删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

亚热带地区蔬菜地甲烷净交换通量研究

本站小编 Free考研考试/2022-01-01

奉小明1, 2,,
王凯2,,,
郑循华2, 3,
罗献宝1,
王睿2,
王东2, 3
1.广西大学农学院 南宁 530004
2.中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室 北京 100029
3.中国科学院大学 北京 100049
基金项目: 国家重点研发计划2016YFA0602302
国家自然科学基金青年科学基金项目41405137

详细信息
作者简介:奉小明, 主要研究方向为农业环境与生态安全。E-mail:504246629@qq.com
通讯作者:王凯, 主要研究方向为地气碳氮循环。E-mail:kai.wang@mail.iap.ac.cn
中图分类号:S181

计量

文章访问数:1212
HTML全文浏览量:4
PDF下载量:1042
被引次数:0
出版历程

收稿日期:2018-02-26
录用日期:2018-03-27
刊出日期:2018-08-01

Net methane flux exchange in subtropical vegetable fields

FENG Xiaoming1, 2,,
WANG Kai2,,,
ZHENG Xunhua2, 3,
LUO Xianbao1,
WANG Rui2,
WANG Dong2, 3
1. College of Agriculture, Guangxi University, Nanning 530004, China
2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key Research and Development Project2016YFA0602302
the National Natural Science Foundation of China41405137

More Information
Corresponding author:WANG Kai, E-mail:kai.wang@mail.iap.ac.cn


摘要
HTML全文
(4)(2)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:农田土壤是大气甲烷(CH4)的重要源和汇,以往关于农田CH4净交换通量的研究多关注水稻、小麦、玉米等作物,而蔬菜地的观测研究不足。本研究采用静态暗箱-气相色谱法对亚热带地区一块种植包菜的典型露天蔬菜地开展将近1年的田间原位CH4通量观测,以揭示蔬菜地CH4净交换通量的周年变化特征及其影响因素,估算CH4年累积净交换通量,并定量评估CH4净交换通量的误差。本试验在包菜地的垄上和垄间同时布设观测点进行CH4通量观测,并对环境因子进行同步测量,观测期为2016年1月1日至12月8日。结果表明,所研究的蔬菜地为大气CH4的微弱汇,年平均通量为(-9.9±7.0)μg(C)·m-2·h-1,全年累积通量为-0.84kg(C)·hm-2,较高的土壤水分条件和高施氮量可能是导致本研究蔬菜地CH4吸收较弱的主要原因。全年CH4累积通量的总体误差为-48%~-16%,其中,由于通量计算方法引起的系统误差会使估算的通量偏低32%,年尺度上的随机误差大小为16%,主要来自CH4通量的空间差异,因此可适当增加空间重复,以减小空间随机误差。研究还发现垄上的CH4吸收通量显著高于垄间(P < 0.01),因此在开展农田温室气体通量观测时应兼顾垄上和垄间、种植行和行间等农田管理措施存在显著差异的区域,均布设观测点,避免对通量观测结果造成系统性偏差。
关键词:亚热带蔬菜地/
甲烷/
净交换通量/
静态箱法/
年累积通量/
通量误差
Abstract:Agricultural soil forms an important source-sink of atmospheric methane (CH4). Studies on net CH4 flux exchange in agricultural soil have mainly been related to rice, wheat, maize and other crops. However, field studies on vegetable fields have been seldom reported. This study was a year-round situ measurement of CH4 flux in a typical subtropical vegetable field cultivated with cabbages using the static chamber/gas chromatography technique. The aims were to determine the characteristics of annual net exchange flux of CH4 and the influencing factors, to estimate annual cumulative CH4 flux, and to quantify errors in measured CH4 flux. The CH4 flux measurements were conducted on ridges and on inter-ridges in vegetable fields for period from January 1st to December 8th 2016. Environmental conditions were simultaneously observed during the measurement period. The results showed that vegetable fields constituted a weak sink of atmospheric CH4, with annual mean flux of (-9.9±7.0) μg(C)·m-2·h-1 and annual cumulative flux of -0.84 kg(C)·hm-2. High soil water content and nitrogen fertilizer application rate were probably the main reasons for the weak uptake of CH4. The overall error in the annual cumulative CH4 flux was -48%——16%. The main source of systematic error was in the flux calculation method used, which underestimated the flux by 32% on average. Random error was mainly produced by spatial variations of CH4 flux, which was estimated at 16% at annual time scale. As a result, it was recommended that high numbers of spatial replications were used in conducting greenhouse gas flux measurements in agricultural soil in order to reduce random error. Another finding of the study was that CH4 uptake measured on the ridge was significantly (P < 0.01) larger than that measured on the inter-ridge. This implied that it was better to simultaneously place chambers on areas with different field management practices; e.g. ridge and inter-ridge, row and inter-row, which efficiently avoided systematic error in measured flux.
Key words:Subtropical vegetable field/
Methane/
Net flux exchange/
Static chamber technique/
Annual cumulative flux/
Flux error

