删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

外源腐解微生物的物种组合对土壤微生物群落结构及代谢活性的影响

本站小编 Free考研考试/2022-01-01

周璇1,,
李玉明2,
丛聪1,
王倩倩1,
江恒3,
岳龙凯1,
尧水红1,,
1.中国农业科学院农业资源与农业区划研究所 北京 100081
2.黑龙江北大荒农业股份有限公司291分公司农业技术推广中心 双鸭山 155923
3.中国科学院东北地理与农业生态研究所 哈尔滨 150081
基金项目: 国家自然科学基金青年基金项目31400461
中国农业科学院知识创新工程农业资源与农业区划研究所优秀青年项目634-6

详细信息
作者简介:周璇, 研究方向为土壤微生物生态。E-mail:xuanzhou15@163.com
通讯作者:尧水红, 主要研究方向为土壤生物物理与微生物生态。E-mail:yaoshuihong@caas.cn
中图分类号:S154.36

计量

文章访问数:857
HTML全文浏览量:16
PDF下载量:508
被引次数:0
出版历程

收稿日期:2017-12-29
录用日期:2018-04-07
刊出日期:2018-07-01

Effects of species-combined exogenous decomposing micro-organisms on soil microbial community structure and metabolic activity

ZHOU Xuan1,,
LI Yuming2,
CONG Cong1,
WANG Qianqian1,
JIANG Heng3,
YUE Longkai1,
YAO Shuihong1,,
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. Center of Agricultural Technology Extension, No. 291 Branch of Heilongjiang Beidahuang Agriculture Company Ltd, Shuangyashan 155923, China
3. Northeast Institute of Geography and Agro-ecology, Chinese Academy of Sciences, Harbin 150081, China
Funds: the National Natural Science Foundation of China31400461
the Outstanding Youth Project of Agricultural Resources and Agricultural Regionalization Institute from Intellectual Innovation Project of Chinese Academy of Agricultural Sciences634-6

