林兆里1,
阙友雄1,
张华1,,,
李诗燕1,
罗会1,
张才芳1,
陈建峰2
1.福建农林大学农业部福建甘蔗生物学与遗传育种重点实验室 福州 350002
2.广西来宾市利拓农业服务有限公司?来宾 546100
基金项目: 公益性行业(农业)科研专项项目201503119-04-01
国家现代农业产业技术体系建设专项资金CARS-17
福建农林大学科技创新专项基金CXZX2017345
国家甘蔗工程技术研究中心开放课题2016-3-1
国家甘蔗工程技术研究中心开放课题2017-2-1
详细信息
作者简介:罗俊, 研究方向为甘蔗育种与机械化栽培。E-mail:sisluojun@126.com
通讯作者:张华, 研究方向为甘蔗田间管理机械化。E-mail:zhanghua4553@sina.com
中图分类号:S566.103.7计量
文章访问数:946
HTML全文浏览量:1
PDF下载量:1025
被引次数:0
出版历程
收稿日期:2017-10-17
录用日期:2018-01-22
刊出日期:2018-06-01
Effect of tillage mode on soil structure characteristics of plough layer and sug-arcane yield
LUO Jun1,,LIN Zhaoli1,
QUE Youxiong1,
ZHANG Hua1,,,
LI Shiyan1,
LUO Hui1,
ZHANG Caifang1,
CHEN Jianfeng2
1. Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. LiTuo Agricultural Services Co. Ltd, Laibin 546100, China
Funds: the Special Fund for Agro-scientific Research in the Public Interest of China201503119-04-01
the Special Fund for Construction of Modern Agricultural Technology System of ChinaCARS-17
the Science Foundation of Fujian Agriculture and Forestry UniversityCXZX2017345
the Open Fund of National Engineering Research Center of Sugarcane, China2016-3-1
the Open Fund of National Engineering Research Center of Sugarcane, China2017-2-1
More Information
Corresponding author:ZHANG Hua, E-mail:zhanghua4553@sina.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探讨不同耕整地方式对甘蔗地耕层土壤结构特性和产量的影响,以1.4 m和1.6 m两种种植行距为主处理,以深松35 cm+旋耕25 cm、深翻50 cm+旋耕25 cm、不深松(旋耕25 cm)3种耕整地作业方式为副处理,对甘蔗产量性状,土壤容重、紧实度、孔隙度、三相容积率、田间持水量、土壤贯入阻力和抗剪强度等土壤结构特性进行研究。结果表明:1.6 m行距处理甘蔗蔗茎产量显著低于1.4 m行距处理;1.6 m行距处理土壤紧实度显著小于1.4 m行距,容重显著高于1.4 m行距处理,1.6 m行距处理显著改善土壤贯入阻力和抗剪强度。与对照不深松(旋耕25 cm)相比,深松35 cm+旋耕25 cm及深翻50 cm+旋耕25 cm处理通过增加土壤耕作深度,显著改善了耕层土壤紧实度和耕层土壤容重,改善了耕层的整体疏松程度;深松作业通过提高耕层土壤总孔隙度,尤其增加了30~40 cm土层的毛管孔隙度,提高了深层土壤的保水能力,对甘蔗中后期株高伸长和茎径增粗产生显著的促进效应。深松35 cm+旋耕25 cm与深翻50 cm+旋耕25 cm均显著降低了耕层土壤贯入阻力,但对土壤抗剪强度的改善效果不显著;深松35 cm+旋耕25 cm的固相容积率最小,气相容积率最大,不深松(旋耕25 cm)耕作措施的固相容积率最大,气相容积率最小,3种耕作措施的液相容积率没有显著差异。深松35 cm+旋耕25 cm和深翻50 cm+旋耕25 cm均对土壤物理结构的改善具有积极作用,能显著提高甘蔗产量,在具有大马力拖拉机和高质量深松器的蔗区建议采用深松35 cm+旋耕25 cm的耕整地方式,在缺乏大马力拖拉机和高质量深松器的蔗区,可以采用铧式犁深翻50 cm+旋耕25 cm的耕整地方式来代替深松,以达到增厚耕层的目的。
关键词:甘蔗/
耕作措施/
深松/
行距/
耕层/
土壤结构/
土壤物理性状/
产量
Abstract:In order to establish the mechanical deep-ploughing technology of sugarcane for formation of good plough layer soil structure, the effect of tillage modes on soil plough layer structure and yield components of sugarcane were investigated. An experiment with 3 tillage measures under two planting rows of sugarcane were conducted. The two planting rows were 1.4 m and 1.6 m, respectively, while the subsidiary treatments included three tillage modes as follows-25 cm rotary tillage (as control), 35 cm sub-soiling plus 25 cm rotary tillage (sub-soiling), 50 cm deep plowing plus 25 rotary tillage (deep plowing). Sugarcane yield characteristics, together with soil bulk density, compactness, porosity, three-phase volumetric rate, field water holding capacity, penetration resistance and shear strength were investigated. The results demonstrated that stem yield of 1.6 m rows spacing was significantly lower than that of 1.4 m rows spacing. Also soil compactness of 1.6 m rows spacing was remarkably lower than that of 1.4 m rows spacing. Soil bulk density of 1.6 m rows spacing