HTML全文


图1包菜生长季采样箱空间分布示意图
Figure1.Schematic of chamber distribution during the growing season of cabbages


下载: 全尺寸图片幻灯片


图2观测期间日平均空气温度和土壤温度(a)、日降水量和地下水位(b)及土壤孔隙充水率(WFPS) (c)的季节变化动态
图 2b中的黑三角形和曲线分别代表地下水位的单次观测值和趋势线, 向下箭头表示灌溉日期。
Figure2.Seasonal variations of daily mean air temperature and soil temperature (a), precipitation and groundwater table (b), and soil water-filled pore space (WFPS) (c) during the measurement period
In Fig. 2b, black triangles and line indicate the measured data and trendline of the groundwater table, respectively, and downward arrows indicate the time of irrigation.


下载: 全尺寸图片幻灯片


图3观测期间蔬菜地CH4净交换通量季节变化动态
误差线表示空间重复之间通量的标准误差。
Figure3.Seasonal variation of net exchange fluxes of CH4 of vegetable field during the measurement period
The error bars indicate flux standard errors of spatial replicates.


下载: 全尺寸图片幻灯片


图4观测期间蔬菜地CH4累积净交换通量的动态变化
Figure4.Changes of cumulative net exchange flux of CH4 of vegetable field during the measurement period


下载: 全尺寸图片幻灯片

表1观测期间蔬菜地CH4通量的最小、最大、平均值及年累积通量
Table1.Minimum, maximum, mean and annual cumulative fluxes of CH4 of vegetable field during the measurement period
最小CH4通量
Minimum CH4 flux
[μg(C)·m-2·h-1]
最大CH4通量
Maximum CH4 flux
[μg(C)·m-2·h-1]
平均CH4通量
Mean CH4 flux
[μg(C)·m-2·h-1]
年累积CH4通量
Annual cumulative CH4 flux
[kg(C)·hm-2]
垄上?Ridge -39.9 7.9 -11.6±9.1 -1.01±0.29
垄间?Inter-ridge -36.9 9.2 -5.0±6.7 -0.45±0.14
加权平均?Weighted mean -37.0 6.8 -9.9±7.0 -0.84
正负误差表示CH4通量的标准偏差。± denotes standard deviation of the CH4 flux.


