删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

种植苹果树对渭北果园土壤胶结物质分布的影响

本站小编 Free考研考试/2022-01-01

魏彬萌1,,
王益权1,,,
李忠徽2
1.陕西地建土地工程技术研究院有限责任公司/陕西省土地工程建设集团有限责任公司/国土资源部退化及未利用土地整治重点实验室 西安 710075
2.西北农林科技大学资源环境学院 杨凌 712100
基金项目: 退化及未利用土地整治工程创新团队项目2016KCT-23

详细信息
作者简介:魏彬萌, 研究方向为土壤物理与改良。E-mail:weibinmeng@126.com
通讯作者:王益权, 主要从事土壤物理及改良方面的研究。E-mail:442516031@qq.com
中图分类号:S152.4

计量

文章访问数:628
HTML全文浏览量:0
PDF下载量:528
被引次数:0
出版历程

收稿日期:2018-03-21
录用日期:2018-06-03
刊出日期:2018-11-01

Effects of planting apple trees on distribution of soil cementing materials in Weibei apple orchards

WEI Binmeng1,,
WANG Yiquan1,,,
LI Zhonghui2
1. Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd. /Shaanxi Provincial Land Engineering Construction Group Co., Ltd. /Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Land and Resources, Xi'an 710075, China
2. College of Resources and Environment, Northwest A & F University, Yangling 712100, China
Funds: the Degraded and Unutilized Land Renovation Engineering Innovation Team Project2016KCT-23

More Information
Corresponding author:WANG Yiquan, E-mail:442516031@qq.com


摘要
HTML全文
(4)(2)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本研究通过系统研究种植果树对土壤胶结性物质的演化规律及其与土壤团聚体稳定性之间关系的影响,探索影响果园土壤团聚体状态的因素,以期为果园科学管理提供理论依据。在渭北旱塬苹果主产区分别选取10 a、20 a的苹果园和农田(冬小麦-夏玉米轮作,对照)各4个,在果树冠层投影范围内距树干2/3处逐层采集0~100 cm土层土壤样品和0~50 cm土层原状土壤样品,研究不同植果年限果园及农田土壤剖面黏粒、有机质、CaCO3等团聚体胶结物质的分布及其与团聚体稳定性之间的关系。结果发现:在0~100 cm土层范围内,各果园土壤黏粒含量基本随土层深度的增加而递增,且在0~40 cm土层表现为农田 > 10 a果园 > 20 a果园,40 cm以下土层则呈现相反的态势;种植果树相比农田可显著增加0~100 cm土层土壤有机质总储量,但随着种植果树年限的增加,土壤有机质总储量呈递减趋势;在0~100 cm土层土壤CaCO3总储量表现为10 a果园 > 农田 > 20 a果园,但在0~40 cm土层CaCO3含量及储量表现为10 a果园 > 农田 > 20 a果园,而40~100 cm土层则为20 a果园 > 10 a > 农田。皮尔森相关分析发现 > 0.25 mm土壤团聚体的数量和平均重量直径(MWD)与土壤黏粒、有机质和CaCO3含量密切相关,其中机械稳定性团聚体的数量和稳定性主要受土壤中CaCO3、有机质含量的影响,水稳性团聚体的数量和稳定性主要受土壤中黏粒和CaCO3的影响。总之,植果显著改变了土壤中黏粒、有机质、CaCO3的演化过程和趋势,随植果年限增加,果园土壤黏粒和CaCO3在土壤较深土层淋溶淀积明显;各果园土壤有机质总储量虽然高于农田,但随植果年限增加,有逐渐减少的趋势。可见植果明显加速了渭北黄土塬地土壤的残积黏化和钙化过程,影响着表层土壤团聚作用和底层土壤的紧实化和坚硬化程度。
关键词:苹果园/
种植年限/
土壤胶结物质/
黏粒/
有机质/
CaCO3/
团聚体
Abstract:The aim of this study was to explore the effects of planting apple trees on soil cementation substances, to determine the relationship between soil aggregate stability and soil cementation substances, to reveal the factors affecting soil aggregate state and to build theoretical basis for the scientific management of apple orchard in Weibei Plateau. Four replicates of 10-year-old and 20-year-old orchards and four farmlands (wheat-corn rotation, CK) were selected for the experiment in Binxian County, Shaanxi Province. Soil samples within two-thirds of the radius of apple tree canopy were collected. Four replicates of undisturbed core samples were taken by driving volumetric rings (100 cm3) into the 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm and 40-50 cm soil layers to determine soil aggregates. Another four replicates were collected from 10 cm and 20 cm intervals respectively over a depth of 0-60 cm and 60-100 cm in each plot to determine the soil contents of clay, organic matter (SOM) and calcium carbonate (CaCO3) contents. The results showed that soil clay content increased with increasing depth in the 0-100 cm soil layer. The increase was in the order of farmland > 10-year-old orchard > 20-year-old orchard for the 0-40 cm soil layer and reverse order was noted for the 40-100 cm soil layer. Planting apple trees increased SOM content in the 0-100 cm soil layer of the orchard. However, SOM content decreased with increasing planting age of orchard. The content of soil CaCO3 was in the order of 10-year-old orchard > farmland > 20-year-old orchard for the 0-40 cm soil layer, 20-year-old orchard > 10-year-old orchard > farmland for the 40-100 cm soil layer, and 10-year-old orchard > farmland > 20-year-old orchard for the 0-100 cm soil layer. Pearson correlation analysis showed that the quantity and mean weight diameter (MWD) of > 0.25 mm soil aggregates were closely link to soil clay, SOM and CaCO3 contents. Macro aggregates (> 0.25 mm) and MWD of mechanically stable aggregates were mainly affected by CaCO3 and SOM contents. However, the quantity and stability of water stable aggregates were mainly affected by soil clay and CaCO3 contents. Overall, planting apple trees changed the evolution processes of soil clay, SOM and CaCO3. Soil clay and CaCO3 migrated to deep soil with increasing age of orchard. The total storage of SOM in orchard was higher than that in farmland, but decreased with increasing planting age. It was concluded that planting apple trees enhanced soil residual viscosity and calcification, which affected aggregation of surface soil and compaction and hardness of bottom soil.
Key words:Apple orchard/
Planting age/
Soil cementing materials/
Soil clay/
Soil organic matter/
CaCO3/
Soil aggregate