More Information
Corresponding author:YAO Shuihong, E-mail: yaoshuihong@caas.cn


摘要
HTML全文
(5)(2)
参考文献(55)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本文采用饲料类芽孢杆菌(Paenibacillus pabuli,P)、深红紫链霉菌(Streptomyces violaceorubidus,S)和黄绿木霉(Trichoderma aureoviride,T),组合构建了3种单菌剂(P、S和T)、3种两菌种复合菌剂(PT、PS和ST)及1种3菌种复合菌剂(PST),并将之添加到红壤中,监测各菌剂添加后土壤总磷脂脂肪酸(PLFAs)量、特征微生物PLFAs百分含量、土壤呼吸速率及总代谢熵的变化,旨在探明外源腐解微生物的物种组合对土壤微生物群落结构和代谢活性的影响,进而为优化有机物分解菌剂种群配置提供参考。结果显示,添加单菌剂的P、S和T处理及添加两菌种复合菌剂的PT和PS处理,土壤微生物生物量显著增加,增幅17.2%~121.6%(P < 0.05)。添加外源腐解微生物后,各处理的土壤微生物群落的细菌百分含量基本稳定在79.6%~83.1%,真菌百分含量显著增加8.8%~50.6%;而放线菌百分含量除P和ST处理外,其他处理显著降低9.4%~69.8%。PLFAs数据的主成分分析表明,各外源菌剂处理与CK处理间的群落结构变异由小到大依次为:接种单菌剂的P、S和T处理,接种两菌种复合菌剂的PT、PS和ST处理,接种3菌种复合菌剂的PST处理。添加单菌剂的P、T处理以及添加两菌种复合菌剂的ST处理,在短期内影响了土壤微生物的对数生长,使土壤呼吸速率的峰值分别提高48.7%、53.7%和78.7%;且外源腐解微生物组合的物种数量越多,土壤微生物进入潜伏期所需的时间越长。从外源腐解微生物对土壤肥力的长期影响来看,两菌种复合菌剂ST的添加使土壤微生物代谢活性提高28.9%,因此该处理的土壤碳矿化量增加11.1%;添加单菌剂的S处理使土壤微生物代谢活性显著降低32.4%,因此该处理的土壤碳矿化量仅降低7.3%;而添加两菌种复合菌剂的PS处理和3菌种复合菌剂的PST处理,在保持代谢活性不变的情况下,其土壤碳矿化量也降低5.8%~8.7%,其原因有待进一步研究。综上所述,外源腐解微生物的添加会改变土壤微生物的群落结构及其生长轨迹,且随外源腐解微生物组合的物种数量增多这一干扰程度越大,而土壤微生物代谢活性与外源腐解微生物组合的物种数量无显著相关性。
关键词:土壤微生物/
外源腐解微生物/
物种组合/
微生物生物量/
微生物群落结构/
微生物代谢活性/
土壤呼吸速率
Abstract:An incubation experiment was conducted to study the effects of species combination of exogenous decomposing micro-organisms on soil microbial community structure and metabolic activity. The objective of the study was to lay the basis for the optimization of population configuration of decomposing microbial agents. In the study, three microbe species-Paenibacillus pabuli (P), Streptomyces violaceorubidus (S) and Trichoderma aureoviride (T)-were selected. For the experiments, in addition to single P, S and T microbe strains, the microbes were merged to produce two species (PT, PS and ST) and three species (PST) combinations of decomposing microorganisms (forming a total of 7 microbial agents). These microbial agents were then added to red soil sampled from Jiangxi Province in South China. Moreover, a control treatment of red soil added with sterile peat was set to the experimental design. During the incubation period, temporal changes in soil respiration rate and microbial biomass carbon were monitored. Additionally, the changes in total PLFAs content and in the proportion of characteristic microbial population in different treatments after 30 days of incubation were determined. The PLFAs percentages of microbial communities showed the total microbial biomass and composition of soil microbial communities. The results showed that, except for ST and PST, most treatments showed that total microbial biomass increased from 17.2% to 121.6% (P < 0.05). Compared with the control, the proportion of fungus in all the treatments increased by 8.8%-50.6% (P < 0.05). However, the proportion of bacteria in PLFAs remained basically unchanged, increasing from 79.6% to 83.1%. For most of the treatments, except for P and ST, the proportion of actinomyces decreased from 9.4% to 69.8%. Principal component analysis (PCA) of PLFAs data indicated that soil microbial community structure was influenced by different decomposing micro-organisms agents. The change in microbial community structure varied with treatment type, among which single P, S and T microbe strains were smallest and their trio-combination (PST) biggest, compared with the control. The results of soil respiration rate showed the growth of micro-organisms. Treatments of single P and T microbe strains and binary combination of micro-organisms S and T (ST) affected logarithmic growth of soil microbes in the short-term, increasing peak soil respiration rate by 48.7% (P), 53.7% (T) and 78.7% (ST), respectively. Additionally, with increasing number of species of decomposing micro-organisms, it took more time for soil microbes to enter latent phase. From long-term impact of exogenous decomposing micro-organisms on soil fertility, these micro-organisms changed soil microbial metabolic activity, which led to a change in the amount of soil carbon mineralization. The addition of ST combination of microorganisms increased soil microbial metabolic quotient by 28.9%, consequently, the amount of soil carbon mineralization increased by 11.1%. The addition of single S microbe strain decreased soil microbial metabolic quotient by 32.4%, while the amount of soil carbon mineralization only decreased by 7.3%. However, under PS and PST combinations, microbial metabolic activity remained unchanged, while the amount of soil carbon mineralization decreased by 5.8% and 8.7%, separately. There was the need for further study on these treatment combinations. In conclusion, the addition of exogenous decomposing micro-organisms changed soil microbial community structure and growth trajectory. Furthermore, with increasing number of species of decomposing micro-organisms, change in microbial community structure increased. Finally, the study failed to account for any relationship between soil microbial metabolic activity and the number of species of decomposing micro-organisms.
Key words:Soil micro-organisms/
Exogenous decomposing micro-organism/
Species combination/
Microbial biomass/
Microbial community structure/
Microbial metabolic activity/
Soil respiration rate

HTML全文


图1试验用红壤及红壤加草炭的微生物群落结构组成
不同小写字母表示处理间差异显著(P < 0.05)。
Figure1.Microbial community compositions of the tested red soil and red soil with sterile peat
Different lowercase letters demonstrate significant differences between red soil and red soil with sterile peat.


