删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

稻虾共作对稻田土壤<i>nirK</i>反硝化微生物群落结构和多样性的影响

本站小编 Free考研考试/2022-01-01

朱杰,
刘海,
吴邦魁,
袁峰,
刘章勇,
金涛,
长江大学湿地生态与农业利用教育部工程研究中心/湖北省涝渍灾害与湿地农业重点实验室 荆州 434025
基金项目: 国家重点研发计划项目2017YFD0800102

详细信息
作者简介:朱杰, 主要研究方向为土壤微生物分子生态。E-mail:hbzj0806@163.com
通讯作者:金涛, 主要研究方向为土壤碳氮循环与生态环境。E-mail:jintao165@126.com
中图分类号:S154.3

计量

文章访问数:1222
HTML全文浏览量:4
PDF下载量:861
被引次数:0
出版历程

收稿日期:2017-12-14
录用日期:2018-05-04
刊出日期:2018-09-01

Effects of integrated rice-crayfish farming system on community structure and diversity of nirK denitrification microbe in paddy soils

ZHU Jie,
LIU Hai,
WU Bangkui,
YUAN Feng,
LIU Zhangyong,
JIN Tao,
Yangtze University, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Jingzhou 434025, China
Funds: the National Key Research and Development Program of China2017YFD0800102

More Information
Corresponding author:JIN Tao, E-mail:jintao165@126.com


摘要
HTML全文
(4)(3)
参考文献(33)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:稻虾共作是水稻种植与克氏螯虾共作形成的互利共生的稻田种养复合生态模式。目前对稻虾共作模式稻田反硝化微生物多样性和群落结构的影响尚不清楚。本研究以江汉平原常规中稻模式(MR)为对照,设置连续3年(2014-2016年)稻虾共作模式(CR)为处理,通过特异引物提取中稻抽穗期稻田土壤nirK基因,采用Illumina Miseq高通量测序技术,探讨稻虾共作模式对稻田土壤nirK反硝化微生物多样性和群落结构的影响。结果表明:稻虾共作模式显著提升水稻抽穗期稻田土壤中硝态氮、全氮及全碳的含量,对土壤碳氮比、碱解氮和铵态氮含量没有显著影响。稻虾共作模式显著增加稻田土壤nirK基因微生物的丰富度指数,但对nirK基因微生物的多样性指数影响不显著。稻虾共作模式改变了nirK基因微生物在目、科、属、种水平的群落组成,较常规中稻模式,稻虾共作模式在各分类水平组成类群均减少;稻虾共作模式较常规中稻模式改变了目的种类,对共有目相对丰度没有显著性改变。RDA分析表明稻虾共作模式对土壤nirK基因菌群的群落结构有一定的改变,但稻虾共作模式与常规中稻模式在群落结构上仍保留着一定的相似性。硝态氮含量是影响nirK反硝化细菌群落结构的主效因子。可见,稻虾共作模式对微生物多样性指数没有显著影响,但显著增加了微生物丰富度指数,改变了稻田土壤nirK反硝化微生物在目、科、属、种的群落结构。
关键词:江汉平原/
稻虾共作/
克氏螯虾/
nirK基因/
反硝化微生物/
群落结构/
硝态氮/
高通量测序技术
Abstract:Integrated rice-crayfish farming system is a symbiotic ecological model applicable in paddy field cultivation that is based on the combination of rice planting and clawed crayfish breeding in waterlogged conditions. In spite of so many efforts, the effects of integrated rice-crayfish farming system on denitrifying micro-organism diversity and community structure have remained unclear. In this study, we analyzed soil samples from both consecutive treatment of integrated rice-crayfish farming system (CR) in 2014-2016 and traditional paddy field (MR) treatment in order to investigate the effects of integrated rice-crayfish farming system on microbial diversity and community structure of nirK denitrification in paddy soils.. This was done by extracting soil nirK gene from rice field at heading stage using specific primers and Illumina Miseq high-throughput sequencing technology. The results showed that CR significantly increased the contents of nitrate nitrogen, total nitrogen and total carbon in paddy soils at heading stage, but had no significant effect on the ratio of carbon to nitrogen, contents of available nitrogen and ammonium nitrogen in soil. Compared with MR, CR significantly increased nirK gene abundance in soil, but did not significantly change its diversity. CR treatment changed the composition of nirK gene micro-organisms in the levels of order, family, genus and species. Compared with MR, CR reduced all taxonomic groups. The analysis of relative abundance of order showed no significant difference between CR and MR treatments. CR treatment changed species order, but did not change the relative abundance of common orders. RDA analysis showed that CR significantly changed community structure of nirK gene in soil. Nitrate nitrogen content was the main factor affecting the community structure of nirK denitrifying bacteria. It was obvious that rice-crayfish farming system had no significant effect on microbial diversity, but significantly increased microbial abundance index. In addition, it changed nirK denitrifying microbial community structure in terms of order, family, genus and species.
Key words:Jianghan Plain/
Rice-crayfish farming system/
Clawed crayfish/
nirK gene/
Denitrification microbe/
Community structure/
Nitrate nitrogen/
High-through put sequencing technology