was strikingly higher than that of 1.4 m rows spacing. The results also indicated that 1.6 m rows spacing significantly improved penetration resistance and shear strength of soil. Also both the sub-soiling and deep plowing significantly increased sugarcane yield. Compared with the control, the sub-soiling and deep plowing treatments increased soil tillage layer depth, and also improved soil com-pactness and bulk density along with the overall porosity of plough layer. It also showed that sub-soiling dramatically increased total porosity of plough layer soil especially capillary porosity of soil. Field water holding capacity of deep soil also greatly improved by sub-soiling, which finally significantly enhanced plant height elongation and stem diameter thickening at the middle and late growth stages of sugarcane. Also both sub-soiling and deep plowing significantly decreased soil penetration resistance, but with insignificant effect on soil shear strength. Among the three tillage measures, there was no significant difference in volume rate of the liquid phase. However, sub-soiling had the smallest solid volume rate and the largest gas phase volume rate. Then the control resulted in the largest solid volume rate, but the smallest gas phase volume rate. In conclusion, sub-soiling and deep plowing had positive effects on soil physical structure and significantly increased yield of sugarcane. We also concluded that in sugarcane planting areas where large horsepower tractors and high quality loosen machines were used, 35 cm sub-soiling + 25 cm rotary tillage method was the most suitable tillage mode. However, in areas without large horsepower tractors and high quality sub-soiling devices, thick plough layer was maintained by the use of 50 cm deep plowing + 25 cm rotary tillage measure.
Key words:Sugarcane/
Tillage measure/
Sub-soiling/
Rows spacing/
Plough layer/
Soil structure/
Soil physical properties/
Yield
HTML全文
表1不同耕作措施对蔗地土壤容重和紧实度的影响
Table1.Effects of different tillage measures on bulk density and compactness of soil of sugarcane field
耕作措施 Tillage measure | 行距 Rows spacing (m) | 土层 Soil layer (cm) | 土壤容重 Soil bulk density (g·cm-3) | 土壤紧实度 Soil compactness (N·cm-2) | |
苗期 Seedling stage | 成熟期 Mature stage | ||||
旋耕25 cm 25 cm rotary tillage (control, B1) | 1.4 | 0~10 | 0.85±0.11b | — | 157.71±78.87b |
10~20 | 1.14±0.17a | — | 378.97±117.83a | ||
20~30 | 1.23±0.07a | — | 419.19±50.97a | ||
30~40 | 1.11±0.07a | — | 379.76±43.88a | ||
平均Average | 1.08 BC | 329.10A | 333.91A | ||
1.6 | 0~10 | 1.09±0.04b | — | 80.18±23.56c | |
10~20 | 1.16±0.17b | — | 239.83±63.24b | ||
20~30 | 1.32±0.09a | — | 343.20±77.91a | ||
30~40 | 1.36±0.09a | — | 366.63±52.19a | ||
平均Average | 1.23A | 264.39B | 257.46C | ||
平均Average | 1.16α | 296.74α | 295.68α | ||
深翻50 cm+旋耕25 cm 50 cm deep plowing + 25 cm rotary tillage (B2) | 1.4 | 0~10 | 0.89±0.09c | — | 103.58±37.26c |
10~20 | 1.01±0.08bc | — | 268.70±101.79b | ||
20~30 | 1.16±0.11a | — | 389.58±67.68a | ||
30~40 | 1.12±0.11ab | — | 373.85±56.29a | ||
平均 Average | 1.04C | 252.96B | 283.92B | ||
1.6 | 0~10 | 0.99±0.05b | — | 84.55±49.79d | |
10~20 | 1.11±0.11b | — | 156.64±44.59c | ||
20~30 | 1.34±0.11a | — | 321.95±65.11b | ||