下载: 全尺寸图片幻灯片


图2培养30 d后接种不同菌种及组合的土壤微生物生物量及特征微生物种群百分含量
不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure2.Microbial biomasses and proportions of characteristic microbial population of soil under treatments of inoculation for 30 days of different strains or strains combinations
Different lowercase letters indicate significant differences among treatments at 0.05 level.


下载: 全尺寸图片幻灯片


图3接种不同菌种及组合处理的土壤微生物群落结构差异的主成分分析
Figure3.Principal component analysis of soil microbial community structures under treatments of inoculation of different strains or strains combinations


下载: 全尺寸图片幻灯片


图4培养过程中接种不同菌种及组合处理的土壤呼吸速率变化
a→b代表微生物生长特征曲线的对数期; b→c代表稳定期; c→d代表衰亡期; d→e代表潜伏期。
Figure4.Changes of soil respiration rates during 30 days after treatments of inoculation of different strains or strains combinations
a→b represents the logarithmic phase of microbial growth curve; b→c represents the stable phase of microbial growth curve; c→d represents the decline phase of microbial growth curve; d→e represents the latency phase of microbial growth curve.


下载: 全尺寸图片幻灯片


图5培养周期内接种不同菌种及组合处理的土壤累积呼吸量(A)和微生物总呼吸熵(B)
不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure5.Soil cumulative amounts of CO2 release (A) and total microbial metabolic entropy (B) during 30 days after treatments of inoculation of different strains or strains combinations
Different lowercase letters indicate significant differences among treatments at 0.05 level.


下载: 全尺寸图片幻灯片

表1试验处理及菌种组合方法
Table1.Experimental treatments and the methods of strains combination
试验处理Experimental treatment 菌种组合方法
Method of strains combination
物种数量
Species number
设计Design 代码
Code
未接种No strain 无菌草炭Sterile peat CK 0 0
接种单菌
Adding single strain
饲料类芽孢杆菌Paenibacillus pabuli (P) P 100% P 1
深红紫链霉菌Streptomyces violaceorubidus (S) S 100% S 1
黄绿木霉Trichoderma aureoviride (T) T 100% T 1
接种复合菌
Adding complex strains
饲料类芽孢杆菌+深红紫链霉菌P. pabuli + S. violaceorubidus PS 50% P + 50% S 2
饲料类芽孢杆菌+黄绿木霉P. pabuli + T. aureoviride PT 50% P + 50% T 2
深红紫链霉菌+黄绿木霉S. violaceorubidus + T. aureoviride ST 50% S + 50% T 2
饲料类芽孢杆菌+深红紫链霉菌+黄绿木霉
P. pabuli + S. violaceorubidus + T. aureoviride
PST 33.3% P + 33.3% S + 33.3% T 3


下载: 导出CSV
表2接种不同菌种及组合处理土壤微生物活性特征指数
Table2.Soil microbial activity characteristics indexes under treatments of inoculation of different strains or strains combinations
处理
Treatment
呼吸峰值出现时间
Occurrence time of respiration peak value (d)
对数生长期峰值
Peak value of the logarithmic growth phase
对数生长期斜率
Slope of the logarithmic growth phase
衰亡期斜率
Slope of the decline phase
潜伏期起点时间
Onset time of the latent phase (d)
CK 3 64.2d 9.34e 6.54d 7
P 5 95.5bc 8.82e 26.40a 7
S 1 71.1cd 30.30c 5.65d 7
T 1 98.7b 57.80b 13.70b 6
PT 1 64.2d 23.40d 3.19f 10
PS 1 71.6cd 30.70c 4.02e 10
ST 1 114.7a 73.90a 8.98c 12
PST 1 67.2d 26.40cd 4.78e 16
??不同小写字母表示不同处理间的差异显著(P < 0.05)。Different lowercase letters indicate significant differences among treatments at 0.05 level.


