删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

异源表达<i>Hvsusiba</i>2水稻对稻田甲烷排放及土壤相关菌群的影响

本站小编 Free考研考试/2022-01-01

苏军,,
单贞,
陈在杰
福建省农业科学院生物技术研究所/福建省农业遗传工程重点实验室 福州 350003
基金项目: 国家自然科学基金项目31670416
福建省科技项目2015N0037
福建省属公益类项目2018R1019-1
福建省农业科学院科技项目A2015-02

详细信息
作者简介:苏军, 主要从事水稻分子研究。E-mail:sj@fjage.org
中图分类号:Q89;Q78

计量

文章访问数:881
HTML全文浏览量:4
PDF下载量:700
被引次数:0
出版历程

收稿日期:2018-01-23
录用日期:2018-05-15
刊出日期:2018-09-01

Effects of heterogous expression of Hvsusiba2 rice on methane mitigation and related micro-organism abundance in paddy fields

SU Jun,,
SHAN Zhen,
CHEN Zaijie
Biotechnology Institute of Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China
Funds: the National Natural Science Foundation of China31670416
Fujian Science and Technology Project2015N0037
Fujian Public Scientific Research Institution Foundation2018R1019-1
the Science and Technology Project of Fujian Academy of Agricultural SciencesA2015-02

