删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

黄瓜与西芹间作土壤细菌多样性及其对黄瓜枯萎病发生的影响

本站小编 Free考研考试/2022-01-01

秦立金1, 2,,
徐峰3,
刘永胜4,
王学敏5,
李全1,
云兴福1,,
1.内蒙古农业大学农学院 呼和浩特 010018
2.赤峰学院生命科学学院 赤峰 024000
3.赤峰市敖汉旗农业技术服务中心 赤峰 024000
4.陕西省渭南市潼关县农业局园艺站 渭南 714300
5.内蒙古巴彦淖尔市农牧业科学研究院 巴彦淖尔 015000
基金项目: 国家自然科学基金项目31160100
内蒙古自治区应用技术研究与开发项目201602050

详细信息
作者简介:秦立金, 研究方向为设施蔬菜土传病害生物防治与土壤修复。E-mail:1597355169@qq.com
通讯作者:云兴福, 研究方向为高寒地区蔬菜栽培与生理。E-mail:yxf5807@163.com
中图分类号:S476

计量

文章访问数:860
HTML全文浏览量:5
PDF下载量:664
被引次数:0
出版历程

收稿日期:2018-01-19
录用日期:2018-03-22
刊出日期:2018-08-01

Analysis of soil bacterial diversity under cucumber-celery intercropping and its influence on cucumber Fusarium wilt

QIN Lijin1, 2,,
XU Feng3,
LIU Yongsheng4,
WANG Xuemin5,
LI Quan1,
YUN Xingfu1,,
1. College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China
2. College of Life Science, Chifeng University, Chifeng 024000, China
3. Agricultural Technical Service Center of Aohan Banner, Chifeng 024000, China
4. Horticultural Station of Tongguan County Agricultural Bureau in Weinan City, Shaanxi Province, Weinan 714300, China
5. Research Institute of Agriculture and Animal Husbandry in Bayannur City, Inner Mongolia, Bayannur 015000, China
Funds: the National Natural Science Foundation of China31160100
the Inner Mongolia Autonomous Region Application Technology Research and Development Project201602050