HTML全文


图1稻虾共作模式(CR)和常规中稻模式(MR)土壤样品OTU水平Coverage指数稀释性曲线
Figure1.Rarefaction curves of OTU level coverage indexes in soil samples of integrated rice-crayfish farming system (CR) and conventional middle rice system (MR)


下载: 全尺寸图片幻灯片


图2稻虾共作模式(CR)和常规中稻模式(MR)土壤样品nirK基因微生物物种分类学组成Venn图
a、b、c、d分别表示目、科、属、种4种分类学水平。
Figure2.Venn drawings of nirK gene species taxonomy of integrated rice-crayfish farming system (CR) and conventional middle rice system (MR)
a, b, c and d respectively show the taxonomic levels of order, family, genus and species.


下载: 全尺寸图片幻灯片


图3稻虾共作模式(CR)和常规中稻模式(MR)样品nirK基因目水平组成
Halobacteriales:盐细菌; Burkholderiales:伯克霍尔德氏菌; unclassified_c_Betaproteobacteria:未分类c-β蛋白酶细菌; unclassified_p_proteobacteria:未分类p-蛋白细菌; Rhizobiales:根瘤菌; unclassified_c__Alphaproteobacteria:未分类_c__α-蛋白细菌; Nitrosomonadales:亚硝化单胞菌目; Rhodospirillales:红螺菌目。
Figure3.Order distributions of nirK gene in different soil samples of integrated rice-crayfish farming system (CR) and conventional middle rice system (MR)


下载: 全尺寸图片幻灯片


图4稻虾共作模式和常规中稻模式土壤化学性质与细菌群落(属水平)的冗余分析
MR1、MR2和MR3分别表示常规中稻模式的3次重复, CR1、CR2和CR3分别表示稻虾共作模式的3次重复。TC:土壤总碳; NO3N:硝态氮; NH4N:铵态氮; PH: pH; AN:碱解氮。
Figure4.Results from redundancy analysis to explore the relationship between soil bacterial community (at genus level) and soil physiochemical characteristics of integrated rice-crayfish farming system and conventional mid-rice model
MR1, MR2 and MR3 mean three replicates of the conventional middle rice; CR1, CR2 and CR3 mean three replicates of the rice-crayfish culture. TC: soil total carbon; NO3N: nitrate nitrogen; NH4N: ammonium nitrogen; PH: pH; AN: available nitrogen.


下载: 全尺寸图片幻灯片

表1稻虾共作模式对稻田土壤理化性质的影响
Table1.Effects of integrated rice-crayfish farming on soil physicochemical properties in paddy field
种植模式
Planting pattern
pH 碱解氮
Available nitrogen (mg·kg-1)
硝态氮
NO3--N (mg·kg-1)
铵态氮
NH4+-N (mg·kg-1)
全碳
Total carbon (g·kg-1)
全氮
Total nitrogen (g·kg-1)
碳氮比C/N
常规中稻
Conventional middle rice (MR)
7.47±0.07a 136.17±8.19a 0.31±0.03a 13.61±3.41a 18.16±0.18a 1.86±0.01a 9.78±0.12a
稻虾共作
Rice-crayfish culture (CR)
7.41±0.15a 141.28±3.59a 0.40±0.01b 19.84±4.01a 18.59±0.14b 1.94±0.02b 9.58±0.10a
同列数据后不同字母表示差异显著(P < 0.05)。Values followed by different letters within the same column are significantly different (P < 0.05).