More Information
Corresponding author:SU Jun, E-mail: sj@fjage.org


摘要
HTML全文
(6)(4)
参考文献(25)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:Hvsusiba2是调控大麦淀粉合成和光合产物分配的转录因子。前期研究我们将Hvsusiba2导入粳稻(Oryza sativa L. subsp.japonica),Hvsusiba2粳稻稻田甲烷排放显著下降,胚乳淀粉含量显著提高。为进一步明确Hvsusiba2对稻田甲烷排放的影响,本研究我们将Hvsusiba2导入籼稻(O.sativa L. subsp. indica),研究异源表达Hvsusiba2籼稻全生育期甲烷排放和稻田主要甲烷菌及甲烷氧化菌变化。采用静态箱法测定Hvsusiba2水稻稻田甲烷排放通量,结果显示Hvsusiba2稻田全生育期的大部分时段甲烷排放量显著(P < 0.05)或极显著(P < 0.01)低于对照株系。Hvsusiba2水稻甲烷减排率幅度为54.7%~3.8%,减排率最高的时期为幼穗分化期。2个Hvsusiba2水稻株系生长季累计甲烷排放量分别为5 060.16 mg·m-2和5 250.60 mg·m-2,比对照减排30.30%和27.58%。采用荧光定量PCR法检测水稻关键生长期根土6类产甲烷菌和2类甲烷氧化菌以及土壤总细菌的丰度变化。结果显示:在整个生长期内Hvsusiba2水稻根土6类产甲烷菌菌群丰度的总体趋势是前期高、后期低;甲烷古菌(Archaea,ARC)、甲烷鬃菌科(Methanosaetaceae,Mst)和甲烷微菌目(Methanomicrobiales,MMb)3类菌群丰度的高峰出现在分蘖盛期,甲烷八叠球菌科(Methanosarcinaceae,Msc)菌群丰度的高峰出现在幼穗分化穗期,普通产甲烷菌(Methanogens,MET)和甲烷杆菌目(Methanobacteriales,MBT)分蘖期最高。Hvsusiba2水稻产甲烷菌丰度在分蘖期、抽穗期和开花期显著或极显著地低于野生型对照。在大部分测试时间段内Hvsusiba2水稻的2类甲烷氧化菌群丰度比对照有显著(P < 0.05)或极显著(P < 0.01)下降;Hvsusiba2水稻土壤总细菌丰度在水稻的分蘖期、抽穗期和开花期也显著低于野生型水稻。稻田中产甲烷菌的丰度依次是甲烷鬃菌科(Mst)>甲烷古菌(ARC)>普通产甲烷菌(MET)>甲烷微菌目(MMb)≥甲烷八叠球菌科(Msc)>甲烷杆菌目(MBT);2类甲烷氧化菌中Ⅰ型甲烷氧化菌(MBAC)丰度极显著大于Ⅱ型甲烷氧化菌(TYPEⅡ)。结合之前的研究结果,我们认为Hvsusiba2可能是通过改变水稻光合同化物分配生理,减少向土壤有机质的输送,降低土壤相关菌群的丰度达到稻田甲烷减排的。
关键词:水稻/
Hvsusiba2异源表达/
甲烷减排/
产甲烷菌/
甲烷氧化菌/
菌群丰度
Abstract:A field experiment was conducted to explore the effects of genetically modified rice with Hvsusiba2 gene on paddy field methane mitigation. Hvsusiba2 gene is a transcription factor that acts on the upstream of starch synthesis pathway and is recognized as a key regulator for barley starch accumulation and assimilation distribution. Previous studies have shown that japonica rice (Oryza sativa L. subsp. japonica) integrated with Hvsusiba2 gene significantly reduces methane emission in paddy fields and increases content of seed starch. To further understand gene effects on cutting down of methane emissions under different rice genetic conditions, we introduced Hvsusiba2 into indica rice (O. sativa L. subsp. indica) and then investigated methane emissions from Hvsusiba2 rice field as well as the population size of bacteria associated with methane emissions in paddy fields during the growing season from April to September 2016. The results showed that the range of methane mitigation for the whole season was 54.7%-3.8%, compared with the control (wild rice). The highest mitigation rate was during booting period, reaching 54.7%. Total methane emissions of the two lines of Hvsusiba2 rice were respectively 5 060.16 mg·m-2 and 5 250.60 mg·m-2, while that under wild rice was 7 249.68 mg·m-2 for the period from the first measurement to harvest. Methane reduction rates of the two lines were 30.30% and 27.58%, respectively. The abundance of 6 orders or families of methanogens and 2 groups of methanotrophs in Hvsusiba2 rice fields showed significant (P < 0.05, P < 0.01) decreases almost throughout the entire growing season when Hvsusiba2 rice was compared with wild rice. In addition, total bacteria populations during rice tillering, heading and flowering periods were significantly (P < 0.05, P < 0.01) lower in Hvsusiba2 rice than in wild rice. Population size of 6 methanogens were in the order of:Methanosaetaceae (Mst) > Archaea (ARC) > methanogens (MET) > Methanomicrobiales (MMb) > Methanosarcinaceae (Msc) > Methanobacteriales (MBT). Among these, Methanosaetaceae had the largest community, followed by Archaea. Of the 2 groups of methanotrophs, the abundance of MBAC was much larger than that of TYPE Ⅱ. After comparison of our experimental data with other studies, we concluded that Hvsusiba2 rice mechanism for reducing methane emission more likely regulated carbohydrate flow to ground parts of the plant, reduced assimilates transported to soil and lowered methane-related bacteria abundance, which ultimately reduced methane emissions.
Key words:Rice/
Heterogous expression of Hvsusiba2/
Methanon mitigation/
Methanogen/
Methanotroph/
Bacteria abundance

HTML全文


图1播种后不同时间Hvsusiba2籼稻‘86R10-1’和‘86R27-3’稻田不同时段甲烷排放特征
A: 10:00—12:30采集的样品; B: 14:30—17:00采集的样品。每个值是6个生物学重复的平均值。*和**分别表示Hvsusiba2籼稻和对照‘MH86’的差异显著性达5%和1%水平。
Figure1.Characteristics of CH4 emission in different times of a day after different days of sowing in fields of Hvsusiba2 indica rice '86R10-1' and '86R27-3'
Figures A are samples collected at 10:00-12:30. Figures B are samples collected at 14:30-17:00. Each value is the mean of 6 biological replicates. * and ** indicate significance differences between Hvsusiba2 indica rice and wild rice 'MH86' at 5% and 1% levels, respectively.


下载: 全尺寸图片幻灯片


图2Hvsusiba2籼稻‘86R10-1’和‘86R27-3’不同生育期根土总细菌丰度
每个值是3个生物学重复的平均值; *和**分别表示Hvsusiba2籼稻和对照‘MH86’的差异达5%和1%水平。
Figure2.Abundances of total bacteria in Hvsusiba2 indica rice '86R10-1' and '86R27-3' soil during growing season
Each value is the mean of 3 biological replicates. * and ** mean significant differences between Hvsusiba2 indica rice and wild rice 'MH86' at 5% and 1% levels, respectively.