More Information
Corresponding author:YUN Xingfu, E-mail:yxf5807@163.com


摘要
HTML全文
(5)(4)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本试验以黄瓜与西芹间作种植模式为处理,黄瓜单作和西芹单作种植模式为对照,利用Illumina公司Miseq平台对上述不同处理土壤进行16S rDNA细菌群落多样性高通量测序分析和田间接种黄瓜枯萎病菌,探讨黄瓜与西芹间作模式土壤细菌的多样性及其对田间黄瓜枯萎病发生的影响。16S rDNA测序结果表明,黄瓜与西芹间作土壤的细菌物种总数最多,群落多样性水平最高,与对照相比显著提高了土壤细菌observedspecies指数、Shannon指数和Chao1指数(P < 0.05);Beta多样性聚类分析表明,黄瓜与西芹间作土壤的环境群落物种与黄瓜单作和西芹单作有一定差异性。在门分类水平上,共检测到45个菌门,其中变形菌门占明显优势,其次为酸杆菌门和放线菌门等;黄瓜与西芹间作土壤细菌种类所占比例最高,达98.63%。在属水平上,共检测到428类菌属,GP6、GP16、GP4、芽单胞菌属、节细菌属5属的丰度值较大;黄瓜与西芹间作土壤的节细菌属分布比例最高,红游动菌属、鞘氨醇单胞菌属和芽球菌属丰度值较大,为黄瓜与西芹间作土壤细菌明显优势菌属。田间接种黄瓜枯萎病菌试验结果表明,采用上述3种不同种植模式土壤种植黄瓜,在黄瓜苗期接种黄瓜枯萎病菌,黄瓜与西芹间作处理的黄瓜枯萎病的田间发病率较西芹单作和黄瓜单作分别降低57.03%~63.54%和66.95%~72.15%。因此,黄瓜与西芹间作增加了土壤细菌群落多样性,降低了黄瓜枯萎病的发病率,对后茬黄瓜土传病害防控具有一定科学指导意义。
关键词:黄瓜枯萎病/
黄瓜与西芹间作/
16S rDNA测序/
土壤细菌多样性/
田间发病率/
菌群丰度
Abstract:Cucumber wilt is a soil disease that is highly prevalent in the production and cultivation of cucumber. The disease is highly difficult to prevent and cure. A number of studies have shown that intercropping was one of the most effective methods of reducing the occurrence of plant soil diseases. Also celery has been proven to have high allelopathy. To explore the application of allelopathic effects of celery on cucumber fusarium wilt control, we conducted cucumber and celery intercropping experiment. In the experiment, three planting patterns were set, which were cucumber-celery intercropping, celery monocropping and cucumber monocropping. The cucumber-celery intercropping pattern was regarded as treatment group and monocropping patterns of celery and cucumber regarded as the control group. The Miseq platform of Illumina Company was used to analyze 16S rDNA bacterial community diversity through high-throughput sequencing to discuss the influence of cucumber-celery intercropping on cucumber soil bacterial diversity. Cucumber was planted in soil from different planting patterns and inoculated with Fusarium oxysporium f.sp.cucumerinum (Foc) in the pot experiment to investigate the control effect of cucumber-celery intercropping on cucumber fusarium wilt. The 16S rDNA sequencing results showed that total bacterial species amount and community diversity were highest in soil under cucumber-celery intercropping, which significantly enhanced observed bacteria species index, Shannon index and Chao1 index (P < 0.05). Beta diversity clustering analysis showed there existed a difference in environmental community species between soil from cucumber-celery intercropping and mono-cropped cucumber or celery. Moreover, 15 bacterial phyla were detected. Proteobacteria, which was followed by Acidobacteria and Actinobacteria, had a distinct advantage (35.7%-38.0%). Then the proportion of bacterial species derived from cucumber-celery intercropped soil was highest (98.63%). About 428 bacterial genera were detected with 5 dominant bacterial genera, which were GP6, GP16, GP4, Gemmatimonas and Arthrobacter. Arthrobacter, Rhodoplanes, Sphingomonas and Blastococcus were dominant bacteria genera in cucumber-celery inter-cropped soil. The 4 genera demonstrated that cucumber and celery intercropping enriched the diversity of bacterial communities compared with monocropped celery or cucumber. The results of fusarium wilt inoculation experiment of cucumber suggested that the control efficiency of cucumber-celery intercropping to cucumber fusarium wilt reached 57.03%-63.54% and 66.95%-72.15% relative to monocroped celery and cucumber, respectively. Therefore cucumber-celery intercropping increased the diversity of bacterial communities, and reduced incidence rate of cucumber fusarium wilt. This was of scientific interest for the prevention and control of soil borne diseases.
Key words:Cucumber fusarium wilt/
Cucumber-celery intercropping/
16S rDNA sequencing/
Soil bacterial diversity/
Field incidence/
Bacteria abundance

HTML全文


图1不同处理土壤细菌OUT分布venn图
XD、HD、JZ分别代表西芹单作、黄瓜单作和黄瓜与西芹间作。
Figure1.Venn diagram illustrating OUT (Operational Taxonomy Unit) distribution of soil bacteria under different treatments
XD, HD, and JZ indicate celery monoculture, cucumber monoculture and cucumber-celery intercropping, respectively.


下载: 全尺寸图片幻灯片


图2不同处理样品土壤细菌群落的聚类树形图
XD、HD、JZ分别代表西芹单作、黄瓜单作和黄瓜与西芹间作。1、2和3为各处理的重复。
Figure2.Clustering tree diagram of bacteria communities of soil samples of different treatments
XD, HD, and JZ indicate celery monoculture, cucumber monoculture and cucumber-celery intercropping, respectively. 1, 2 and 3 show replicates of treatments.


下载: 全尺寸图片幻灯片


图3不同处理土壤细菌门水平的物种分类热图
XD、HD、JZ分别代表西芹单作、黄瓜单作和黄瓜与西芹间作。
Figure3.Heat map describing bacterial species classification at the phylum level under different treatments
XD, HD, and JZ indicate celery monoculture, cucumber monoculture and cucumber-celery intercropping, respectively.


下载: 全尺寸图片幻灯片


图4不同处理土壤细菌属水平上的群落组成
XD、HD、JZ分别代表西芹单作、黄瓜单作和黄瓜与西芹间作。
Figure4.Community composition of soil bacteria at the genus level under different treatments
XD, HD, and JZ indicate celery monoculture, cucumber monoculture and cucumber-celery intercropping, respectively.