下载: 导出CSV
表2稻虾共作模式和常规中稻模式3次重复土壤样品测序结果
Table2.Sequencing results of three repeated soil samples from integrated rice-crayfish farming system and conventional middle rice system
样品
Sample
序列数
Sequence number
碱基数
Base number
平均长度
Mean length (bp)
最短序列长度
Min. length (bp)
最长序列长度
Max. length (bp)
MR1 30 383 13 726 838 451.79 206 533
MR2 37 141 16 782 200 451.85 203 531
MR3 36 020 16 225 689 450.46 203 524
CR1 35 271 15 613 510 442.67 204 531
CR2 34 262 15 204 864 443.78 202 537
CR3 36 700 16 455 919 448.39 220 524
MR1、MR2和MR3分别表示常规中稻模式的3次重复, CR1、CR2和CR3分别表示稻虾共作模式的3次重复。MR1, MR2 and MR3 mean three replicates of the conventional middle rice; CR1, CR2 and CR3 mean three replicates of the rice-crayfish culture.


下载: 导出CSV
表3稻虾共作模式(CR)和常规中稻模式(MR)Alpha多样性指数
Table3.Alpha diversity indices of integrated rice-crayfish farming system (CR) and conventional middle rice system (MR)
种植模式
Planting pattern
Sobs指数
Sobs index
Shannon指数
Shannon index
Simpson指数
Simpson index
Ace指数
Ace index
Chao指数
Chao index
MR 433.67±60.45a 3.99±0.33a 0.07±0.05a 492.07±50.19a 502.34±42.43a
CR 711.50±78.50b 4.59±0.24a 0.03±0.01a 750.25±72.39b 751.37±62.14b
同列数据后不同字母表示差异显著(P < 0.05)。Values followed by different letters within the same column are significantly different (P < 0.05).