HTML全文


图1农田及不同园龄果园不同土层土壤黏粒含量的变化
10a: 10 a果园; 20a: 20 a果园。
Figure1.Soil clay contents in different soil layers of farmland and orchards with different planting ages
10a: 10 years orchard; 20a: 20 years orchard.


下载: 全尺寸图片幻灯片


图2农田及不同园龄果园不同土层土壤有机质含量的变化
10a: 10 a果园; 20a: 20 a果园。
Figure2.Soil organic matter contents in different soil layers of farmland and orchards with different planting ages
10a: 10 years orchard; 20a: 20 years orchard.


下载: 全尺寸图片幻灯片


图3农田及不同园龄果园土壤有机质储量的变化
10a: 10 a果园; 20a: 20 a果园。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure3.Soil organic matter storages in farmland and orchards with different planting ages
10a: 10 years orchard; 20a: 20 years orchard. Different lowercase letters mean significant differences at 0.05 level.


下载: 全尺寸图片幻灯片


图4农田及不同园龄果园不同土层土壤CaCO3含量的变化
10a: 10 a果园; 20a: 20 a果园。
Figure4.Soil CaCO3 contents in different layers of farmland and orchards with different planting ages
10a: 10 years orchard; 20a: 20 years orchard.


下载: 全尺寸图片幻灯片

表1农田及不同园龄果园不同土层土壤CaCO3储量变化
Table1.Soil CaCO3 storages in different soil layers of farmland and orchards with different planting ages
kg·m-2
土层
Soil depth (cm)
园龄?Planting age of orchard (a) 农田
Farmland
10 20
0~40 49.15±1.03a 27.07±0.96c 44.60±1.13b
40~100 28.35±0.49b 35.68±1.03a 24.41±0.53c
0~100 77.50±1.48a 62.75±1.25c 69.01±1.41b
??同行不同小写字母表示不同处理间差异显著(P < 0.05)。Different small letters in the same line indicate significant differences among treatments at 0.05 level.


下载: 导出CSV
表2果园土壤不同胶结物质与团聚体稳定性指标间的相关性
Table2.Correlation between soil binding materials and aggregate stability indexes in apple orchard soils
胶结物质
Binding material
DR0.25 MWDD WR0.25 MWDW
黏粒Clay 0.21 -0.01 -0.50* -0.37*
CaCO3 0.52* 0.58* 0.82** 0.53*
有机质Organic matter -0.88** -0.86** 0.19 0.30
??DR0.25: > 0.25 mm机械稳定性团聚体含量; MWDD:机械稳定性团聚体平均重量直径; WR0.25: > 0.25 mm水稳性团聚体含量; MWDW:水稳性团聚体平均重量直径。***分别表示相关性达显著(P < 0.05)和极显著水平(P < 0.01)。DR0.25: content of > 0.25 mm mechanical-stable aggregates; MWDD: mean weight diameter of mechanical-stable aggregates; WR0.25: content of > 0.25 mm water-stable aggregates; MWDW: mean weight diameter of water-stable aggregates. * and ** represent significant correlation at 5% and 1% levels, respectively.