下载: 全尺寸图片幻灯片


图5不同处理土壤细菌属水平上的物种分类热图
Figure5.Heat map describing bacterial species classification at the genus level under different treatments


下载: 全尺寸图片幻灯片

表1不同处理土壤细菌Alpha多样性指数分析
Table1.Alpha diversity indexes of soil bacteria under different treatments
处理
Treatment
Observed species指数
Observed species index
Shannon指数
Shannon index
Chao1指数
Chao1 index
Simpson指数
Simpson index
黄瓜与西芹间作
Cucumber-celery intercropping
3 462.67±64.25a10.93±0.05a5 959.99±131.10a1
西芹单作Celery monoculture3 042.33±96.43c10.57±0.07b5 192.81±253.13c1
黄瓜单作Cucumber monoculture3 245.67±81.27b10.71±0.07b5 542.34±157.03b1
同列不同小写字母表示0.05水平差异显著。Data with different lowercase letters in the same column are significantly different at 0.05 level.


下载: 导出CSV
表2Weighted unifrac法计算的不同处理样品土壤细菌群落间的距离
Table2.Intersample distances calculated using the method of weighted unifrac of bacteria communities of soil samples of different treatments
土样
Soil sample
HD1HD2HD3JZ1JZ2JZ3XD1XD2XD3
XD10.170.140.150.130.130.160.000.120.15
XD20.140.150.180.110.120.190.120.000.11
XD30.150.160.160.130.140.190.150.110.00
HD10.000.180.220.140.150.240.170.140.15
HD20.180.000.160.140.150.180.140.150.16
HD30.220.160.000.170.170.120.150.180.16
JZ10.140.140.170.000.100.190.130.110.13
JZ20.150.150.170.100.000.190.130.120.14
JZ30.240.180.120.190.190.000.160.190.19
XD、HD、JZ分别代表西芹单作、黄瓜单作和黄瓜与西芹间作。1、2和3为各处理的重复。XD, HD, and JZ indicate celery monoculture, cucumber monoculture and cucumber-celery intercropping, respectively. 1, 2 and 3 show replicates of treatments.


下载: 导出CSV
表3不同处理土壤细菌在门水平上的群落组成
Table3.Community composition of soil bacteria at the phylum level under different treatments
菌门
Bacterial phylum
Read数
Reads
比例
Ratio (%)
菌门比例Phylum ratio (%)
XDHDJZ
变形菌门Proteobacteria41 24635.6936.67±1.19a36.77±6.56a33.63±5.31b
酸杆菌门Acidobacteria25 08321.7320.67±2.21a21.63±5.75a22.90±6.16a
放线菌门Actinobacteria19 79917.4417.70±2.05b16.43±0.98b18.20±0.46a
绿弯菌门Chloroflexi7 2906.306.20±0.26b5.97±0.76b6.73±0.84a
芽单胞菌门Gemmatimonadetes5 9025.325.20±0.46b4.90±0.50b5.87±0.50a
厚壁菌门Firmicutes5 3544.604.97±0.51a4.57±0.67a4.27±0.95b
拟杆菌门Bacteroidetes3 9973.432.97±0.15b3.60±0.56a3.73±0.55a
硝化螺旋菌门Nitrospirae2 0881.771.73±0.40b1.67±0.46b1.90±0.26a
浮霉菌门Planctomycetes1 0470.900.80±0.10b1.03±0.21a0.87±0.25b
疣微菌门Verrucomicrobia5890.500.53±0.21a0.43±0.12b0.53±0.21a
Candidatus saccharibacteria5430.480.43±0.06b0.43±0.06b0.57±0.15a
Latescibacteria2320.180.13±0.06c0.23±0.06a0.17±0.12b
迷踪菌门Elusimicrobia2760.240.23±0.06b0.23±0.06b0.27±0.12a
OD11400.190.13±0.06b0.13±0.06b0.17±0.06a
WS31440.120.10±0.00a0.17±0.06a0.10±0.00a
绿菌门Chlorobi1180.110.10±0.00a0.10±0.10a0.13±0.06a
OP31000.090.10±0.00a0.10±0.10a0.07±0.06a
TM7700.070.07±0.06a0.07±0.06a0.07±0.06a
无类别的Unclassified1420.110.13±0.06a0.10±0.00a0.10±0.00a
表中只列出门分类水平上菌群丰度百分比≥0.1%的菌门。同行不同小写字母表示0.05水平差异显著。XD、HD、JZ分别代表西芹单作、黄瓜单作和黄瓜与西芹间作。Only phyla with ≥0.1% abundance percentages were listed. Data with different lowercase letters in the same line are significantly different at 0.05 level. XD, HD, and JZ indicate celery monoculture, cucumber monoculture and cucumber-celery intercropping, respectively.