30~40 | 1.36±0.09a | — | 375.95±47.24a | ||
平均Average | 1.20A | 167.80D | 234.77D | ||
平均 Average | 1.12αβ | 210.38β | 259.35β | ||
深松35cm+旋耕25 cm 35 cm sub-soiling + 25 cm rotary tillage (B3) | 1.4 | 0~10 | 0.86±0.05c | — | 111.01±42.68d |
10~20 | 1.00±0.09b | — | 213.84±53.86c | ||
20~30 | 1.21±0.10a | — | 368.19±66.93b | ||
30~40 | 1.13±0.08a | — | 409.01±51.92a | ||
平均 Average | 1.05C | 210.66C | 275.51bC | ||
1.6 | 0~10 | 0.92±0.08b | — | 118.24±44.32c | |
10~20 | 1.14±0.09a | — | 247.98±71.17b | ||
20~30 | 1.23±0.04a | — | 331.78±89.31a | ||
30~40 | 1.23±0.07a | — | 374.06±86.06a | ||
平均 Average | 1.18B | 229.98BC | 268.02BC | ||
平均 Average | 1.09β | 220.32β | 271.76β | ||
F | 行距 Row spacing (A) | 54.19** | 16.99** | 55.19** | |
耕作措施 Tillage measure (B) | 4.77** | 26.72** | 12.75** | ||
土层 Soil layer (C) | 68.25** | — | 436.27** | ||
A × B | 2.33 | 9.17** | 11.26** | ||
A × C | 2.07 | — | 4.87** | ||
B × C | 0.52 | — | 5.71** | ||
A × B × C | 1.86 | — | 5.08** | ||
同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上显著。Different lowercase letters in the same column indicatesignificant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
表2不同耕作措施对蔗地土壤贯入阻力和抗剪强度的影响
Table2.Effects of different tillage measures on penetration resistance and shear strength of soil of sugarcane field
耕作措施 Tillage measure | 行距 Rows spacing (m) | 土层 Soil layer (cm) | 贯入阻力 Penetration resistance (KPa) | 抗剪强度 Shear strength of soil (kg·cm-2) |
旋耕25 cm 25 cm rotary tillage (control, B1) | 1.4 | 0~10 | 12.30±7.10c | 0.83±0.34c |
10~20 | 50.94±26.05b | 4.02±2.16b | ||
20~30 | 67.86±15.34a | 5.39±1.68a | ||
30~40 | 67.63±9.88a | 4.80±1.06ab | ||
平均 Average | 49.68A | 3.76A | ||
1.6 | 0~10 | 10.34±6.40d | 0.84±0.44d | |
10~20 | 20.55±9.09c | 1.81±0.76c | ||
20~30 | 48.35±13.19b | 3.41±0.79b | ||
30~40 | 60.08±9.87a | 3.95±0.62a | ||
平均 Average | 34.83D | 2.50D | ||
平均 Average | 42.26α | 3.13α | ||
深翻50 cm+旋耕25 cm 50 cm deep plowing + 25 cm rotary tillage (B2) | 1.4 | 0~10 | 7.78±3.41c | 0.75±0.33d |
10~20 | 29.99±10.96b | 2.43±1.26c | ||
20~30 | 61.65±11.44a | 4.97±1.40b | ||
30~40 | 66.83±6.44a | 5.67±1.04a | ||
平均 Average | 41.56B | 3.45B | ||
1.6 | 0~10 | 8.65±3.71d | 0.80±0.38d | |
10~20 | 17.79±6.14c | 1.67±0.55c | ||
20~30 | 41.76±14.64b | 3.09±0.63b | ||
30~40 | 66.53±6.90a | 4.40±0.73a | ||
平均 Average | 33.68D | 2.49D | ||
平均 Average | 37.62β | 2.97α | ||
深松35cm+旋耕25 cm 35 cm sub-soiling + 25 cm rotary tillage (B3) | 1.4 | 0~10 | 5.49±3.00d | 0.51±0.20d |
10~20 | 18.18±9.60c | 1.56±0.60c | ||
20~30 | 52.70±17.44b | 3.76±1.16b | ||
30~40 | 69.79±4.91a | 5.62±0.64a | ||
平均 Average | 36.54CD | 2.86C | ||
1.6 | 0~10 | 7.08±2.29c | 0.89±0.38d | |
10~20 | 30.19±14.37b | 1.88±0.98c | ||
20~30 | 55.86±14.77a | 4.57±1.00b | ||
30~40 | 59.58±15.01a | 5.31±1.27a | ||
平均 Average | 38.18BC | 3.16B | ||
平均 Average | 37.36β | 3.01α | ||
F | 行距 Row spacing (A) | 45.08** | 52.41** | |
耕作措施 Tillage measure (B) | 9.22** | 1.16 | ||
土层 Soil layer (C) | 599.45** | 462.16** | ||
A × B | 20.83** | 29.34** | ||
A × C | 6.71** | 9.07** | ||
B × C | 3.47** | 9.89** | ||
A × B × C | 9.68** | 5.88** | ||
同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上显著。Different lowercase letters in the same column indicatesignificant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