下载: 导出CSV

参考文献(55)
[1]李英, 韩红艳, 王文娟, 等.黄淮海平原不同土地利用方式对土壤有机碳及微生物呼吸的影响[J].生态环境学报, 2017, 26(1):62-66 http://www.cnki.com.cn/Article/CJFDTotal-ZGTN201207007.htm
LI Y, HAN H Y, WANG W J, et al. Effects of different land use types on soil organic carbon and microbial respiration in Huang-Huai-Hai Plain[J]. Ecology and Environmental Sciences, 2017, 26(1):62-66 http://www.cnki.com.cn/Article/CJFDTotal-ZGTN201207007.htm
[2]李考学. 氮沉降对凋落物分解早期碳氮周转的影响[D]. 哈尔滨: 东北林业大学, 2006: 4-5 http://cdmd.cnki.com.cn/article/cdmd-10225-2006110408.htm
LI K X. Nitrogen deposition affects carbon and nitrogen turnover on the early stage of forest litter decomposition[D]. Harbin: Northeast Forestry University, 2006: 4-5 http://cdmd.cnki.com.cn/article/cdmd-10225-2006110408.htm
[3]李云乐, 乔玉辉, 孙振钧, 等.不同土壤培肥措施下农田有机物分解的生态过程[J].生态学报, 2006, 26(6):1933-1939 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb200606039
LI Y L, QIAO Y H, SUN Z J, et al. The eco-process of agricultural organic matter decomposition under different soil conditions[J]. Acta Ecologica Sinica, 2006, 26(6):1933-1939 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb200606039
[4]LUCE M S, WHALEN J K, ZIADI N, et al. Labile organic nitrogen transformations in clay and sandy-loam soils amended with 15N-labelled faba bean and wheat residues[J]. Soil Biology and Biochemistry, 2014, 68:208-218 doi: 10.1016/j.soilbio.2013.09.033
[5]HOLLAND E A, COLEMAN D C. Litter placement effects on microbial and organic matter dynamics in an agroecosystem[J]. Ecology, 1987, 68(2):425-433 doi: 10.2307/1939274
[6]FREY S D, GUPTA V V S R, ELLIOTT E T, et al. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community[J]. Soil Biology and Biochemistry, 2001, 33(12/13):1759-1768 http://www.sciencedirect.com/science/article/pii/S0038071701001018
[7]HUANG P M, WANG M K, CHIU C Y. Soil mineral-organic matter-microbe interactions:Impacts on biogeochemical processes and biodiversity in soils[J]. Pedobiologia, 2005, 49(6):609-635 doi: 10.1016/j.pedobi.2005.06.006
[8]SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2):155-176 doi: 10.1023/A:1016125726789
[9]史龙翔. 纤维素降解菌的筛选及其在果树枝条腐解中的应用[D]. 杨凌: 西北农林科技大学, 2015: 7-10 http://cdmd.cnki.com.cn/Article/CDMD-10712-1015329794.htm
SHI L X. Screening of cellulose degradation baterrium and its application in composition of fruit tree branches[D]. Yangling: Northwest A&F University, 2015: 7-10 http://cdmd.cnki.com.cn/Article/CDMD-10712-1015329794.htm
[10]刘海静. 小麦秸秆高效降解菌的筛选及应用效果研究[D]. 北京: 中国农业科学院, 2012: 12-21 http://cdmd.cnki.com.cn/Article/CDMD-82101-1012413937.htm
LIU H J. Screening of wheat straw degradation strains and application effects[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012: 12-21 http://cdmd.cnki.com.cn/Article/CDMD-82101-1012413937.htm
[11]肖胜文. 高效降解纤维素木霉菌株分离与筛选[D]. 长沙: 湖南农业大学, 2013: 18-26 http://cdmd.cnki.com.cn/Article/CDMD-10537-1014183994.htm
XIAO S W. The screening and isolation of high efficiency cellulose degradation strains[D]. Changsha: Hunan Agricultural University, 2013: 18-26 http://cdmd.cnki.com.cn/Article/CDMD-10537-1014183994.htm