下载: 全尺寸图片幻灯片


图3表达Hvsusiba2籼稻‘86R10-1’和‘86R27-3’全生育期稻田根土6类产甲烷菌丰度变化
每个值是3个生物学重复的平均值; *和**分别表示Hvsusiba2籼稻和对照‘MH86’的差异达5%和1%水平。
Figure3.Abundances of 6 orders or families of methanogens in soil of Hvsusiba2 indica rice '86R10-1' and '86R27-3'during growing season
Each value is the mean of 3 biological replicates. * and ** mean significant differences between Hvsusiba2 indica rice and wild rice 'MH86' at 5% and 1% levels, respectively.


下载: 全尺寸图片幻灯片


图4Hvsusiba2籼稻‘86R10-1’和‘86R27-3’全生育期稻田土壤产甲烷菌的相对丰度(产甲烷菌/总细菌)
每个值是3个生物学重复的平均值; *和**分别表示Hvsusiba2籼稻和对照‘MH86’的差异达5%和1%水平。
Figure4.Relative abundances of methanogens in total bacteria in Hvsusiba2 indica rice '86R10-1' and '86R27-3' paddy soil during growing season
Each value is the mean of 3 biological replicates. * and ** mean significant differences between Hvsusiba2 indica rice and wild rice 'MH86' at 5% and 1% levels, respectively.


下载: 全尺寸图片幻灯片


图5Hvsusiba2籼稻‘86R10-1’和‘86R27-3’稻田土壤2类甲烷氧化菌丰度变化
每个值是3个生物学重复的平均值; *和**分别表示Hvsusiba2籼稻和对照‘MH86’的差异达5%和1%水平。
Figure5.Abundances of 2 groups of methanotrophs in Hvsusiba2 indica rice '86R10-1' and '86R27-3' soil during growing season
Each value is the mean of 3 biological replicates. * and ** mean significant differences between Hvsusiba2 indica rice and wild rice 'MH86' at 5% and 1% levels, respectively.


下载: 全尺寸图片幻灯片


图6Hvsusiba2籼稻‘86R10-1’和‘86R27-3’全生育期稻田土壤产甲烷菌相对丰度(产甲烷菌/甲烷氧化菌)
每个值是3个生物学重复的平均值; *和**分别表示Hvsusiba2籼稻和对照‘MH86’的差异达5%和1%水平。
Figure6.Relative abundances of methanogens in total methanogens in Hvsusiba2 indica rice '86R10-1' and '86R27-3' paddy soil during growing season
Each value is the mean of 3 biological replicates. * and ** mean significant differences between Hvsusiba2 indica rice and wild rice 'MH86' at 5% and 1% levels, respectively.


下载: 全尺寸图片幻灯片

表1产甲烷菌(群)和甲烷氧化菌(群)16S rRNA荧光定量PCR引物
Table1.Primers targeting the 16S rRNA genes of methanogens and methanotrophs
细菌Bacteria 引物名称Primer 引物序列(5'-3') Sequence (5'-3') 备注Note
Archaea (ARC)[14] ARC787F
ARC1059R
ATTAGATACCCSBGTAGTCC
GCCATGCACCWCCTCT
产甲烷菌
Methanogens
Methanogens (MET)[15] Met630F
Met803R
GGATTAGATACCCSGGTAGT
GTTGARTCCAATTAAACCGCA
产甲烷菌
Methanogens
Methanobacteriales (MBT)[14] MBT857F
MBT1196R
CGWAGGGAAGCTGTTAAGT
TACCGTCGTCCACTCCTT
产甲烷菌
Methanogens
Methanosarcinaceae (Msc)[14] Msc380F
Msc828R
GAAACCGYGATAAGGGGA
TAGCGARCATCGTTTACG
产甲烷菌
Methanogens
Methanosaetaceae (Mst)[14] Mst702F
Mst862R
TAATCCTYGARGGACCACCA
CCTACGGCACCRACMAC
产甲烷菌
Methanogens
Methanomicrobiales (MMB)[14] MMB282F
MMB832R
ATCGRTACGGGTTGTGGG
CACCTAACGCRCATHGTTTAC
产甲烷菌
Methanogens
Methylobacter/Met-hylosarcina (MBAC)[16] A189F
Mb606R
GGNGACTGGGACTTCTGG
ACRTAGTGGTAACCTTGYAA
甲烷氧化菌
Methanotrophs
Methylosinus (TYPEⅡ)[16] II223F
II646R
CGTCGTATGTGGCCGAC
CGTGCCGCGCTCGACCATGYG
甲烷氧化菌
Methanotrophs
Bacteria[17] Eub338F
Eub518R
ACTCCTACGGGAGGCAGCAG
ATTACCGCGGCTGCTGG
土壤总细菌Bacteria