下载: 导出CSV
表2观测期间蔬菜地CH4净交换通量与环境因子的回归分析
Table2.Linear and nonlinear regression analysis of environmental factors and CH4 fluxes of vegetable field during the measurement period
环境因子
Factor
回归方程
Regression equation
相关系数(R2)
Correlation coefficient
样本量(n)
Sample size
相关概率(P)
Possibility
垄上
Ridge
T F=7.99e0.018T 0.036 126 < 0.05
W F=-0.076W+14.89 0.025 126 NS
H F=-0.047H+6.91 0.078 41 NS
T, W, H F= -14.13e-0.19T+0.18W-0.050H+6.56 0.091 46 NS
垄间
Inter-ridge
T F=2.78e0.026T 0.021 126 NS
W F=-0.3W+27.36 0.250 59 < 0.01
H F=-0.051H+0.35 0.106 41 < 0.05
T, W, H F=-17.93e-0.03T-0.35W-0.016H+42.03 0.400 20 < 0.01
F表示CH4净交换通量[μg(C)·m-2·h-1], T表示土壤温度(℃), W表示土壤充水孔隙度(%), H表示地下水位(cm), NS表示相关不显著。F indicates net exchange flux of CH4 [μg(C)·m-2·h-1], T indicates soil temperature (℃), W indicates water-filled pore space (%), H denotes groundwater table (cm) and NS denotes no significant correlation.