[12]李静, 张瀚能, 赵翀, 等.高效纤维素降解菌分离筛选、复合菌系构建及秸秆降解效果分析[J].应用与环境生物学报, 2016, 22(4):689-696 http://www.cqvip.com/QK/98345X/201604/669872400.html
LI J, ZHANG H N, ZHAO C, et al. Isolation and screening of cellulose decomposing microbe and the straw decomposing effect of complex microbial system[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4):689-696 http://www.cqvip.com/QK/98345X/201604/669872400.html
[13]张广志, 杨合同, 张新建, 等.木霉现有种类名录[J].菌物学报, 2014, 33(6):1210-1230 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jwxt201406006
ZHANG G Z, YANG H T, ZHANG X J, et al. A checklist of known species of Trichoderma[J]. Mycosystema, 2014, 33(6):1210-1230 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jwxt201406006
[14]刘国红, 刘波, 林乃铨, 等.芽孢杆菌的系统进化及其属分类学特征[J].福建农业学报, 2008, 23(4):436-449 https://www.wenkuxiazai.com/doc/d7f4a3c5d5bbfd0a7956733d.html
LIU G H, LIU B, LIN N Q, et al. Phyletic evolution and taxonomic characteristics of Bacillus[J]. Fujian Journal of Agricultural Sciences, 2008, 23(4):436-449 https://www.wenkuxiazai.com/doc/d7f4a3c5d5bbfd0a7956733d.html
[15]汪学军, 闵长莉, 刘彭磊, 等.牛粪中纤维素降解菌的分离鉴定及其产酶研究[J].天然产物研究与开发, 2015, 27(7):1181-1186 http://www.cqvip.com/QK/96327X/201507/665377423.html
WANG X J, MIN C L, LIU P L, et al. Identification of a cellulolytic actinomycete from cow manure and study on its cellulose-producing conditions[J]. Natural Product Research and Development, 2015, 27(7):1181-1186 http://www.cqvip.com/QK/96327X/201507/665377423.html
[16]石其伟, 刘强, 荣湘民, 等.不同微生物菌剂对水稻秸秆发酵效果的影响[J].湖南农业大学学报:自然科学版, 2006, 32(3):264-268 http://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201306027.htm
SHI Q W, LIU Q, RONG X M, et al. Effects of different microbial agents on fermentation of rice straw in composting[J]. Journal of Hunan Agricultural University:Natural Sciences, 2006, 32(3):264-268 http://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201306027.htm
[17]王晓娟, 李博文, 刘微, 等.不同微生物促腐剂在鸡粪好氧堆肥中的应用研究[J].水土保持学报, 2011, 25(1):238-241 http://www.cqvip.com/QK/96166X/201101/36970654.html
WANG X J, LI B W, LIU W, et al. Effects of different microorganisms on chicken manure compost[J]. Journal of Soil and Water Conservation, 2011, 25(1):238-241 http://www.cqvip.com/QK/96166X/201101/36970654.html
[18]肖艳萍. 复合微生物秸秆腐熟菌剂的筛选及其对毒死蜱残留的影响[D]. 昆明: 云南农业大学, 2017: 1-84 http://cdmd.cnki.com.cn/Article/CDMD-10676-1017729483.htm
XIAO Y P. Screening of compound microbial inoculant for straw decomposing and its effect on chlorpyrifos residue[D]. Kunming: Yunnan Agricultural University, 2017: 1-84 http://cdmd.cnki.com.cn/Article/CDMD-10676-1017729483.htm
[19]冀颐之, 赵有玺, 程艳玲, 等.微生物发酵床中黄腐酸生产菌株的筛选及其鉴定[J].食品研究与开发, 2018, 39(2):181-186 https://www.cnki.com.cn/lunwen-1014422172.html
JI Y Z, ZHAO Y X, CHENG Y L, et al. Screening and identification of strains to produce fulvic acid from deep litter system[J]. Food Research and Development, 2018, 39(2):181-186 https://www.cnki.com.cn/lunwen-1014422172.html
[20]李艳, 窦森, 刘艳丽, 等.微生物对暗棕壤添加玉米秸秆腐殖化进程的影响[J].农业环境科学学报, 2016, 35(5):931-939 doi: 10.11654/jaes.2016.05.017