下载: 导出CSV

参考文献(36)
[1]彭新华, 张斌, 赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报, 2004, 41(4):618-623 doi: 10.3321/j.issn:0564-3929.2004.04.019
PENG X H, ZHANG B, ZHAO Q G. A review on relationship between soil organic carbon pools and soil structure stability[J]. Acta Pedologica Sinica, 2004, 41(4):618-623 doi: 10.3321/j.issn:0564-3929.2004.04.019
[2]姚贤良, 于德芬.赣中丘陵地区红壤及红壤性水稻土的胶结物质及其与土壤结构形成的关系[J].土壤学报, 1964, (1):43-45 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003129924
YAO X L, YU D F. The cementing material of red soil and red loam paddy soil in hilly region and its relationship with soil structure[J]. Acta Pedologica Sinica, 1964, (1):43-45 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003129924
[3]张耀方, 赵世伟, 王子龙, 等.黄土高原土壤团聚体胶结物质的分布及作用综述[J].中国水土保持科学, 2015, 13(5):146-150 http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201505022
ZHANG Y F, ZHAO S W, WANG Z L, et al. Distribution and function of cementing materials of soil aggregates on the Loess Plateau, Western China[J]. Science of Soil and Water Conservation, 2015, 13(5):146-150 http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201505022
[4]熊毅, 许冀泉, 蒋剑敏.中国土壤胶体研究——Ⅰ.黄土胶体的矿物组成和性质[J].土壤学报, 1958, 6(2):89-98 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TRXB195802000&dbname=CJFD&dbcode=CJFQ
XIONG Y, XU Y Q, JIANG J M. Soil colloids in China:Ⅰ. Mineral composition and properties of loess colloids[J]. Acta Pedologica Sinica, 1958, 6(2):89-98 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TRXB195802000&dbname=CJFD&dbcode=CJFQ
[5]徐建民, 赛夫, 袁可能.土壤有机矿质复合体研究Ⅸ.钙键复合体和铁铝键复合体中腐殖质的性状特征[J].土壤学报, 1999, 36(2):168-178 doi: 10.3321/j.issn:0564-3929.1999.02.004
XU J M, SAI F, YUAN K N. Studies on organo-mineral complexes in soil Ⅸ. Characteristics of humus in calcium-bound and iron/aluminum-bound organo-mineral complexes in soil[J]. Acta Pedologica Sinica, 1999, 36(2):168-178 doi: 10.3321/j.issn:0564-3929.1999.02.004
[6]EMERSON E E. The structure of soil crumbs[J]. Journal of Soil Science, 1959, 10(2):233-244 doi: 10.1111/j.1365-2389.1959.tb02346.x/full
[7]黄昌勇.土壤学[M].北京:中国农业出版社, 2000
HUANG C Y. Soil Science[M]. Beijing:China Agriculture Press, 2000
[8]JIAO F, WEN Z M, AN S S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China[J]. Catena, 2011, 86(2):110-116 doi: 10.1016/j.catena.2011.03.001
[9]AN S S, MENTLER A, MAYER H, et al. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China[J]. Catena, 2010, 81(3):226-233 doi: 10.1016/j.catena.2010.04.002
[10]关连珠, 张伯泉, 颜丽.不同肥力黑土、棕壤微团聚体组成及其胶结物质的研究[J].土壤学报, 1991, 28(3):260-267 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199103003.htm
GUAN L Z, ZHANG B Q, YAN L. Composition of microaggregate and cementing substances in black soil and brown forest soil with different fertility levels[J]. Acta Pedologica Sinica, 1991, 28(3):260-267 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199103003.htm
[11]刘东升.黄土的物质成分和结构[M].北京:科学出版社, 1966:42-68
LIU D S. Material Composition and Structure of Loess[M]. Beijing:Science Press, 1966:42-68
[12]EDWARDS A P, BREMNER J M. Microaggregates in soils[J]. Journal of Soil Science, 1967, 18(1):64-73 doi: 10.1111/ejs.1967.18.issue-1
[13]BARRETO R C, MADARI B E, MADDOCK J E L. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a rhodic ferralsol in southern Brazil[J]. Agriculture, Ecosystems & Environment, 2009, 132(3/4):243-251 http://www.cabdirect.org/abstracts/20093208277.html
[14]姚贤良.土壤结构的肥力意义[J].土壤学报, 1965, 13(1):111-120 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003129971