下载: 导出CSV

参考文献(32)
[1]IPCC. Climate Change 2007: The Physical Science Basis[M]. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007
[2]黄耀.地气系统碳氮交换——从实验到模型[M].北京:气象出版社, 2003:5-13
HUANG Y. Carbon and Nitrogen Exchange Between Terrestrial-Atmosphere System:From Experiment to Model[M]. Beijing:China Meteorological Press, 2003:5-13
[3]BRIDGHAM S D, CADILLO-QUIROZ H, KELLER J K, et al. Methane emissions from wetlands:Biogeochemical, microbial, and modeling perspectives from local to global scales[J]. Global Change Biology, 2013, 19(5):1325-1346 doi: 10.1111/gcb.12131
[4]WANG Y F, CHEN H, ZHU Q A, et al. Soil methane uptake by grasslands and forests in China[J]. Soil Biology and Biochemistry, 2014, 74:70-81 doi: 10.1016/j.soilbio.2014.02.023
[5]王明星.中国稻田甲烷排放[M].北京:科学出版社, 2001
WANG M X. Methane Emission from Paddy Fields in China[M]. Beijing:Science Press, 2001
[6]CAI Z C, XING G X, YAN X Y, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management[J]. Plant and Soil, 1997, 196(1):7-14 doi: 10.1023/A:1004263405020
[7]张中杰, 朱波, 江长胜, 等.川中丘陵区旱地小麦生态系统CO2、N2O和CH4排放特征[J].生态学杂志, 2005, 24(2):131-135 https://image.hanspub.org/xml/22096.xml
ZHANG Z J, ZHU B, JIANG C S, et al. CO2, N2O and CH4 emission from dry-land wheat ecosystem in hilly area of central Sichuan Basin[J]. Chinese Journal of Ecology, 2005, 24(2):131-135 https://image.hanspub.org/xml/22096.xml
[8]周再兴, 郑循华, 王明星, 等.华东稻麦轮作农田CH4、N2O和NO排放特征[J].气候与环境研究, 2007, 12(6):751-760 http://www.cqvip.com/Main/Detail.aspx?id=26784443
ZHOU Z X, ZHENG X H, WANG M X, et al. CH4, N2O and NO emissions from a rice-wheat rotation cropping field in East China[J]. Climatic and Environmental Research, 2007, 12(6):751-760 http://www.cqvip.com/Main/Detail.aspx?id=26784443
[9]胡小康, 黄彬香, 苏芳, 等.氮肥管理对夏玉米土壤CH4和N2O排放的影响[J].中国科学:化学, 2011, 41(1):117-128 http://manu36.magtech.com.cn/Jweb_zghjkx/CN/abstract/abstract15133.shtml
HU X K, HUANG B X, SU F, et al. Effects of nitrogen management on methane and nitrous oxide emissions from summer maize soil in North China Plain[J]. Science China:Chemistry, 2011, 41(1):117-128 http://manu36.magtech.com.cn/Jweb_zghjkx/CN/abstract/abstract15133.shtml
[10]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2006-2015
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing:China Statistics Press, 2006-2015
[11]卢兰. 三峡库区几种土地利用方式土壤CH4通量及其影响因素研究[D]. 武汉: 华中农业大学, 2009 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1597809
LU L. Methane fluxes and their controlling factors from several land use types soils in the Three Gorges Area, China[D]. Wuhan: Huazhong Agricultural University, 2009 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1597809
[12]陈海燕. 京郊典型设施蔬菜地温室气体排放规律及影响因素[D]. 北京: 中国农业科学院, 2012 http://cdmd.cnki.com.cn/Article/CDMD-82101-1012413929.htm
CHEN H Y. Greenhouse gases emissions and influencing factors from typical greenhouse vegetable fields in Beijing suburbs[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012 http://cdmd.cnki.com.cn/Article/CDMD-82101-1012413929.htm
[13]秦艳梅. 常规与有机生产方式下稻田和菜地温室气体(CH4和N2O)排放研究[D]. 南京: 南京农业大学, 2012 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2360488
QIN Y M. Greenhouse gases (CH4 and N2O) emission from rice and vegetable fields under conventional and organic cropping regimes in Southeast China[D]. Nanjing: Nanjing Agricultural University, 2012 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2360488
[14]万合锋, 赵晨阳, 钟佳, 等.施用畜禽粪便堆肥品的蔬菜地CH4、N2O和NH3排放特征[J].环境科学, 2014, 35(3):892-900 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201403012
WAN H F, ZHAO C Y, ZHONG J, et al. Emission of CH4, N2O and NH3 from vegetable field applied with animal manure composts[J]. Environmental Science, 2014, 35(3):892-900 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201403012
[15]袁野, 刘长红, 戴晓琴, 等.中国南方双季稻田转菜地对CO2和CH4通量的影响[J].应用生态学报, 2015, 26(1):147-154 http://www.cjae.net/CN/abstract/abstract19881.shtml
YUAN Y, LIU C H, DAI X Q, et al. Effects of land-use conversion from double rice cropping to vegetables on CO2 and CH4 fluxes in southern China[J]. Chinese Journal of Applied Ecology, 2015, 26(1):147-154 http://www.cjae.net/CN/abstract/abstract19881.shtml
[16]贾俊香, 熊正琴.秸秆生物炭对菜地N2O、CO2与CH4排放及土壤化学性质的影响[J].生态与农村环境学报, 2016, 32(2):283-288 doi: 10.11934/j.issn.1673-4831.2016.02.017