表3不同耕作措施对蔗地土壤孔隙度的影响
Table3.Effects of different tillage measures on porosity of soil of sugarcane field
耕作措施 Tillage measure | 行距 Rows spacing (m) | 土层 Soil layer (cm) | 孔隙度 Porosity (%) | 毛管孔隙度 Capillary porosity (%) | 通气孔隙度 Ventilation porosity (%) |
旋耕25 cm 25 cm rotary tillage (control, B1) | 1.4 | 0~10 | 68.68±3.58a | 38.59±2.23a | 30.09±4.10a |
10~20 | 58.08±9.01b | 37.67±3.62a | 20.41±11.86b | ||
20~30 | 54.13±2.28b | 40.19±3.42a | 13.93±3.63b | ||
30~40 | 59.55±2.26b | 41.28±1.70a | 18.27±2.24b | ||
平均 Average | 60.11A | 39.43AB | 20.68AB | ||
1.6 | 0~10 | 61.02±1.83a | 40.60±1.73a | 20.42±2.91a | |
10~20 | 57.92±5.77a | 39.25±6.58a | 18.67±2.91a | ||
20~30 | 52.63±2.76b | 39.29±1.72a | 13.35±2.69b | ||
30~40 | 51.46±3.47b | 40.90±3.70a | 10.56±2.02b | ||
平均 Average | 55.76B | 40.00A | 15.75C | ||
平均 Average | 57.93β | 39.72α | 18.21β | ||
深翻50 cm+旋耕25 cm 50 cm deep plowing + 25 cm rotary tillage (B2) | 1.4 | 0~10 | 67.18±2.79a | 40.20±6.38a | 26.98±7.31a |
10~20 | 63.21±3.51ab | 40.32±1.73a | 22.90±4.38ab | ||
20~30 | 57.62±3.28c | 40.00±3.65a | 17.62±2.27b | ||
30~40 | 59.06±3.37bc | 40.90±2.09a | 18.17±2.25b | ||
平均 Average | 61.77A | 40.35A | 21.42AB | ||
1.6 | 0~10 | 64.43±1.05a | 39.33±3.06a | 25.10±3.10a | |
10~20 | 60.46±3.29b | 37.73±2.54a | 22.72±3.38a | ||
20~30 | 51.77±4.01c | 36.18±2.11a | 15.59±2.26b | ||
30~40 | 51.62±2.63c | 37.49±3.28a | 14.14±1.62b | ||
平均 Average | 57.07B | 37.68B | 19.39B | ||
平均 Average | 59.42β | 39.02α | 20.40αβ | ||
深松35cm+旋耕25 cm 35 cm sub-soiling + 25 cm rotary tillage (B3) | 1.4 | 0~10 | 69.09±1.96a | 33.44±2.79b | 35.65±3.10a |
10~20 | 64.32±3.10b | 38.90±6.52a | 25.42±6.47b | ||
20~30 | 56.61±3.79c | 40.40±1.73a | 16.21±4.73c | ||
30~40 | 58.93±3.04c | 43.46±2.51a | 15.47±1.96c | ||
平均Average | 62.24A | 39.05AB | 23.19A | ||
1.6 | 0~10 | 67.26±2.54a | 37.91±1.80b | 29.36±3.26a | |
10~20 | 61.82±6.50b | 42.07±4.34a | 19.75±7.94b | ||
20~30 | 56.12±1.11c | 40.31±1.83ab | 15.81±1.76b | ||
30~40 | 56.77±2.19c | 41.43±0.47ab | 15.34±2.28b | ||
平均 Average | 60.49A | 40.43A | 20.07B | ||
平均 Average | 61.37α | 39.74α | 21.63α | ||
F | 行距 Row spacing (A) | 28.30 ** | 0.15 | 17.12 ** | |
耕作措施 Tillage measure (B) | 8.63 ** | 0.60 | 6.05 ** | ||
土层 Soil layer (C) | 58.83 ** | 2.95 * | 54.82 ** | ||
A × B | 1.90 | 4.04 * | 1.09 | ||
A × C | 1.77 | 2.23 | 1.68 | ||
B × C | 0.56 | 2.87 * | 1.75 | ||
A × B × C | 1.22 | 0.27 | 1.26 | ||
同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上显著。Different lowercase letters in the same column indicatesignificant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
表4不同耕作措施对蔗地土壤三相容积率的影响
Table4.Effects of different tillage measures on three-phase volume fractions of soil of sugarcane field
耕作措施 Tillage measure | 行距 Rows spacing (m) | 土层 Soil layer (cm) | 固相容积率 Solid volume fraction (%) | 液相容积率 Liquid volume fraction (%) | 气相容积率 Gas volume fraction (%) |
旋耕25 cm 25 cm rotary tillage (control, B1) | 1.4 | 0~10 | 31.32±3.58b | 19.89±2.61b | 48.79±6.18a |
10~20 | 41.92±9.01a | 24.80±6.02a | 33.28±14.87b | ||
20~30 | 45.87±2.28a | 28.71±1.32a | 25.41±2.93b | ||
30~40 | 40.45±2.26a | 27.80±0.61a | 31.75±2.65b | ||
平均 Average | 39.89BC | 25.30A | 34.81BC | ||