下载: 导出CSV
表2产甲烷菌(群)和甲烷氧化菌(群)荧光定量PCR扩增程序
Table2.qPCR programs for 6 methanogens and 2 methanotrophs
步骤
Steps
产甲烷菌Methanogens 甲烷氧化菌Methanotrophs
温度
Temperature
时间
Time
循环数
Cycles
温度
Temperature
时间
Time
循环数
Cycles
预变性
Pre-denaturation
95 ℃ 7 min 94 ℃ 5 min
变性Denature 95 ℃ 40 s $\left. \begin{array}{l}\\\\\\\\\\\\\\\end{array} \right\}40$ 94 ℃ 45 s $\left. \begin{array}{l}\\\\\\\\\\\\\\\end{array} \right\}40$
退火
Annealing
N 1 min M 20 s
延伸
Extend
72 ℃ 40 s 72 ℃ 45 s
溶解曲线
Solubility curve
95 ℃ 15 s 95 ℃ 15 s
60 ℃ 1 min 60 ℃ 1 min
95 ℃ 15 s 95 ℃ 15 s
60 ℃ 15 s 60 ℃ 15 s
N:产甲烷菌退火温度, ARC为60 ℃, Msc为60 ℃, Mst为61 ℃, MMb为66 ℃, MBT为58 ℃, Met为60 ℃。M:甲烷氧化菌退火温度, MBAC为58 ℃, TYPEⅡ为65 ℃。N and M: PCR annealing temperature for methanogens and methanotrophs, for ARC it is 60 ℃, for Msc it is 60 ℃, for Mst it is 61 ℃, for MMb it is 66 ℃, for MBT it is 58 ℃, for Met it is 60 ℃, for MBAC it is 58 ℃, for TYPEⅡ it is 65 ℃.


下载: 导出CSV
表36类甲烷菌在Hvsusiba2籼稻田土壤总甲烷菌中的比例
Table3.Proportions of 6 methanogens in Hvsusiba2 indica rice soil
甲烷菌
Methanogen
MH86 86R10-1 86R27-3
数量
Amount [×106 copies·g-1(DWS)]
占比
Proportion (%)
数量
Amount [×106 copies·g-1(DWS)]
占比
Proportion (%)
数量
Amount [×106 copies·g-1(DWS)]
占比
Proportion (%)
古细菌域甲烷菌Archaea 133.02 12.57 80.39 11.37 79.47 14.22
甲烷微菌目
Methanomicrobiales
2.36 0.22 1.53 0.22 2.18 0.39
甲烷杆菌目
Methanobacteriales
0.16 0.01 0.11 0.01 0.083 0.01
甲烷鬃菌科
Methanosaetaceae
904.19 85.44 611.97 86.56 465.98 83.36
甲烷八叠球菌
Methanosarcinaceae
2.52 0.24 1.35 0.19 1.707 0.30
普通甲烷菌
Methanogens
16.04 1.52 11.68 1.65 9.597 1.72