下载: 导出CSV

参考文献(33)
[1]BARDON C, POLY F, PIOLA F, et al. Mechanism of biological denitrification inhibition:Procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration[J]. FEMS Microbiology Ecology, 2016, 92(5):Fiw034 doi: 10.1093/femsec/fiw034
[2]ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4):533-616 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_232623
[3]BRAKER G, ZHOU J Z, WU L Y, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities[J]. Applied and Environmental Microbiology, 2000, 66(5):2096-2104 doi: 10.1128/AEM.66.5.2096-2104.2000
[4]YANG Y D, ZHAO J, JIANG Y, et al. Response of bacteria harboring nirS and nirK genes to different N fertilization rates in an alkaline northern Chinese soil[J]. European Journal of Soil Biology, 2017, 82:1-9 doi: 10.1016/j.ejsobi.2017.05.006
[5]JHA N, SAGGAR S, GILTRAP D, et al. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture[J]. Biogeosciences Discussions, 2016, 14(18):1-19 http://cn.bing.com/academic/profile?id=9f80f0b38161274364a98ba3e3fc820a&encoded=0&v=paper_preview&mkt=zh-cn
[6]CHEN J, NIE Y X, LIU W, et al. Ammonia-oxidizing archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil[J]. Frontiers in Microbiology, 2017, 8:1384 doi: 10.3389/fmicb.2017.01384
[7]PARK S, KIM H K, KIM M S, et al. Monitoring nitrate natural attenuation and analysis of indigenous micro-organism community in groundwater[J]. Desalination and Water Treatment, 2016, 57(51):24096-24108 doi: 10.1080/19443994.2016.1145955
[8]JIANG X L, YAO L, GUO L D, et al. Multi-scale factors affecting composition, diversity, and abundance of sediment denitrifying microorganisms in Yangtze lakes[J]. Applied Microbiology and Biotechnology, 2017, 101(21):8015-8027 doi: 10.1007/s00253-017-8537-5
[9]HAN B, YE X H, LI W, et al. The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields[J]. Journal of Soils and Sediments, 2017, 17(10):2457-2468 doi: 10.1007/s11368-017-1700-x
[10]佀国涵, 彭成林, 徐祥玉, 等.稻虾共作模式对涝渍稻田土壤理化性状的影响[J].中国生态农业学报, 2017, 25(1):61-68 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170109&flag=1
SI G H, PENG C L, XU X Y, et al. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):61-68 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170109&flag=1
[11]徐祥玉, 张敏敏, 彭成林, 等.稻虾共作对秸秆还田后稻田温室气体排放的影响[J].中国生态农业学报, 2017, 25(11):1591-1603 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171103&flag=1
XU X Y, ZHANG M M, PENG C L, et al. Effect of rice-crayfish co-culture on greenhouse gases emission in straw-puddled paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11):1591-1603 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171103&flag=1
[12]曹凑贵, 江洋, 汪金平, 等.稻虾共作模式的"双刃性"及可持续发展策略[J].中国生态农业学报, 2017, 25(9):1245-1253 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2017901&flag=1
CAO C G, JIANG Y, WANG J P, et al. "Dual character" of rice-crayfish culture and strategies for its sustainable development[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9):1245-1253 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2017901&flag=1
[13]王恒生, 刁治民, 陈克龙, 等.青海湖流域小泊湖湿地土壤微生物数量及影响因子[J].中国农业大学学报, 2015, 20(6):189-197 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnydxxb201506025
WANG H S, DIAO Z M, CHEN K L, et al. Quantity of soil microbe and affecting factors of Xiaopohu Wetlands in Qinghai Lake Basin[J]. Journal of China Agricultural University, 2015, 20(6):189-197 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnydxxb201506025
[14]詹晓燕, 刘臣辉, 范海燕, 等.水体中氨氮测定方法的比较——纳氏试剂光度法、靛酚蓝比色法[J].环境科学与管理, 2010, 35(11):132-134 doi: 10.3969/j.issn.1673-1212.2010.11.034
ZHAN X Y, LIU C H, FAN H Y, et al. Comparison between two N-ammoniacal measurements in water-Napierian reagent colorimetric method and indophenol-blue colorimetric method[J]. Environmental Science and Management, 2010, 35(11):132-134 doi: 10.3969/j.issn.1673-1212.2010.11.034
[15]涂常青, 温欣荣.双波长分光光度法测定土壤硝态氮[J].中国土壤与肥料, 2006, (1):50-51 doi: 10.3969/j.issn.1673-6257.2006.01.013
TU C Q, WEN X R. Determination of nitric nitrogen in soil extracts by dual wavelength spectrophotometric method[J]. Soil and Fertilizer Sciences in China, 2006, (1):50-51 doi: 10.3969/j.issn.1673-6257.2006.01.013
[16]王国兴, 董桂军, 艾士奇, 等.通风量对堆肥化过程中氮素转化及nirK基因多样性和数量的影响[J].农业环境科学学报, 2016, 35(3):565-572 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201603022