下载: 导出CSV
表4不同处理土壤对黄瓜枯萎病发病及防治效果的影响
Table4.Effect of soils of different treatments on morbidity and control efficiency of cucumber fusarium wilt
处理
Treatment
接种后7 d
7 d after inoculation
接种后9 d
9 d after inoculation
接种后11 d
11 d after inoculation
接种后13 d
13 d after inoculation
接种后15 d
15 d after inoculation
病情指数
Disease index
防治效果
Control efficiency(%)
病情指数
Disease index
防治效果
Control efficiency(%)
病情指数
Disease index
防治效果
Control efficiency(%)
病情指数
Disease index
防治效果
Control efficiency(%)
病情指数
Disease index
防治效果
Control efficiency(%)
黄瓜与西芹间作
Cucumber-celery intercropping
13.41c16.68c17.56c19.38c19.69c
西芹单作
Celery monoculture
31.21b57.03b40.56b58.88b46.72b62.41b53.16b63.54b53.67b63.31b
黄瓜单作
Cucumber monoculture
40.57a66.95a55.73a70.07a62.24a71.79a69.58a72.15a69.74a71.77a
同列不同小写字母表示0.05水平差异显著。Data with different lowercase letters in the same column are significantly different at 0.05 level.


下载: 导出CSV

参考文献(27)
[1]DE BOER M, BORN P, KINDT F, et al. Control of fusarium wilt of radish by combining pseudomonas putida strains that have different disease-suppressive mechanisms[J]. Phytopathology, 2003, 93(5):626-632 doi: 10.1094/PHYTO.2003.93.5.626
[2]苏阿德, 谢关林, 李斌, 等.芽孢杆菌在促进番茄生长和控制青枯病上的比较优势[J].浙江大学学报:农业与生命科学版, 2004, 30(6):603-610 http://www.cqvip.com/QK/94288A/200406/11163716.html
SU A D, XIE G L, LI B, et al. Comparative performance of Bacillus spp. in growth promotion and suppression of tomato bacterial wilt caused by Ralstonia solanacearum[J]. Journal of Zhejiang University:Agriculture and Life Sciences, 2004, 30(6):603-610 http://www.cqvip.com/QK/94288A/200406/11163716.html
[3]高芬, 马利平, 乔雄梧, 等.蜡质芽孢杆菌BC98-Ⅰ发酵液与抑菌粗提物对黄瓜枯萎病菌的抑菌特性研究[J].中国生态农业学报, 2006, 14(1):189-192 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2006156&flag=1
GAO F, MA L P, QIAO X W, et al. The antimicrobial characters of the fermenting liquor of BC98-Ⅰ (B. cereus) and its antifungal crude extraction on Fusarium oxysporum (Schl.) f. sp. cucumerinum Owen[J]. Chinese Journal of Eco-Agriculture, 2006, 14(1):189-192 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2006156&flag=1
[4]徐美娜, 王光华, 靳学慧.土传病害生物防治研究进展[J].吉林农业科学, 2005, 30(2):39-42 https://wenku.baidu.com/view/10916d2d9ec3d5bbfc0a7485.html
XU M N, WANG G H, JIN X H. Progress in studies on biological control of soil mediated diseases[J]. Journal of Jilin Agricultural Sciences, 2005, 30(2):39-42 https://wenku.baidu.com/view/10916d2d9ec3d5bbfc0a7485.html
[5]吴敏娜, 张惠文, 李新宇, 等.土壤抑真菌作用与细菌群落结构的关系[J].应用生态学报, 2008, 19(7):1574-1578 http://www.cjae.net/CN/article/downloadArticleFile.do?attachType=PDF&id=10768
WU M N, ZHANG H W, LI X Y, et al. Relationship between fungistasis of soil and bacterial community structure[J]. Chinese Journal of Applied Ecology, 2008, 19(7):1574-1578 http://www.cjae.net/CN/article/downloadArticleFile.do?attachType=PDF&id=10768
[6]YANG C H, CROWLEY D E, MENGE J A. 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and phytophthora infected avocado roots[J]. FEMS Microbiology Ecology, 2001, 35(2):129-136 doi: 10.1111/fem.2001.35.issue-2
[7]ZHU Y Y, CHEN H R, FAN J H, et al. Genetic diversity and disease control in rice[J]. Nature, 2000, 406(6797):718-722 doi: 10.1038/35021046