下载: 导出CSV
表42类甲烷氧化菌在Hvsusiba2籼稻田土壤中的比例
Table4.Proportions of 2 methanotrophs in Hvsusiba2 indica rice soil
甲烷氧化菌
Methanotroph
MH86 86R10-1 86R27-3
数量
Amount [×106 copies· g-1(DWS)]
占比
Proportion (%)
数量
Amount [×106 copies· g-1(DWS)]
占比
Proportion (%)
数量
Amount [×106 copies· g-1(DWS)]
占比
Proportion (%)
Ⅰ型甲烷氧化菌
Methytobacter / Met-hylosarcina
15 487.75 99.91 8 172.73 99.87 1 121.29 98.89
Ⅱ型甲烷氧化菌
Methylosinus
14.12 0.09 10.80 0.13 12.61 1.11


下载: 导出CSV

参考文献(25)
[1]YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J]. Nature, 2014, 507(7493):488-491 doi: 10.1038/nature13164
[2]LIU Y C, WHITMAN W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1):171-189 doi: 10.1196/annals.1419.019
[3]魏海苹, 孙文娟, 黄耀.中国稻田甲烷排放及其影响因素的统计分析[J].中国农业科学, 2012, 45(17):3531-3540 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201217009
WEI H P, SUN W J, HUANG Y. Statistical analysis of methane emission from rice fields in China and the driving factors[J]. Scientia Agricultura Sinica, 2012, 45(17):3531-3540 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201217009
[4]陈槐, 周舜, 吴宁, 等.湿地甲烷的产生、氧化及排放通量研究进展[J].应用与环境生物学报, 2006, 12(5):726-733 doi: 10.3321/j.issn:1006-687X.2006.05.029
CHEN H, ZHOU S, WU N, et al. Advance in studies on production, oxidation and emission flux of methane from wetlands[J].Chinese Journal of Applied & Environmental Biology, 2006, 12(5):726-733 doi: 10.3321/j.issn:1006-687X.2006.05.029
[5]贾仲君, 蔡祖聪.水稻植株对稻田甲烷排放的影响[J].应用生态学报, 2003, 14(11):2049-2053 doi: 10.3321/j.issn:1001-9332.2003.11.053
JIA Z J, CAI Z C. Effects of rice plants on methane emission from paddy fields[J]. Chinese Journal of Applied Ecology, 2003, 14(11):2049-2053 doi: 10.3321/j.issn:1001-9332.2003.11.053
[6]MA K, QIU Q F, LU Y H. Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010, 16(11):3085-3095 http://cn.bing.com/academic/profile?id=d0249e6024fb5bc38b56304207733560&encoded=0&v=paper_preview&mkt=zh-cn
[7]CAI Z C, TSURUTA H, RONG X M, et al. CH4 emissions from rice paddies managed according to farmer's practice in Hunan, China[J]. Biogeochemistry, 2001, 56(1):75-91 doi: 10.1023/A:1011940730288
[8]YAO H, YAGI K, NOUCHI I. Importance of physical plant properties on methane transport through several rice cultivars[J]. Plant and Soil, 2000, 222(1/2):83-93 doi: 10.1023/A:1004773810520
[9]LU Y, WASSMANN R, NEUE H U, et al. Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants[J]. Biogeochemistry, 1999, 47(2):203-218 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ022126808
[10]AULAKH M S, BODENBENDER J, WASSMANN R, et al. Methane transport capacity of rice plants Ⅱ. Variations among different rice cultivars and relationship with morphological characteristics[J]. Nutrient Cycling in Agroecosystems, 2000, 58(1/3):367-375 doi: 10.1023/A:1009839929441
[11]王增远, 徐雨昌, 李震, 等.水稻品种对稻田甲烷排放的影响[J].作物学报, 1999, 25(4):441-446 doi: 10.3321/j.issn:0496-3490.1999.04.007
WANG Z Y, XU Y C, LI Z, et al. Effect of rice cultivars on methane emissions from rice field[J]. Acta Agronomica Sinica, 1999, 25(4):441-446 doi: 10.3321/j.issn:0496-3490.1999.04.007
[12]傅志强, 黄璜, 朱华武, 等.水稻CH4和N2O的排放及其与植株特性的相关性[J].湖南农业大学学报:自然科学版, 2011, 37(4):356-360 http://d.old.wanfangdata.com.cn/Periodical/hunannydx201104002