LI Y, DOU S, LIU Y L, et al. Effects of different microorganisms on humification of corn stover incorporated in dark brown soil[J]. Journal of Agro-Environment Science, 2016, 35(5):931-939 doi: 10.11654/jaes.2016.05.017
[21]丁杰, 郝艳, 侯佳奇, 等.接种抗酸化复合菌对餐厨废弃物堆肥酸化缓解及腐殖化的影响[J].环境科学研究, 2016, 29(12):1887-1894 http://mall.cnki.net/magazine/magadetail/HJKX201612.htm
DING J, HAO Y, HOU J Q, et al. Effects of anti-acidification microbial agents (AAMA) on reducing acidification and promoting humification during kitchen waste composting[J]. Research of Environmental Sciences, 2016, 29(12):1887-1894 http://mall.cnki.net/magazine/magadetail/HJKX201612.htm
[22]古丽君, 徐秉良, 梁巧兰, 等.生防木霉对草坪土壤微生物区系的影响及定殖能力研究[J].草业学报, 2013, 22(3):321-326 doi: 10.11686/cyxb20130341
GU L J, XU B L, LIANG Q L, et al. Impact and colonisation ability of Trichoderma biocontrol on lawn soil microflora[J]. Acta Prataculturae Sinica, 2013, 22(3):321-326 doi: 10.11686/cyxb20130341
[23]余贤美, 侯长明, 王海荣, 等.枯草芽孢杆菌Bs-15在枣树体内和土壤中的定殖及其对土壤微生物多样性的影响[J].中国生物防治学报, 2014, 30(4):497-502 http://cdmd.cnki.com.cn/Article/CDMD-82101-2009152572.htm
YU X M, HOU C M, WANG H R, et al. Colonization of Bacillus subtilis Bs-15 in jujube plant and soil and its influence on the microbial diversity in the soil[J]. Chinese Journal of Biological Control, 2014, 30(4):497-502 http://cdmd.cnki.com.cn/Article/CDMD-82101-2009152572.htm
[24]BURT R. Soil Survey Laboratory Methods Manual[M]. Washington, DC:United States Department of Agriculture, 2004
[25]龚子同.中国土壤系统分类-理论·方法·实践[M].北京:科学出版社, 1999:17
GONG Z T. Chinese Soil Taxonomy-Theory·Method·Practice[M]. Beijing:Science Press, 1999:17
[26]BLIGH E G, DYER W J. Extraction of lipids in solution by the method of Bligh & Dyer[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37:911-917 doi: 10.1139/y59-099
[27]MANIRAKIZA P, COVACI A, SCHEPENS P. Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Bligh & Dyer extraction methods[J]. Journal of Food Composition and Analysis, 2001, 14(1):93-100 doi: 10.1006/jfca.2000.0972
[28]JENSEN S K. Improved Bligh and Dyer extraction procedure[J]. Lipid Technology, 2008, 20(12):280-281 doi: 10.1002/lite.v20:12
[29]VARMA A, OELMüLLER R. Advanced Techniques in Soil Microbiology[M]. Berlin, Germany:Springer, 2007:182-187
[30]ZHONG W H, GU T, WANG W, et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity[J]. Plant and Soil, 2010, 326(1/2):511-522 doi: 10.1007/s11104-009-0099-6
[31]FANG X M, YU D P, ZHOU W M, et al. The effects of forest type on soil microbial activity in Changbai Mountain, Northeast China[J]. Annals of Forest Science, 2016, 73(2):473-482 doi: 10.1007/s13595-016-0540-y
[32]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 1999:238-240
LU R K. Methods of Chemical Analysis of Soil Agriculture[M]. Beijing:China Agricultural Science and Technology Press, 1999:238-240
[33]VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6):703-707 doi: 10.1016/0038-0717(87)90052-6
[34]林启美, 吴玉光, 刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志, 1999, 18(2):63-66 http://www.cqvip.com/read/read.aspx?id=3599542