[8]GóMEZ-RODRíGUEZ O, ZAVALETA-MEJíA E, GONZá1EZHEMáNDEZ V A, et al. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development[J]. Field Crops Research, 2003, 83(1):27-34 doi: 10.1016/S0378-4290(03)00053-4
[9]REN L X, SU S M, YANG X M, et al. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon[J]. Soil Biology and Biochemistry, 2008, 40(3):834-844 doi: 10.1016/j.soilbio.2007.11.003
[10]董艳, 董坤, 郑毅, 等.不同品种小麦与蚕豆间作对蚕豆枯萎病的防治及其机理[J].应用生态学报, 2014, 25(7):1979-1987 https://wenku.baidu.com/view/9ee5dd019b6648d7c1c7469f.html
DONG Y, DONG K, ZHENG Y, et al. Faba bean fusarium wilt (Fusarium oxysporum) control and its mechanism in different wheat varieties and faba bean intercropping system[J]. Chinese Journal of Applied Ecology, 2014, 25(7):1979-1987 https://wenku.baidu.com/view/9ee5dd019b6648d7c1c7469f.html
[11]苏世鸣. 西瓜与旱作水稻间作抑制西瓜连作枯萎病及其机理[D]. 南京: 南京农业大学, 2007
SU S M. Decreasing Fusarium wilt of watermelon in continuing cropping system by intercropping with aerobic rice[D]. Nanjing:Nanjing Agricultural University, 2007
[12]高晓敏, 王琚钢, 李杰, 等.西芹鲜根丙酮浸提物层析流分对黄瓜枯萎病菌的化感作用以及化感物质鉴定[J].中国生态农业学报, 2014, 22(11):1364-1371 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20141115&flag=1
GAO X M, WANG J G, LI J, et al. Allelopathic effects of fresh parsley root acetone extracts on Fusarium oxysporum f. sp. cucumberinum and allelochemicals identification[J]. Chinese Journal of Eco-Agriculture, 2014, 22(11):1364-1371 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20141115&flag=1
[13]钱程, 云兴福, 高晓敏, 等.西芹鲜根浸提液作用后黄瓜枯萎病菌弱毒菌株的筛选[J].中国生态农业学报, 2013, 21(5):606-614 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013512&flag=1
QIAN C, YUN X F, GAO X M, et al. Screening of virulenceattenuated strains for Fusarium oxysporum f. sp. cucumerinum after treatment with parsley fresh root extract[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5):606-614 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013512&flag=1
[14]包妍妍, 云兴福, 张东东, 等.西芹根物质浸提液处理后黄瓜叶片内几种氮代谢物质含量的变化[J].中国生态农业学报, 2012, 20(11):1508-1513 http://www.oalib.com/paper/4407368
BAO Y Y, YUN X F, ZHANG D D, et al. Nitrogen metabolites in cucumber leaves treated with parsley root extracts[J]. Chinese Journal of Eco-Agriculture, 2012, 20(11):1508-1513 http://www.oalib.com/paper/4407368
[15]MACDONALD C A, THOMAS N, ROBINSON L, et al. Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata[J]. Soil Biology Biochemistry, 2009, 41(8):1642-1651 doi: 10.1016/j.soilbio.2009.05.003
[16]WHITNEY D, ROSSMAN A, HAYDEN N. Evaluating an existing subsurface flow constructed wetland in Akumal, Mexico[J]. Ecological Engineering, 2003, 20(1):105-111 doi: 10.1016/S0925-8574(02)00144-1
[17]王玉彦, 吴凤芝, 周新刚.不同间作模式对设施黄瓜生长及土壤环境的影响[J].中国蔬菜, 2009, (16):8-13 http://www.cnveg.org/CN/abstract/abstract9853.shtml
WANG Y Y, WU F Z, ZHOU X G. Effects of different intercropping patterns on the growth of cucumber in greenhouse and soil environment[J]. China Vegetables, 2009, (16):8-13 http://www.cnveg.org/CN/abstract/abstract9853.shtml
[18]吴凤芝, 周新刚.不同作物间作对黄瓜病害及土壤微生物群落多样性的影响[J].土壤学报, 2009, 46(5):899-906 doi: 10.11766/trxb200804020519
