaho[J]. Soil Science Society of America Journal, 1989, 53(5):1515-1519 doi: 10.2136/sssaj1989.03615995005300050036x
[47]HATFIELD J L, SAUER T J, PRUEGER J H. Managing soils to achieve greater water use efficiency[J]. Agronomy Journal, 2001, 93(2):271-280 doi: 10.2134/agronj2001.932271x
[48]余海英, 彭文英, 马秀, 等.免耕对北方旱作玉米土壤水分及物理性质的影响[J].应用生态学报, 2011, 22(1):99-104 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201609021.htm
YU H Y, PENG W Y, MA X, et al. Effects of no-tillage on soil water content and physical properties of spring corn fields in semiarid region of northern China[J]. Chinese Journal of Applied Ecology, 2011, 22(1):99-104 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201609021.htm
[49]GAO M, LUO Y J, WANG Z F, et al. Effect of tillage system on distribution of aggregates and organic carbon in a hydragric anthrosol[J]. Pedosphere, 2008, 18(5):574-581 doi: 10.1016/S1002-0160(08)60051-X
[50]HUANG S, SUN Y N, RUI W Y, et al. Long-term effect of no-tillage on soil organic carbon fractions in a continuous maize cropping system of northeast China[J]. Pedosphere, 2010, 20(3):285-292 doi: 10.1016/S1002-0160(10)60016-1
[51]BLANCO-CANQUI H, LAL R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till[J]. Soil and Tillage Research, 2007, 95(1/2):240-254 http://www.sciencedirect.com/science/article/pii/S0167198707000451
[52]HE J, LI H W, WANG X Y, et al. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China[J]. Soil and Tillage Research, 2007, 94(2):493-502 doi: 10.1016/j.still.2006.10.005
[53]刘威, 黄丽, 鲁剑巍, 等.两种保护性耕作对土壤养分、结构和产量的影响[J].土壤通报, 2015, 46(2):420-427 http://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201404012.htm
LIU W, HUANG L, LU J W, et al. Effects of conservation tillages on soil nutrients, structure and crop yield[J]. Chinese Journal of Soil Science, 2015, 46(2):420-427 http://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201404012.htm

相关话题/土壤 结构 图片 科学 物理