LIN Q M, WU Y G, LIU H L. Modification of fumigation extraction method for measuring soil microbial biomass carbon[J]. Chinese Journal of Ecology, 1999, 18(2):63-66 http://www.cqvip.com/read/read.aspx?id=3599542
[35]WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction -An automated procedure[J]. Soil Biology & Biochemistry, 1990, 22(8):1167-1169 http://www.sciencedirect.com/science/article/pii/0038071790900463
[36]EUDOXIE G D, ALEXANDER I A. Spent mushroom substrate as a transplant media replacement for commercial peat in tomato seedling production[J]. Journal of Agricultural Science, 2011, 3(4):41-49 http://www.oalib.com/paper/2913508
[37]李永兴, 匡柏健, 李久蒂.不同载体对微生物菌剂质量的影响[J].土壤肥料, 1999, (6):30-32 http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL199906008.htm
LI Y X, KUANG B J, LI J D. Influence of different carriers on qualities of microbial manure[J]. Soils and Fertilizers, 1999, (6):30-32 http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL199906008.htm
[38]陈春玉. 复合微生物菌剂在湖南煤矿区复垦土壤中的应用研究[D]. 长沙: 湖南农业大学, 2015: 1-6 http://cdmd.cnki.com.cn/Article/CDMD-10537-1016153215.htm
CHEN C Y. Application of complex microbial inoculants in reclamation soil of coal mine area in Hunan Province[D]. Changsha: Hunan Agricultural University, 2015: 1-6 http://cdmd.cnki.com.cn/Article/CDMD-10537-1016153215.htm
[39]POURREZA M, HOSSEINI S M, SINEGANI A A S, et al. Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year[J]. Geoderma, 2014, 213:95-102 doi: 10.1016/j.geoderma.2013.07.024
[40]WEI H, YAN W B, QUAN G M, et al. Soil microbial carbon utilization, enzyme activities and nutrient availability responses to Bidens pilosa and a non-invasive congener under different irradiances[J]. Scientific Reports, 2017, 7(1):11309 doi: 10.1038/s41598-017-11707-x
[41]ROUSK J, B??th E. Growth of saprotrophic fungi and bacteria in soil[J]. FEMS Microbiology Ecology, 2011, 78(1):17-30 doi: 10.1111/j.1574-6941.2011.01106.x
[42]BLAZEWICZ S J, BARNARD R L, DALY R A, et al. Evaluating rRNA as an indicator of microbial activity in environmental communities:Limitations and uses[J]. ISME Journal, 2013, 7(11):2061-2068 doi: 10.1038/ismej.2013.102
[43]车荣晓, 王芳, 王艳芬, 等.土壤微生物总活性研究方法进展[J].生态学报, 2016, 36(8):2103-2112 http://www.cnki.com.cn/Article/CJFDTotal-STXB201608001.htm
CHE R X, WANG F, WANG Y F, et al. A review on the methods for measuring total microbial activity in soils[J]. Acta Ecologica Sinica, 2016, 36(8):2103-2112 http://www.cnki.com.cn/Article/CJFDTotal-STXB201608001.htm
[44]刘姝, 陆颖健, 陆兆新, 等.海洋链霉菌GB-2发酵产物的抗细菌活性及性质研究[J].生物工程学报, 2007, 23(6):1077-1081 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swgcxb200706020
LIU S, LU Y J, LU Z X, et al. Antibacterial activity and property of the fermentation product of marine Streptomyces sp. GB-2[J]. Chinese Journal of Biotechnology, 2007, 23(6):1077-1081 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swgcxb200706020
[45]罗文新, 陈晓佳, 黄耀坚, 等.来自海洋的链霉菌抑菌活性与其培养条件的关系[J].微生物学通报, 1998, 25(6):325-328 http://dspace.xmu.edu.cn/handle/2288/13848?show=full