YAO X L. The fertility significance of soil structure[J]. Acta Pedologica Sinica, 1965, 13(1):111-120 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003129971
[15]CLOUGH A, SKJEMSTAD J O. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate[J]. Australian Journal of Soil Research, 2000, 38(5):1005-1016 doi: 10.1071/SR99102
[16]薛彦飞, 薛文, 张树兰, 等.长期不同施肥对土团聚体胶结剂的影响[J].植物营养与肥料学报, 2015, 21(6):1622-1632 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZWYF201506031&dbname=CJFD&dbcode=CJFQ
XUE Y F, XUE W, ZHANG S L, et al. Effects of long-term fertilization regimes on changes of aggregate cementing agent of Lou Soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6):1622-1632 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZWYF201506031&dbname=CJFD&dbcode=CJFQ
[17]张义, 谢永生, 郝明德, 等.黄土塬面果园土壤养分特征及演变[J].植物营养与肥料学报, 2010, 16(5):1170-1175 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201005018
ZHANG Y, XIE Y S, HAO M D, et al. Characteristics and evolution of soil nutrients in apple orchards at the gully region of Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(5):1170-1175 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201005018
[18]李鹏, 李春越, 王益权, 等.施肥方式和园龄对洛川苹果园土壤钙素退化的影响[J].应用生态学报, 2017, 28(5):1611-1618 http://d.old.wanfangdata.com.cn/Periodical/yystxb201705026
LI P, LI C Y, WANG Y Q, et al. Effects of fertilizing regime and planting age on soil calcium decline in Luochuan apple orchards[J]. Chinese Journal of Applied Ecology, 2017, 28(5):1611-1618 http://d.old.wanfangdata.com.cn/Periodical/yystxb201705026
[19]刘文利, 吴景贵, 傅民杰, 等.种植年限对果园土壤团聚体分布与稳定性的影响[J].水土保持学报, 2014, 28(1):129-135 doi: 10.3969/j.issn.1009-2242.2014.01.025
LIU W L, WU J G, FU M J, et al. Effect of different cultivation years on composition and stability of soil aggregate fractions in orchard[J]. Journal of Soil and Water Conservation, 2014, 28(1):129-135 doi: 10.3969/j.issn.1009-2242.2014.01.025
[20]石宗琳, 王加旭, 梁化学, 等.渭北不同园龄苹果园土壤团聚体状况及演变趋势研究[J].土壤学报, 2017, 54(2):387-399 http://d.old.wanfangdata.com.cn/Periodical/trxb201702010
SHI Z L, WANG J X, LIANG H X, et al. Status and evolution of soil aggregates in apple orchards different in age in Weibei[J]. Acta Pedologica Sinica, 2017, 54(2):387-399 http://d.old.wanfangdata.com.cn/Periodical/trxb201702010
[21]孙蕾, 王益权, 张育林, 等.种植果树对土壤物理性状的双重效应[J].中国生态农业学报, 2011, 19(1):19-23 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110104&flag=1
SUN L, WANG Y Q, ZHANG Y L, et al. Dual effect of fruit tree cultivation on soil physical characteristics[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1):19-23 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110104&flag=1
[22]魏彬萌, 王益权.渭北果园土壤物理退化特征及其机理研究[J].植物营养与肥料学报, 2015, 21(3):694-701 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503016
WEI B M, WANG Y Q. Physical degradation characteristics and mechanism of orchard soil in Weibei Region[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3):694-701 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503016
[23]郑必昭.土壤分析技术指南[M].北京:中国农业出版社, 2012
ZHENG B Z. Analysis Method Guide for Soil[M]. Beijing:China Agriculture Press, 2012
[24]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000
[25]郭兆元.陕西土壤[M].北京:科学出版社, 1992:52-67
GUO Z Y. Shaanxi Soil[M]. Beijing:Science Press, 1992:52-67
[26]魏彬萌, 王益权, 石宗琳, 等.渭北苹果园土壤钙素退化状态[J].中国农业科学, 2015, 48(11):2199-2207 doi: 10.3864/j.issn.0578-1752.2015.11.011