1.6 | 0~10 | 38.98±1.83b | 19.24±1.84c | 41.78±2.99a | |
10~20 | 42.08±5.77b | 21.91±3.99bc | 36.01±9.44a | ||
20~30 | 47.37±2.76a | 24.49±1.90ab | 28.14±2.72b | ||
30~40 | 48.54±3.47a | 26.27±3.05a | 25.19±4.63b | ||
平均 Average | 44.24A | 22.98B | 32.78C | ||
平均 Average | 42.07α | 24.14α | 33.79β | ||
深翻50 cm+旋耕25 cm 50 cm deep plowing + 25 cm rotary tillage (B2) | 1.4 | 0~10 | 32.82±2.79c | 19.31±2.02c | 47.87±4.12a |
10~20 | 36.79±3.51bc | 23.63±2.95b | 39.58±6.38b | ||
20~30 | 42.38±3.28a | 26.37±1.42ab | 31.25±3.52c | ||
30~40 | 40.94±3.37ab | 26.80±1.60a | 32.26±3.18c | ||
平均 Average | 38.23BC | 24.03AB | 37.74AB | ||
1.6 | 0~10 | 35.57±1.05c | 20.83±2.11c | 43.60±2.54a | |
10~20 | 39.54±3.29b | 23.14±1.98bc | 37.32±4.61b | ||
20~30 | 48.23±4.01a | 24.54±1.91b | 27.23±5.71c | ||
30~40 | 48.38±2.63a | 28.14±1.81a | 23.48±1.71c | ||
平均 Average | 42.93A | 24.16AB | 32.91C | ||
平均 Average | 40.58β | 24.10α | 35.32αβ | ||
深松35cm+旋耕25 cm 35 cm sub-soiling + 25 cm rotary tillage (B3) | 1.4 | 0~10 | 30.91±1.96c | 17.20±1.08b | 51.90±2.92a |
10~20 | 35.68±3.10b | 20.40±2.71b | 43.92±5.16b | ||
20~30 | 43.39±3.79a | 26.24±3.33a | 30.37±6.75c | ||
30~40 | 41.07±3.04a | 28.10±2.46a | 30.83±3.78c | ||
平均 Average | 37.76C | 22.98B | 39.25A | ||
1.6 | 0~10 | 32.74±2.54b | 20.44±1.56c | 46.83±3.91a | |
10~20 | 41.00±3.39a | 25.27±1.78b | 33.73±5.04b | ||
20~30 | 43.88±1.11a | 27.94±1.54a | 28.18±2.43c | ||
30~40 | 43.23±2.19a | 29.01±1.31a | 27.76±2.95c | ||
平均 Average | 40.21B | 25.67A | 34.12C | ||
平均 Average | 38.99γ | 24.32α | 36.69α | ||
F | 行距 Row spacing (A) | 35.42 ** | 0.13 | 16.54 ** | |
耕作措施 Tillage measure (B) | 7.62 ** | 0.10 | 2.89 | ||
土层 Soil layer (C) | 63.96 ** | 66.30 ** | 79.01 ** | ||
A × B | 1.18 | 10.34 ** | 1.01 | ||
A × C | 1.41 | 1.72 | 1.32 | ||
B × C | 0.63 | 0.97 | 0.52 | ||
A × B × C | 1.96 | 0.80 | 1.53 | ||
同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上差异显著。Different lowercase letters in the same columnindicate significant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
表5不同耕作措施对蔗地土壤含水量的影响
Table5.Effects of different tillage measures on soil moisture content of sugarcane field
耕作措施 Tillage measure | 行距 Rows spacing (m) | 土层 Soil layer (cm) | 土壤含水率 Soil moisture content (%) | 田间持水量 Field capacity (%) | 土壤饱和含水量 Soil saturated water content (%) |
旋耕25 cm 25 cm rotary tillage (control, B1) | 1.4 | 0~10 | 19.89±2.61b | 46.31±6.57a | 51.93±8.14a |
10~20 | 24.80±6.02a | 33.43±3.75b | 36.65±5.18b | ||
20~30 | 28.71±1.32a | 32.70±3.77b | 35.16±4.27b | ||
30~40 | 27.80±0.61a | 37.49±3.26b | 40.42±3.56b | ||
平均 Average | 25.30A | 37.48A | 41.04AB | ||
1.6 | 0~10 | 19.24±1.84c | 37.36±1.67a | 40.85±1.45a | |
10~20 | 21.91±3.99bc | 34.89±8.96a | 38.64±5.60ab | ||
20~30 | 24.49±1.90ab | 29.98±2.80a | 33.72±2.62b | ||
30~40 | 26.27±3.05a | 30.29±4.77a | 33.03±5.01b | ||
平均 Average | 22.98B | 33.13B | 36.56C | ||
平均 Average | 24.14α | 35.31α | 38.80α | ||
深翻50 cm+旋耕25 cm 50 cm deep plowing + 25 cm rotary tillage (B2) | 1.4 | 0~10 | 19.31±2.02c | 46.67±7.42a | 51.51±9.89a |
10~20 | 23.63±2.95b | 41.00±3.82ab | 44.71±4.01ab | ||
20~30 | 26.37±1.42ab | 35.70±5.91b | 38.15±6.86b | ||
30~40 | 26.80±1.60a | 37.57±4.29b | 39.93±5.55b | ||