FU Z Q, HUANG H, ZHU H W, et al. Relativity between CH4 and N2O emission and rice plant characteristics[J]. Journal of Hunan Agricultural University:Natural Sciences, 2011, 37(4):356-360 http://d.old.wanfangdata.com.cn/Periodical/hunannydx201104002
[13]SU J, HU C, YAN X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature, 2015, 523(7562):602-606 doi: 10.1038/nature14673
[14]YU Y, LEE C, KIM J, et al. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction[J]. Biotechnology and Bioengineering, 2005, 89(6):670-679 doi: 10.1002/(ISSN)1097-0290
[15]HOOK S E, NORTHWOOD K S, WRIGHT A D G, et al. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow[J]. Applied and Environmental Microbiology, 2009, 75(2):374-380 doi: 10.1128/AEM.01672-08
[16]KOLB S, KNIEF C, STUBNER S, et al. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays[J]. Applied and Environmental Microbiology, 2003, 69(5):2423-2429 doi: 10.1128/AEM.69.5.2423-2429.2003
[17]DUBEY S K, SINGH A, SINGH R S, et al. Changes in methanogenic population size and CH4 production potential in response to crop phenology in tropical rice field[J]. Soil Biology and Biochemistry, 2013, 57:972-978 doi: 10.1016/j.soilbio.2012.07.001
[18]NARIHIRO T, SEKIGUCHI Y. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea[J]. Microbial Biotechnology, 2011, 4(5):585-602 doi: 10.1111/mbt.2011.4.issue-5
[19]SUN C X, H?GLUND A S, OLSSON H, et al. Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology:Identification of SUSIBA2 as a transcriptional activator in plant sugar signalling[J]. The Plant Journal, 2005, 44(1):128-138 doi: 10.1111/tpj.2005.44.issue-1
[20]SUN C X, PALMQVIST S, OLSSON H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter[J]. The Plant Cell, 2003, 15(9):2076-2092 doi: 10.1105/tpc.014597
[21]张广斌, 马静, 徐华, 等.稻田甲烷产生途径研究进展[J].土壤, 2011, 43(1):6-11 doi: 10.3969/j.issn.1673-6257.2011.01.002
ZHANG G B, MA J, XU H, et al. Advances on methanogenic pathways in rice fields[J]. Soils, 2011, 43(1):6-11 doi: 10.3969/j.issn.1673-6257.2011.01.002
[22]LU Y H, WATANABE A, KIMURA M. Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm[J]. Biology and Fertility of Soils, 2002, 36(2):136-142 doi: 10.1007/s00374-002-0504-2
[23]方晓瑜, 李家宝, 芮俊鹏, 等.产甲烷生化代谢途径研究进展[J].应用与环境生物学报, 2015, 21(1):1-9 http://xueshu.baidu.com/s?wd=paperuri%3A%28e35fc157752e21e24d423fd0e42adc20%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dyyhs201501001%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=17398694895740982744
FANG X Y, LI J B, RUI J P, et al. Research progress in biochemical pathways of methanogenesis[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1):1-9 http://xueshu.baidu.com/s?wd=paperuri%3A%28e35fc157752e21e24d423fd0e42adc20%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dyyhs201501001%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=17398694895740982744
[24]邓永翠, 车荣晓, 吴伊波, 等.好氧甲烷氧化菌生理生态特征及其在自然湿地中的群落多样性研究进展[J].生态学报, 2015, 35(14):4579-4591 http://d.old.wanfangdata.com.cn/Periodical/stxb201514003
DENG Y C, CHE R X, WU Y B, et al. A review of the physiological and ecological characteristics of methanotrophs and methanotrophic community diversity in the natural wetlands[J]. Acta Ecologica Sinica, 2015, 35(14):4579-4591 http://d.old.wanfangdata.com.cn/Periodical/stxb201514003
[25]王明星.中国稻田甲烷排放[M].北京:科学出版社, 2001:192
WANG M X. Methane Emission from Rice Field in China[M]. Beijing:Science Press, 2001:192

相关话题/土壤 甲烷 图片 生物学 农业