WEI B M, WANG Y Q, SHI Z L, et al. Calcium degradation status of orchard soil in Weibei Region, Shaanxi Province, China[J]. Scientia Agricultura Sinica, 2015, 48(11):2199-2207 doi: 10.3864/j.issn.0578-1752.2015.11.011
[27]摄晓燕, 谢永生, 王辉, 等.黑垆土典型剖面养分分布特征及历史演变[J].江西农业学报, 2011, 23(8):1-4 doi: 10.3969/j.issn.1001-8581.2011.08.001
SHE X Y, XIE Y S, WANG H, et al. Characteristics of nutrient distribution on typical dark loessial soil profile and its historical evolution[J]. Acta Agriculturae Jiangxi, 2011, 23(8):1-4 doi: 10.3969/j.issn.1001-8581.2011.08.001
[28]王清奎, 汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报, 2005, 36(3):416-421 http://d.old.wanfangdata.com.cn/Periodical/trtb200503031
WANG Q K, WANG S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3):416-421 http://d.old.wanfangdata.com.cn/Periodical/trtb200503031
[29]王金贵, 王益权, 徐海, 等.关中农田土壤有机质和碳酸钙空间变异特征及其机理分析[J].干旱地区农业研究, 2009, 27(6):23-26 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200906005
WANG J G, WANG Y Q, XU H, et al. Spatial variability of soil organic matter and calcium carbonate and its reason in Guanzhong farmland[J]. Agricultural Research in the Arid Areas, 2009, 27(6):23-26 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200906005
[30]董莉丽.不同土地利用类型下土壤水稳性团聚体的特征[J].林业科学, 2011, 47(4):95-100 http://d.old.wanfangdata.com.cn/Periodical/lykx201104015
DONG L L. Characteristics of soil water stable aggregates under different land-use types[J]. Scientia Silvae Sinicae, 2011, 47(4):95-100 http://d.old.wanfangdata.com.cn/Periodical/lykx201104015
[31]刘威, 张国英, 张静, 等. 2种保护性耕作措施对农田土壤团聚体稳定性的影响[J].水土保持学报, 2015, 29(3):117-122 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201503023
LIU W, ZHANG G Y, ZHANG J, et al. Effects of two conservation tillage measures on soil aggregate stability[J]. Journal of Soil and Water Conservation, 2015, 29(3):117-122 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201503023
[32]李霄云, 王益权, 孙慧敏, 等.有机污染型灌溉水对土壤团聚体的影响[J].土壤学报, 2011, 48(6):1125-1132 http://d.old.wanfangdata.com.cn/Periodical/trxb201106003
LI X Y, WANG Y Q, SUN H M, et al. Effects of irrigation water polluted with organic contaminants on soil aggregates[J]. Acta Pedologica Sinica, 2011, 48(6):1125-1132 http://d.old.wanfangdata.com.cn/Periodical/trxb201106003
[33]郭玉文, 加藤诚, 宋菲, 等.黄土高原黄土团粒组成及其与碳酸钙关系的研究[J].土壤学报, 2004, 41(3):362-368 doi: 10.3321/j.issn:0564-3929.2004.03.006
GUO Y W, KATO M, SONG F, et al. Composition of loess aggregate and its relationship with CaCO3 on the loess plateau[J]. Acta Pedologica Sinica, 2004, 41(3):362-368 doi: 10.3321/j.issn:0564-3929.2004.03.006
[34]王子龙, 胡斐南, 赵勇钢, 等.土壤胶结物质分布特征及其对黄土大团聚体稳定性的影响[J].水土保持学报, 2016, 30(5):331-336 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201605055
WANG Z L, HU F N, ZHAO Y G, et al. Distribution characteristics of soil cementing material and its effect on Loess macro-aggregate stability[J]. Journal of Soil and Water Conservation, 2016, 30(5):331-336 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201605055
[35]徐爽, 王益权.不同类型土壤团聚体化学稳定性分析[J].农业机械学报, 2014, 45(4):173-178 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201404027
XU S, WANG Y Q. Chemical stability of aggregates under different types of soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4):173-178 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201404027
[36]BOUAJILA A, GALLALI T. Soil organic carbon fractions and aggregate stability in carbonated and no carbonated soils in Tunisia[J]. Journal of Agronomy, 2008, 7(2):127-137 doi: 10.3923/ja.2008.127.137

相关话题/土壤 农田 物质 果树 北京