平均 Average | 24.03AB | 39.49A | 43.58A | ||
1.6 | 0~10 | 20.83±2.11c | 39.84±5.02a | 47.76±6.90a | |
10~20 | 23.14±1.98bc | 34.29±4.23a | 41.19±5.22a | ||
20~30 | 24.54±1.91b | 27.18±4.16b | 30.44±4.66b | ||
30~40 | 28.14±1.81a | 27.71±4.11b | 30.49±4.26b | ||
平均 Average | 24.16AB | 32.26B | 37.47BC | ||
平均 Average | 24.10α | 35.87α | 40.52α | ||
深松35cm+旋耕25 cm 35 cm sub-soiling + 25 cm rotary tillage (B3) | 1.4 | 0~10 | 17.20±1.08b | 38.99±4.69a | 45.32±6.24a |
10~20 | 20.40±2.71b | 39.21±8.72a | 43.10±8.64ab | ||
20~30 | 26.24±3.33a | 33.44±2.10a | 36.22±2.57b | ||
30~40 | 28.10±2.46a | 38.55±4.60a | 41.42±4.82ab | ||
平均 Average | 22.98B | 37.55A | 41.51A | ||
1.6 | 0~10 | 20.44±1.56c | 41.56±3.75a | 49.15±6.52a | |
10~20 | 25.27±1.78b | 37.38±6.75ab | 41.25±7.08b | ||
20~30 | 27.94±1.54a | 32.76±2.04b | 36.57±2.50b | ||
30~40 | 29.01±1.31a | 33.90±1.87b | 36.61±2.03b | ||
平均 Average | 25.67A | 36.40A | 40.89AB | ||
平均 Average | 24.32α | 36.97α | 41.20α | ||
F | 行距 Row spacing (A) | 0.13 | 20.82** | 13.55** | |
耕作措施 Tillage measure (B) | 0.10 | 1.10 | 1.99 | ||
土层 Soil layer (C) | 66.30** | 20.26** | 30.55** | ||
A x B | 10.34** | 3.57* | 2.57 | ||
A x C | 1.72 | 1.23 | 1.58 | ||
B x C | 0.97 | 1.07 | 1.07 | ||
A x B x C | 0.80 | 1.00 | 1.49 | ||
同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上差异显著。Different lowercase letters in the same columnindicate significant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
表6不同耕作措施对不同行距种植的甘蔗产量性状的影响
Table6.Effects of tillage measures on yield traits of sugarcane planted with different rows spacings under different tillage measures
耕作措施 Tillage measure | 行距 Rows spacing (cm) | 株高 Plant height (cm) | 茎径 Stem diameter (cm) | 单茎重 Stem weight (kg·stem-1) | 有效茎数 Effective stems number (stems·hm-2) | 锤度 Brix (%) | 蔗茎产量 Cane yield (t·hm-2) |
旋耕25 cm 25 cm rotary tillage (control, B1) | 1.4 | 198.32±8.04d | 2.58±0.05b | 1.04±0.07b | 60 888±1 818b | 17.46±0.55de | 63.21±5.60c |
1.6 | 204.02±3.41cd | 2.59±0.05b | 1.07±0.04b | 50 442±3 303d | 16.81±0.70e | 54.04±4.29d | |
平均 Average | 201.17±6.60C | 2.58±0.048B | 1.05±0.06C | 55 665±6 018B | 17.13±0.69C | 58.62±6.75B | |
深翻50 cm+旋耕25 cm 50 cm deep plowing + 25 cm rotary tillage (B2) | 1.4 | 209.57±5.59bcd | 2.61±0.09b | 1.13±0.08b | 64 318±1 782a | 18.04±1.01cd | 72.41±5.85a |
1.6 | 213.23±3.98abc | 2.59±0.07b | 1.13±0.05b | 64 616±1 845a | 18.65±0.76bc | 72.79±4.99a | |
平均 Average | 211.40±5.01B | 2.60±0.082B | 1.13±0.07B | 64 467±1 737A | 18.34±0.91B | 72.60±5.19A | |
深松35cm+旋耕25 cm 35 cm sub-soiling + 25 cm rotary tillage (B3) | 1.4 | 221.83±18.04a | 2.66±0.07ab | 1.23±0.11a | 57 648±2 254c | 19.07±0.54b | 70.90±7.80ab |
1.6 | 216.13±10.04ab | 2.72±0.08a | 1.25±0.12a | 51 693±3 681d | 20.03±0.77a | 64.82±7.37bc | |
平均 Average | 218.98±14.24A | 2.69±0.077A | 1.24±0.11A | 54 670±4 259B | 19.55±0.81A | 67.86±7.30A | |
F | 行距 Row spacing (A) | 0.15 | 0.40 | 0.49 | 39.45** | 1.52 | 5.92* |
耕作措施 Tillage measure (B) | 10.46** | 7.14** | 14.44** | 53.07** | 31.91** | 16.23** | |
A × B | 1.21 | 1.03 | 0.13 | 13.29** | 3.96* | 1.91 | |
同列不同小写字母表示同一耕作措施不同行距间差异显著(P < 0.05), 同列不同大写字母表示不同耕作措施间差异显著(P < 0.05), *、**分别表示在0.05和0.01水平上差异显著。Different lowercase letters in the same columnindicate significant differences among row spacings under the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