WU F Z, ZHOU X G. Effect of intercropping of cucumber with different crops on cucumber diseases and soil microbial community diversity[J]. Acta Pedologica Sinica, 2009, 46(5):899-906 doi: 10.11766/trxb200804020519
[19]高晓敏, 王琚钢, 云兴福, 等.西芹醇层物对黄瓜枯萎病菌的化感作用及化感物质鉴定[J].中国生物防治学报, 2017, 33(2):281-288 https://mall.cnki.net/lunwen-1013245524.html
GAO X M, WANG J G, YUN X F, et al. Allelopathic effects of fresh parsley root ethanol extracts on Fusarium oxysporum f. sp. cucumberinum and allelochemicals identification[J]. Chinese Journal of Biological Control, 2017, 33(2):281-288 https://mall.cnki.net/lunwen-1013245524.html
[20]焦中志, 李相昆, 张立成, 等.反硝化聚磷菌菌种筛分与除磷特性分析[J].沈阳建筑大学学报:自然科学版, 2009, 25(3):535-540 https://wenku.baidu.com/view/dcc8330abb68a98271fefa30.html
JIAO Z Z, LI X K, ZHANG L C, et al. Isolation and characteristic of denitrifying phosphorus accumulating organism[J]. Journal of Shenyang Architecture University:Natural Science, 2009, 25(3):535-540 https://wenku.baidu.com/view/dcc8330abb68a98271fefa30.html
[21]单娜娜, 赖波.风沙土成土演变过程中土壤微生物生物学特性研究进展与展望[J].新疆环境保护, 2004, 26(S1):79-82 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjhjbh2004z1020
SHAN N N, LAI B. Study progresses and prospect on the ecological characteristics of soil-inhabiting microorganism in soil forming process of Aeolian sand soil[J]. Environmental Protection of Xinjiang, 2004, 26(S1):79-82 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjhjbh2004z1020
[22]孙红敏, 余利岩, 张玉琴.地嗜皮菌科放线菌的研究进展[J].微生物学报, 2015, 55(12):1521-1529 http://journals.im.ac.cn/actamicrocn/ch/reader/create_pdf.aspx?file_no=201512-1&flag=1&journal_id=actamicrocn&year_id=2015
SUN H M, YU L Y, ZHANG Y Q. Recent advance in Geodermatophilaceae-A review[J]. Acta Microbiologica Sinica, 2015, 55(12):1521-1529 http://journals.im.ac.cn/actamicrocn/ch/reader/create_pdf.aspx?file_no=201512-1&flag=1&journal_id=actamicrocn&year_id=2015
[23]GARBEVA P, VAN VEEN J A, VAN ELSAS J D. Microbial diversity in soil:Selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology, 2004, 42:243-270 doi: 10.1146/annurev.phyto.42.012604.135455
[24]GORISSEN A, VAN OVERBEEK L S, VAN ELSAS J D. Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil[J]. Canadian Journal of Microbiology, 2004, 50(8):587-593 doi: 10.1139/w04-042
[25]BENIZRI E, PIUTTI S, VERGER S, et al. Replant diseases:bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting[J]. Soil Biology and Biochemistry, 2005, 37(9):1738-1746 doi: 10.1016/j.soilbio.2005.02.009
[26]邓晓, 李勤奋, 侯宪文, 等.香蕉枯萎病不同感病级别植株根际与非根际土壤微生物物种多样性研究[J].中国农学通报, 2012, 28(30):239-248 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201230047.htm
DENG X, LI Q F, HOU X W, et al. Study on the microbial species diversity of rhizosphere and non-rhizosphere soils from different grades infected by banana fusarium wilt[J]. Chinese Agricultural Science Bulletin, 2012, 28(30):239-248 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201230047.htm
[27]GARBEVA P, VAN VEEN J A, VAN ELSAS J D. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes[J]. FEMS Microbiology Ecology, 2004, 47(1):51-64 doi: 10.1016/S0168-6496(03)00234-4

相关话题/土壤 图片 比例 微生物 物质