LUO W X, CHEN X J, HUANG Y J, et al. Relationship between antimicrobial activity of marine Streptomyces spp. and their culture conditions[J]. Microbiology, 1998, 25(6):325-328 http://dspace.xmu.edu.cn/handle/2288/13848?show=full
[46]VAN VEEN J A, VAN OVERBEEK L S, VAN ELSAS J D. Fate and activity of microorganisms introduced into soil[J]. Microbiology and Molecular Biology Reviews, 1997, 61(2):121-135 http://pubmedcentralcanada.ca/pmcc/articles/PMC232604/
[47]常文智, 马鸣超, 李力, 等.施用胶质类芽孢杆菌对土壤生物活性和花生产量的影响[J].中国土壤与肥料, 2014, (1):84-89 http://www.cqvip.com/QK/93143A/201401/48820096.html
CHANG W Z, MA M C, LI L, et al. Effects of Paenibacillus mucilaginosus on soil biological activity and yield of peanut[J]. Soil and Fertilizer Sciences in China, 2014, (1):84-89 http://www.cqvip.com/QK/93143A/201401/48820096.html
[48]秦华, 白建峰, 徐秋芳, 等.丛枝菌根真菌菌丝对土壤微生物群落结构及多氯联苯降解的影响[J].土壤, 2015, 47(4):704-710 http://cdmd.cnki.com.cn/Article/CDMD-10307-2010173705.htm
QIN H, BAI J F, XU Q F, et al. Effects of arbuscular mycorrhizal fungal hyphae on soil microbial community composition and polychlorinated biphenyls degradation[J]. Soils, 2015, 47(4):704-710 http://cdmd.cnki.com.cn/Article/CDMD-10307-2010173705.htm
[49]邱登林, 阴卫军, 陈建爱, 等.黄绿木霉T1010对日光温室土壤微生物群落的影响[J].山东农业科学, 2011, (1):59-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shandnykx201101017
QIU D L, YIN W J, CHEN J A, et al. Effects of Trichoderma aureoviride T1010 on soil microflora in solar greenhouse[J]. Shandong Agricultural Sciences, 2011, (1):59-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shandnykx201101017
[50]THIET R K, FREY S D, SIX J. Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues[J]. Soil Biology and Biochemistry, 2006, 38(4):837-844 doi: 10.1016/j.soilbio.2005.07.010
[51]AMBROSINI A, DE SOUZA R, PASSAGLIA L M P. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity[J]. Plant and Soil, 2016, 400(1/2):193-207 doi: 10.1007/s11104-015-2727-7
[52]LITCHMAN E. Invisible invaders:Non-pathogenic invasive microbes in aquatic and terrestrial ecosystems[J]. Ecology Letters, 2010, 13(12):1560-1572 doi: 10.1111/ele.2010.13.issue-12
[53]BREUER L, HUISMAN J A, KELLER T, et al. Impact of a conversion from cropland to grassland on C and N storage and related soil properties:Analysis of a 60-year chronosequence[J]. Geoderma, 2006, 133(1/2):6-18 http://www.sciencedirect.com/science/article/pii/S001670610600108X
[54]BASTIDA F, Barberá G G, García C, et al. Influence of orientation, vegetation and season on soil microbial and biochemical characteristics under semiarid conditions[J]. Applied Soil Ecology, 2008, 38(1):62-70 doi: 10.1016/j.apsoil.2007.09.002
[55]黄科朝, 沈育伊, 徐广平, 等.垦殖对桂林会仙喀斯特湿地土壤养分与微生物活性的影响[J].环境科学, 2018, 39(4):1813-1823 http://www.cqvip.com/QK/90811X/201007/34509211.html
HUANG K C, SHEN Y Y, XU G P, et al. Effects of reclamation on soil nutrients and microbial activities in the Huixian Karst Wetland in Guilin[J]. Environmental Science, 2018, 39(4):1813-1823 http://www.cqvip.com/QK/90811X/201007/34509211.html

相关话题/微生物 土壤 结构 农业 培养