参考文献
[1] | 廖平伟, 张华, 罗俊, 等.我国甘蔗机械化收获现状的研究[J].农机化研究, 2011, 33(3):26-29 http://www.cnki.com.cn/Article/CJFDTOTAL-NJYJ201103008.htm LIAO P W, ZHANG H, LUO J, et al. Study on the status of sugarcane harvest mechanization in China[J]. Journal of Ag-ricultural Mechanization Research, 2011, 33(3):26-29 http://www.cnki.com.cn/Article/CJFDTOTAL-NJYJ201103008.htm |
[2] | 苏俊波, 孔冉, 罗炼芳, 等.甘蔗机械化收获后的宿根性能分析[J].甘蔗糖业, 2016, (6):22-28 http://www.cqvip.com/QK/94396X/201405/663022475.html SU J B, KONG R, LUO L F, et al. Analysis of sugarcane ra-tooning performance after mechanized harvest[J]. Sugarcane and Canesugar, 2016, (6):22-28 http://www.cqvip.com/QK/94396X/201405/663022475.html |
[3] | 秦培钊, 罗艺, 米超, 等.机械收割对不同种植行距宿根蔗苗期生长的影响[J].南方农业学报, 2012, 43(2):236-240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxnykx201202024 QIN P Z, LUO Y, MI C, et al. Effect of mechanical harvesting on shoot growth of ratoon cane with different row spacing[J]. Journal of Southern Agriculture, 2012, 43(2):236-240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxnykx201202024 |
[4] | 陈桂芬, 谭裕模, 邢颖, 等.适应甘蔗机械收获的不同种植行距和品种试验[J].甘蔗糖业, 2014, (4):11-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzty201404003 CHEN G F, TAN Y M, XING Y, et al. Study on different planting row spacing and sugarcane varieties adjusting to sugarcane mechanization harvesting[J]. Sugarcane and Canesugar, 2014, (4):11-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzty201404003 |
[5] | 李就好, 谭中文, 罗锡文, 等.耕作和覆盖方式对旱地甘蔗生产的影响[J].农业机械学报, 2004, 35(5):70-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb200405019 LI J H, TAN Z W, LUO X W, et al. Effects of tillage and mulch methods on sugarcane production[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(5):70-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb200405019 |
[6] | 梁强, 谢金兰, 李毅杰, 等.不同收获方式对蔗田土壤容重及甘蔗宿根出苗的影响[J].南方农业学报, 2014, 45(7):1221-1224 http://www.cnki.com.cn/Article/CJFDTotal-GXNY201407016.htm LIANG Q, XIE J L, LI Y J, et al. Effects of different harvesting methods on soil bulk density and seedling roots of ratoon sugarcane[J]. Journal of Southern Agriculture, 2014, 45(7):1221-1224 http://www.cnki.com.cn/Article/CJFDTotal-GXNY201407016.htm |
[7] | 郑超, 廖宗文, 谭中文, 等.深松对雷州半岛甘蔗产量的影响及其作用机理研究[J].土壤通报, 2004, 35(6):809-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb200406031 ZHENG C, LIAO Z W, TAN Z W, et al. Effect of deep ploughing on the yield of sugarcane in the Leizhou Peninsu-la[J]. Chinese Journal of Soil Science, 2004, 35(6):809-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb200406031 |
[8] | 廖青, 韦广泼, 刘斌, 等.机械化深耕深松栽培对甘蔗生长及产量的影响[J].广西农业学报, 2010, 41(6):542-544 http://www.cqvip.com/QK/90177X/2010006/34538627.html LIAO Q, WEI G P, LIU B, et al. Effects of mechanized deep ploughing and scarification cultivation technology on growth and yield of sugarcane[J]. Guangxi Agricultural Sciences, 2010, 41(6):542-544 http://www.cqvip.com/QK/90177X/2010006/34538627.html |