WANG G X, DONG G J, AI S Q, et al. Effects of ventilation on nitrogen transformation and nirK gene diversity and abundance during comp[J]. Journal of Agro-Environment Science, 2016, 35(3):565-572 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201603022
[17]CAPORASO J G, LAUBER C L, WALTERS W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal, 2012, 6(8):1621-1624 doi: 10.1038/ismej.2012.8
[18]杨亚东, 冯晓敏, 胡跃高, 等.豆科作物间作燕麦对土壤固氮微生物丰度和群落结构的影响[J].应用生态学报, 2017, 28(3):957-965 http://d.old.wanfangdata.com.cn/Periodical/yystxb201703030
YANG Y D, FENG X M, HU Y G, et al. Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria[J]. Chinese Journal of Applied Ecology, 2017, 28(3):957-965 http://d.old.wanfangdata.com.cn/Periodical/yystxb201703030
[19]DELMONT T O, FRANCIOLI D, JACQUESSON S, et al. Microbial community development and unseen diversity recovery in inoculated sterile soil[J]. Biology and Fertility of Soils, 2014, 50(7):1069-1076 doi: 10.1007/s00374-014-0925-8
[20]SI G H, PENG C L, YUAN J F, et al. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China[J]. Scientific Reports, 2017, 7:2856 doi: 10.1038/s41598-017-02984-7
[21]WANG J Q, ZHANG X D, LI F, et al. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh[J]. Ecosystems, 2010, 13(4):586-599 doi: 10.1007/s10021-010-9342-5
[22]DALEO P, IRIBARNE O. The burrowing crab Neohelice granulata affects the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt marshes[J]. Journal of Experimental Marine Biology and Ecology, 2009, 373(1):66-71 doi: 10.1016/j.jembe.2009.03.005
[23]WEISSBERGER E J, COIRO L L, DAVEY E W. Effects of hypoxia on animal burrow construction and consequent effects on sediment redox profiles[J]. Journal of Experimental Marine Biology and Ecology, 2009, 371(1):60-67 doi: 10.1016/j.jembe.2009.01.005
[24]CHEN C, ZHANG J N, LU M, et al. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers[J]. Biology and Fertility of Soils, 2016, 52(4):455-467 doi: 10.1007/s00374-016-1089-5
[25]HESSELSOE M, FüREDER S, SCHLOTER M, et al. Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge[J]. The ISME Journal, 2009, 3(12):1349-1364 doi: 10.1038/ismej.2009.78
[26]梅志平, 章宗涉.红螺菌(Rhodospirillum sp.)的生长及其饥饿存活的研究[J].生态学报, 2000, 20(1):118-123 http://d.old.wanfangdata.com.cn/Periodical/stxb200001020
MEI Z P, ZHANG Z S. Studies on the growth and starvation-survival of Rhodospirillum sp.[J]. Acta Ecologica Sinica, 2000, 20(1):118-123 http://d.old.wanfangdata.com.cn/Periodical/stxb200001020
[27]刘璐.有益微生物在水产养殖中的应用[J].江西农业, 2017, (2):106-107 http://d.old.wanfangdata.com.cn/Periodical/kxyy201503054
LIU L. Application of beneficial microorganisms in aquaculture[J]. Jiangxi Agriculture, 2017, (2):106-107 http://d.old.wanfangdata.com.cn/Periodical/kxyy201503054
[28]尤希凤, 张全国, 杨群发, 等.天然混合产氢红螺菌培养条件[J].太阳能学报, 2006, 27(4):331-334 doi: 10.3321/j.issn:0254-0096.2006.04.003
YOU X F, ZHANG Q G, YANG Q F, et al. The best culture conditions of natural mixture hydrogen producing rhodobacter sphaeroides[J]. Acta Energiae Solaris Sinica, 2006, 27(4):331-334 doi: 10.3321/j.issn:0254-0096.2006.04.003
[29]胡千德, 周俊初.湖北潜江灰潮土中费氏中华根瘤菌(Sinorhizobium fredii)多样性的研究[J].微生物学杂志, 2000, 20(2):7-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200001019259
HU Q D, ZHOU J C. Biodiversity of Sinorhizobium fredii in gray soil, Qianjiang, Hubei[J]. Journal of Microbiology, 2000, 20(2):7-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200001019259
[30]王兰, 廖丽华.光合细菌的分离鉴定及对养殖水的净化研究[J].微生物学杂志, 2004, 24(2):7-9 doi: 10.3969/j.issn.1005-7021.2004.02.003
WANG L, LIAO L H. Separation and identification of photosynthetic bacteria (PSB) and purification of aquiculture water[J]. Journal of Microbiology, 2004, 24(2):7-9 doi: 10.3969/j.issn.1005-7021.2004.02.003
[31]黄富荣, 尹华, 彭辉, 等.红螺菌对Cu2+的吸附研究[J].工业微生物, 2005, 35(1):16-20 doi: 10.3969/j.issn.1001-6678.2005.01.004
HUANG F R, YIN H, PENG H, et al. Studies on copper biosorption by Rhodospirillum[J]. Industrial Microbiology, 2005, 35(1):16-20 doi: 10.3969/j.issn.1001-6678.2005.01.004
[32]刘大岭, 林伟雄, 梁郁强.红螺菌对铅离子吸附作用的初步研究[J].粮食与饲料工业, 2005, (4):38-40 doi: 10.3969/j.issn.1003-6202.2005.04.017
LIU D L, LIN W X, LIANG Y Q. Preliminary study on sorption of lead ion by Rhodospirillum[J]. Cereal & Feed Industry, 2005, (4):38-40 doi: 10.3969/j.issn.1003-6202.2005.04.017
[33]XIE Z, LE ROUX X, WANG C P, et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows[J]. Soil Biology and Biochemistry, 2014, 77:89-99 doi: 10.1016/j.soilbio.2014.06.024

相关话题/土壤 微生物 基因 结构 生态