JIA J X, XIONG Z Q. Impact of application of maize stalk-derived biochar on soil properties of and N2O, CO2 and CH4 emissions from vegetable fields[J]. Journal of Ecology and Rural Environment, 2016, 32(2):283-288 doi: 10.11934/j.issn.1673-4831.2016.02.017
[17]WANG D, WANG K, DíAZ-PINéS E, et al. Applicability of an eddy covariance system based on a close-path quantum cascade laser spectrometer for measuring nitrous oxide fluxes from subtropical vegetable fields[J]. Atmospheric and Oceanic Science Letters, 2016, 9(5):381-387 doi: 10.1080/16742834.2016.1211468
[18]中国气象局气象数据中心. 中国地面气象站逐小时观测资料[EB/OL]. [2006-2015]. http://data.cma.cn
Meteorological Data Center of China Meteorological Administration. Hourly observation datasets of ground weather stations of China[EB/OL]. [2006-2015]. http://data.cma.cn
[19]郑循华, 王睿.陆地生态系统-大气:碳氮气体交换通量的地面观测方法——静态箱-气相色谱法观测CH4和N2O通量的方法与数据质量控制规范[M].北京:气象出版社, 2017:58-65
ZHENG X H, WANG R. Terrestrial Ecosystems-Atmosphere:Measurement Methods for Exchange Flux of Carbon and Nitrogen Gases-Protocols for Flux Measurement and Data Processing of CH4 and N2O Based on Static Chamber-Gas Chromatography Technique[M]. Beijing:China Meteorological Press, 2017:58-65
[20]FLESSA H, D?RSCH P, BEESE F. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany[J]. Journal of Geophysical Research:Atmosphere, 1995, 100(D11):23115-23124 doi: 10.1029/95JD02270
[21]SNYDER C S, BRUULSEMA T W, JENSEN T L, et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture, Ecosystems & Environment, 2009, 133(3/4):247-266 https://www.sciencedirect.com/science/article/pii/S0167880909001297
[22]YAO Z S, ZHENG X H, LIU C Y, et al. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China[J]. Agricultural and Forest Meteorology, 2018, 248:386-396 doi: 10.1016/j.agrformet.2017.10.020
[23]闫翠萍, 张玉铭, 胡春胜, 等.不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势[J].中国生态农业学报, 2016, 24(6):704-715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016602&flag=1
YAN C P, ZHANG Y M, HU C S, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6):704-715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016602&flag=1
[24]SERRANO-SILVA N, SARRIA-GUZMáN Y, DENDOOVEN L, et al. Methanogenesis and methanotrophy in soil:A review[J]. Pedosphere, 2014, 24(3):291-307 doi: 10.1016/S1002-0160(14)60016-3
[25]王旭燕, 张仁陟, 蔡立群, 等.不同施氮处理下旱作农田土壤CH4、N2O气体排放特征研究[J].环境科学学报, 2015, 35(11):3655-3661 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201511030
WANG X Y, ZHANG R Z, CAI L Q, et al. Emission characteristics of CH4 and N2O fluxes from dryland field under different nitrogen treatments[J]. Acta Scientiae Circumstantiae, 2015, 35(11):3655-3661 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201511030
[26]徐星凯, 周礼恺.土壤源CH4氧化的主要影响因子与减排措施[J].生态农业研究, 1999, 7(2):18-22 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgtn199902005&dbname=CJFD&dbcode=CJFQ
XU X K, ZHOU L K. Main factors affecting soil-borne methane oxidation and measurements for reducing CH4 flux[J]. Eco-Agriculture Research, 1999, 7(2):18-22 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgtn199902005&dbname=CJFD&dbcode=CJFQ
[27]SCHWENKE G D, HERRIDGE D F, SCHEER C, et al. Greenhouse gas (N2O and CH4) fluxes under nitrogen-fertilised dryland wheat and barley on subtropical Vertosols:Risk, rainfall and alternatives[J]. Soil Research, 2016, 54(5):634-650 doi: 10.1071/SR15338
[28]DONG H B, YAO Z S, ZHENG X H, et al. Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime[J]. Atmospheric Environment, 2011, 45(5):1095-1101 doi: 10.1016/j.atmosenv.2010.11.039
[29]WANG K, ZHENG X H, PIHLATIE M, et al. Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field[J]. Agricultural and Forest Meteorology, 2013, 171/172:9-19 doi: 10.1016/j.agrformet.2012.11.009
[30]LIVINGSTON G P, HUTCHINSON G L. Enclosure-based measurement of trace gas exchange: Applications and sources of error[M]//MATSON P A, HARRISS R C. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Oxford: Blackwell Science, 1995: 14-51
[31]CAI Y J, DING W X, LUO J F. Spatial variation of nitrous oxide emission between interrow soil and interrow plus row soil in a long-term maize cultivated sandy loam soil[J]. Geoderma, 2012, 181/182:2-10 doi: 10.1016/j.geoderma.2012.03.005
[32]RUSER R, SCHILLING R, STEINDL H, et al. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields[J]. Soil Science Society of America Journal, 1998, 62(6):1587-1595 doi: 10.2136/sssaj1998.03615995006200060016x

相关话题/观测 蔬菜 交换 土壤 农田