[9] | 刀静梅, 樊仙, 赵俊, 等.旱地甘蔗不同类型土壤各耕层水分特征常数分析——以开远、元江为例[J].西南农业学报, 2017, 30(2):389-393 http://www.wanfangdata.com.cn/local/toFullText.do?item_id=11893651 DAO J M, FAN X, ZHAO J, et al. Analysis of topsoil mois-ture feature of different soils on dry land sugarcane:Taken Kaiyuan and Yuanjiang as example[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(2):389-393 http://www.wanfangdata.com.cn/local/toFullText.do?item_id=11893651 |
[10] | 吴晓莲, 林兆里, 张华.不同土壤紧实度对甘蔗品种福农39号苗期生长的影响[J].广东农业科学, 2014, 41(19):43-46 doi: 10.3969/j.issn.1004-874X.2014.19.011 WU X L, LIN Z L, ZHANG H. Influence of soil density on seedling growth of sugarcane variety Funong 39[J]. Guang-dong Agricultural Sciences, 2014, 41(19):43-46 doi: 10.3969/j.issn.1004-874X.2014.19.011 |
[11] | 丁昆仑, HANN M J.耕作措施对土壤特性及作物产量的影响[J].农业工程学报, 2000, 16(3):28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb200003008 DING K L, HANN M J. Effects of soil management on soil properties and crop yield[J]. Transactions of the CSAE, 2000, 16(3):28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb200003008 |
[12] | 王小彬, 蔡典雄, 金轲, 等.旱坡地麦田夏闲期耕作措施对土壤水分有效性的影响[J].中国农业科学, 2003, 36(9):1044-1049 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200309010.htm WANG X B, CAI D X, JIN K, et al. Water availability for winter wheat affected by summer fallow tillage practices in sloping dryland[J]. Scientia Agricultura Sinica, 2003, 36(9):1044-1049 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200309010.htm |
[13] | 刘爽, 何文清, 严昌荣, 等.不同耕作措施对旱地农田土壤物理特性的影响[J].干旱地区农业研究, 2010, 28(2):65-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201002013 LIU S, HE W Q, YAN C R, et al. Effects of different tillage managements on soil physical properties in dryland[J]. Agri-cultural Research in the Arid Areas, 2010, 28(2):65-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201002013 |
[14] | 张海林, 秦耀东, 朱文珊.耕作措施对土壤物理性状的影响[J].土壤, 2003, 35(2):140-144 http://mall.cnki.net/magazine/Article/TURA200302011.htm ZHANG H L, QIN Y D, ZHU W S. Effects of tillage on soil physical properties[J]. Soils, 2003, 35(2):140-144 http://mall.cnki.net/magazine/Article/TURA200302011.htm |
[15] | 许淑青, 张仁陟, 董博, 等.耕作方式对耕层土壤结构性能及有机碳含量的影响[J].中国生态农业学报, 2009, 17(2):203-208 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009201&flag=1 XU S Q, ZHANG R Z, DONG B, et al. Effect of tillage prac-tices on structural properties and content of organic carbon in tilth soil[J]. Chinese Journal of Eco-Agriculture, 2009, 17(2):203-208 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009201&flag=1 |
[16] | 汪洲涛, 苏炜华, 阙友雄, 等.应用AMMI和HA-GGE双标图分析甘蔗品种产量稳定性和试点代表性[J].中国生态农业学报, 2016, 24(6):790-800 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016611&flag=1 WANG Z T, SU W H, QUE Y X, et al. Analysis of yield sta-bility and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplot models[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6):790-800 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016611&flag=1 |
[17] | 陈宁宁, 李军, 吕薇, 等.不同轮耕方式对渭北旱塬麦玉轮作田土壤物理性状与产量的影响[J].中国生态农业学报, 2015, 23(9):1102-1111 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015904&flag=1 CHEN N N, LI J, LYU W, et al. Effects of different rotational tillage patterns on soil physical properties and yield of winter wheat-spring maize rotation field in Weibei highland[J]. Chinese Journal of Eco-Agriculture, 2015, 23(9):1102-1111 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015904&flag=1 |